Influence of Land-Use Type on Black Soil Features in Indonesia Based on Soil Survey Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Statistical Analysis
3. Results
3.1. Soil Property Variation Across Land-Use Types
3.2. Effect Size and Statistical Significance of Mean Differences
3.3. Sensitive Soil Properties Toward Land-Use Change
4. Discussion
4.1. Land-Cover/Use Changes Trigger Changes in Soil Property Level and Direction
4.2. Sensitivity of Hedges’s g-Index and Welch’s t-Test
4.3. Practical Implications and Future Directions
4.4. The Limitation of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Land-Use Type | Parameter | Stable Soil Properties | Regulated Soil Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | SOC | PH | TN | AP | XCa | XMg | XK | XNa | ||
(………………%……………………) | (%) | (ppm) | (………cmol(+)/kg….……) | |||||||||
Forest (HT) | n | 37 | 37 | 37 | 34 | 37 | 37 | 37 | 37 | 37 | 37 | 37 |
Mean | 27.5 | 34.9 | 37.6 | 2.0 | 7.0 | 0.20 | 43.3 | 22.5 | 6.0 | 1.5 | 2.1 | |
SD | 11.5 | 8.8 | 13.3 | 0.8 | 0.5 | 0.11 | 20.6 | 10.0 | 2.7 | 0.8 | 1.2 | |
CV | 42 | 25 | 35 | 43 | 7 | 54 | 48 | 44 | 44 | 52 | 58 | |
Shrubland (SB) | n | 20 | 20 | 20 | 19 | 15 | 20 | 15 | 15 | 15 | 15 | 15 |
Mean | 44.7 | 28.7 | 26.6 | 1.5 | 6.8 | 0.12 | 42.9 | 20.9 | 3.9 | 1.6 | 1.6 | |
SD | 24.6 | 16.6 | 15.1 | 1.2 | 0.7 | 0.08 | 28.0 | 12.7 | 3.6 | 1.1 | 1.1 | |
CV | 55 | 58 | 57 | 75 | 10 | 66 | 65 | 61 | 94 | 73 | 71 | |
Monoculture home garden (KB) | n | 16 | 16 | 16 | 16 | 16 | 16 | 13 | 16 | 16 | 16 | 16 |
Mean | 40.6 | 31.1 | 28.3 | 2.4 | 6.4 | 0.19 | 23.9 | 18.0 | 3.6 | 0.6 | 0.3 | |
SD | 17.1 | 10.7 | 17.8 | 1.0 | 0.5 | 0.08 | 15.2 | 13.1 | 1.5 | 0.4 | 0.2 | |
CV | 42 | 34 | 63 | 44 | 7 | 44 | 63 | 73 | 41 | 79 | 77 | |
Mixed home garden (KC) | n | 37 | 37 | 37 | 37 | 37 | 37 | 36 | 37 | 37 | 37 | 37 |
Mean | 37.9 | 26.6 | 35.5 | 1.4 | 6.7 | 0.11 | 32.2 | 17.6 | 6.0 | 1.1 | 1.4 | |
SD | 18.7 | 9.6 | 14.9 | 0.7 | 0.5 | 0.05 | 19.5 | 8.4 | 4.9 | 0.6 | 2.0 | |
CV | 49 | 36 | 42 | 50 | 7 | 47 | 60 | 48 | 82 | 54 | 137 | |
Agriculture dryland (TG) | n | 9 | 9 | 9 | 7 | 9 | 9 | 7 | 9 | 9 | 9 | 9 |
Mean | 40.6 | 31.9 | 27.6 | 3.4 | 6.2 | 0.30 | 53.9 | 18.4 | 3.4 | 0.9 | 0.7 | |
SD | 17.7 | 11.0 | 10.0 | 1.9 | 1.7 | 0.13 | 60.2 | 16.0 | 2.3 | 0.5 | 0.6 | |
CV | 44 | 34 | 36 | 56 | 27 | 43 | 112 | 87 | 66 | 56 | 90 | |
Paddy field (SW) | n | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
Mean | 30.6 | 36.2 | 33.2 | 1.5 | 7.1 | 0.12 | 41.6 | 15.6 | 4.8 | 1.4 | 2.1 | |
SD | 11.4 | 7.6 | 7.0 | 0.7 | 0.6 | 0.07 | 38.8 | 5.0 | 3.6 | 0.6 | 1.1 | |
CV | 37 | 21 | 21 | 45 | 8 | 56 | 93 | 32 | 75 | 44 | 52 |
References
- FAO Black Soils Definition. Available online: https://www.fao.org/global-soil-partnership/intergovernmental-technical-panel-soils/gsoc17-implementation/internationalnetworkblacksoils/more-on-black-soils/definition-what-is-a-black-soil/en/ (accessed on 8 June 2023).
- Durán, A.; Morrás, H.; Studdert, G.; Liu, X. Distribution, Properties, Land Use and Management of Mollisols in South America. Chin. Geogr. Sci. 2011, 21, 511–530. [Google Scholar] [CrossRef]
- Wang, H.; Yang, S.; Wang, Y.; Gu, Z.; Xiong, S.; Huang, X.; Sun, M.; Zhang, S.; Guo, L.; Cui, J.; et al. Rates and Causes of Black Soil Erosion in Northeast China. Catena 2022, 214, 106250. [Google Scholar] [CrossRef]
- Liu, X.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the World: Distribution, Land Use and Management. Can J Soil Sci 2012, 12, 383–402. [Google Scholar] [CrossRef]
- Pozniak, S.; Havrysh, N.; Yamelynets, T. Chernozems of Ukraine and Its Evolution under the Influence of Anthropogenic Factors. Agronomy 2021, 64, 156–161. [Google Scholar]
- FAO. Global Status of Black Soils; FAO: Rome, Italy, 2022. [Google Scholar]
- Li, R.; Hu, W.; Jia, Z.; Liu, H.; Zhang, C.; Huang, B.; Yang, S.; Zhao, Y.; Zhao, Y.; Shukla, M.K.; et al. Soil Degradation: A Global Threat to Sustainable Use of Black Soils. Pedosphere 2024, 25, 264–279. [Google Scholar] [CrossRef]
- Sulaeman, Y.; Cahyana, D.; Husnain; Nursyamsi, D. Spatial Identification of Black Soils in Indonesia. IOP Conf Ser. Earth Environ. Sci. 2021, 757, 012035. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Agricultural Handbook 436; Natural Resources Conservation Service, USDA: Washington DC, USA, 1999. [Google Scholar]
- Sorokin, A.; Owens, P.; Láng, V.; Jiang, Z.-D.; Michéli, E.; Krasilnikov, P. “Black Soils” in the Russian Soil Classification System, the US Soil Taxonomy and the WRB: Quantitative Correlation and Implications for Pedodiversity Assessment. CATENA 2021, 196, 104824. [Google Scholar] [CrossRef]
- Sulaeman, Y.; Sukarman; Neswati, R.; Nurdin; Basuki, T. Characteristics and Utilization of Black Soils in Indonesia. Sains Tanah 2023, 20, 114–123. [Google Scholar] [CrossRef]
- Ram, B.; Singh, A.P.; Singh, V.K.; Luthra, N.; Nath, A. Effect of Different Land Uses on Chemical Properties of Soil in a Mollisol. Pharma Innov. J. 2022, 11, 242–246. [Google Scholar]
- Li, H.; Zhu, H.; Qiu, L.; Wei, X.; Liu, B.; Shao, M. Response of Soil OC, N and P to Land-Use Change and Erosion in the Black Soil Region of the Northeast China. Agric. Ecosyst. Environ. 2020, 302, 107081. [Google Scholar] [CrossRef]
- Lin, L.; Han, S.; Zhao, P.; Li, L.; Zhang, C.; Wang, E. Influence of Soil Physical and Chemical Properties on Mechanical Characteristics under Different Cultivation Durations with Mollisols. Soil Tillage Res. 2022, 224, 105520. [Google Scholar] [CrossRef]
- Ram, B.; Singh, A.P.; Singh, V.K.; Shivran, M.; Serawat, A. Effect of Different Land-Uses Systems on Soil pH, Electrical Conductivity and Micronutrients in Mollisols of Uttarakhand. Biol. Forum–Int. J. 2022, 14, 712–716. [Google Scholar]
- Sulaeman, Y.; Minasny, B.; McBratney, A.B.; Sarwani, M.; Sutandi, A. Harmonizing Legacy Soil Data for Digital Soil Mapping in Indonesia. Geoderma 2013, 192, 77–85. [Google Scholar] [CrossRef]
- Arrouays, D.; Leenaars, J.G.B.; Richer-de-Forges, A.C.; Adhikari, K.; Ballabio, C.; Greve, M.; Grundy, M.; Guerrero, E.; Hempel, J.; Hengl, T.; et al. Soil Legacy Data Rescue via GlobalSoilMap and Other International and National Initiatives. GeoResJ 2017, 14, 1–19. [Google Scholar] [CrossRef]
- Kempen, B.; Brus, D.J.; Heuvelink, G.B.M.; Stoorvogel, J.J. Updating the 1:50,000 Dutch Soil Map Using Legacy Soil Data: A Multinomial Logistic Regression Approach. Geoderma 2009, 151, 311–326. [Google Scholar] [CrossRef]
- Heung, B.; Hodúl, M.; Schmidt, M.G. Comparing the Use of Training Data Derived from Legacy Soil Pits and Soil Survey Polygons for Mapping Soil Classes. Geoderma 2017, 290, 51–68. [Google Scholar] [CrossRef]
- Machado, I.R.; Giasson, E.; Campos, A.R.; Costa, J.J.F.; Silva, E.B.d.; Bonfatti, B.R. Spatial Disaggregation of Multi-Component Soil Map Units Using Legacy Data and a Tree-Based Algorithm in Southern Brazil. Rev. Bras. Ciênc. Solo 2018, 42, e0170193. [Google Scholar] [CrossRef]
- Ellili Bargaoui, Y.; Walter, C.; Michot, D.; Saby, N.P.A.; Vincent, S.; Lemercier, B. Validation of Digital Maps Derived from Spatial Disaggregation of Legacy Soil Maps. Geoderma 2019, 356, 113907. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Palm, C.A.; Buol, S.W. Fertility Capability Soil Classification: A Tool to Help Assess Soil Quality in the Tropics. Geoderma 2003, 114, 157–185. [Google Scholar] [CrossRef]
- Balai Penelitian Tanah. Petunjuk Teknis Analisa Kimia Tanah, Tanaman, Air, Dan Pupuk; Balai Penelitian Tanah: Bogor, Indonesia, 2005. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. J. Educ. Behav. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T. Two Sample T-Tests for IR Evaluation: Student or Welch? In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy, 17–21 July 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1045–1048. [Google Scholar]
- Ruxton, G.D. The Unequal Variance T-Test Is an Underused Alternative to Student’s t-Test and the Mann–Whitney U Test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021.
- Lüdecke, D. Esc: Effect Size Computation for Meta Analysis (Version 0.5.1) 2019. Available online: https://zenodo.org/records/1249218 (accessed on 9 March 2025).
- Haile, G.; Itanna, F.; Teklu, B.; Agegnehu, G. Variation in Soil Properties under Different Land Use Types Managed by Smallholder Farmers in Central Ethiopia. Sustain. Environ. 2022, 8, 1–15. [Google Scholar] [CrossRef]
- Zhang, M.; Han, J.; Jiao, J.; Han, J.; Zhao, X.; Hu, K.; Kang, Y.; Jaffar, M.T.; Qin, W. Soil Carbon Management Index under Different Land Use Systems and Soil Types of Sanjiang Plain in Northeast China. Agronomy 2023, 13, 2533. [Google Scholar] [CrossRef]
- Sainepo, B.M.; Gachene, C.K.; Karuma, A. Assessment of Soil Organic Carbon Fractions and Carbon Management Index under Different Land Use Types in Olesharo Catchment, Narok County, Kenya. Carbon Balance Manag. 2018, 13, 1–9. [Google Scholar] [CrossRef]
- Pham, T.G.; Nguyen, H.T.; Kappas, M. Assessment of Soil Quality Indicators under Different Agricultural Land Uses and Topographic Aspects in Central Vietnam. Int. Soil Water Conserv. Res. 2018, 6, 280–288. [Google Scholar] [CrossRef]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying Carbon for Agricultural Soil Management: From the Current Status toward a Global Soil Information System. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef]
- Jyoti, K.M.; Sarmah, M.K.; Das, K.N.; Lolesh, P.; Wasifur, R.; Bhoirab, G. Impact of Available N, P2O5 and K2O on Soil Due to Different Management Practices after Growing Sali Rice. Int. J. Agric. Sci. 2018, 8, 3306–3309. [Google Scholar]
- Moharana, P.C.; Meena, R.L.; Nogiya, M.; Jena, R.K.; Sharma, G.K.; Sahoo, S.; Jha, P.K.; Aditi, K.; Vara Prasad, P.V. Impacts of Land Use on Pools and Indices of Soil Organic Carbon and Nitrogen in the Ghaggar Flood Plains of Arid India. Land 2022, 11, 1180. [Google Scholar] [CrossRef]
- Leul, Y.; Assen, M.; Damene, S.; Legass, A. Effects of Land-Use Dynamics on Soil Organic Carbon and Total Nitrogen Stock, Western Ethiopia. Appl. Environ. Soil Sci. 2023, 2023, 5080313. [Google Scholar] [CrossRef]
- Wang, B.; Wang, G.; Myo, S.T.Z.; Li, Y.; Xu, C.; Lin, Z.; Qian, Z.; Tang, L. Deforestation for Agriculture Temporarily Improved Soil Quality and Soil Organic Carbon Stocks. Forests 2022, 13, 228. [Google Scholar] [CrossRef]
- Samani, K.M.; Pordel, N.; Hosseini, V.; Shakeri, Z. Effect of Land-Use Changes on Chemical and Physical Properties of Soil in Western Iran (Zagros Oak Forests). J. For. Res. 2020, 31, 637–647. [Google Scholar] [CrossRef]
- Labaz, B.; Hartemink, A.E.; Zhang, Y.; Stevenson, A.; Kabała, C. Organic Carbon in Mollisols of the World − A Review. Geoderma 2024, 447, 116937. [Google Scholar] [CrossRef]
- Xu, X.; Pei, J.; Xu, Y.; Wang, J. Soil Organic Carbon Depletion in Global Mollisols Regions and Restoration by Management Practices: A Review. J. Soils Sediments 2020, 20, 1173–1181. [Google Scholar] [CrossRef]
- Brydges, C.R. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innov. Aging 2019, 3, igz036. [Google Scholar] [CrossRef]
- Szeghy, R.E.; Province, V.M.; Stute, N.L.; Augenreich, M.A.; Koontz, L.K.; Stickford, J.L.; Stickford, A.S.L.; Ratchford, S.M. Carotid Stiffness, Intima–Media Thickness and Aortic Augmentation Index among Adults with SARS-CoV-2. Exp. Physiol. 2022, 107, 694–707. [Google Scholar] [CrossRef]
- Hedges, L.V.; Pigoot, T.D. The Power of Statistical Test for Moderators in Meta Analysis. Psychol. Methods 2004, 9, 426–445. [Google Scholar] [CrossRef]
- Blankinship, J.C.; Niklaus, P.A.; Hungate, B.A. A Meta-Analysis of Responses of Soil Biota to Global Change. Oecologia 2011, 165, 553–565. [Google Scholar] [CrossRef]
- Horvatinec, J.; Buczny, J.; Ondrasek, G. Fly Ash Application Impacts Master Physicochemical Pedovariables: A Multilevel Meta-Analysis. J. Environ. Manage. 2024, 368, 122066. [Google Scholar] [CrossRef]
- Molla, E.; Getnet, K.; Mekonnen, M. Land Use Change and Its Effect on Selected Soil Properties in the Northwest Highlands of Ethiopia. Heliyon 2022, 8, e10157. [Google Scholar] [CrossRef]
- Wilding, L.P.; Dress, L.R. Spatial Variability and Pedology. In Pedogenesis and Soil Taxonomy I: Concepts and Interaction; Wilding, L.P., Smeck, N.E., Hall, G.F., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 83–116. [Google Scholar]
Code | Soil Property | Unit | Laboratory Methods * |
---|---|---|---|
Stable soil properties | |||
Sand | Sand fraction content | % | Pipet |
Silt | Silt fraction content | % | Pipet |
Clay | Clay fraction content | % | Pipet |
SOC | Soil organic carbon content | % | Walkley and Black |
Regulated soil properties | |||
PH | Soil pH | pH meter, soil: water = 1:5 | |
TN | Total nitrogen | % | Kjeldahl |
AP | Available P2O5 | ppm | Olsen |
XCa | Exchangeable Ca | cmol(+)/kg | NH4OAc 1M, pH 7 |
XMg | Exchangeable Mg | cmol(+)/kg | NH4OAc 1M, pH 7 |
XK | Exchangeable K | cmol(+)/kg | NH4OAc 1M, pH 7 |
XNa | Exchangeable Na | cmol(+)/kg | NH4OAc 1M, pH 7 |
1st Land Use | 2nd Land Use | Sand | Silt | Clay | SOC |
---|---|---|---|---|---|
A. Natural land cover versus natural land cover | |||||
HT | SB | −0.99 * | 0.51 | 0.78 * | 0.51 |
B. Natural land cover versus farming use | |||||
HT | KB | −0.96 * | 0.40 | 0.62 | −0.45 |
HT | KC | −0.66 * | 0.89 * | 0.15 | 0.79 * |
HT | TG | −1.00 | 0.32 | 0.77 * | −1.31 |
HT | SW | −0.27 | −0.15 | 0.37 | 0.64 * |
SB | KB | 0.18 | −0.16 | −0.10 | −0.79 * |
SB | KC | 0.32 | 0.16 | −0.59 * | 0.11 |
SB | TG | 0.17 | −0.21 | −0.07 | −1.31 * |
SB | SW | 0.71 * | −0.56 | −0.54 | 0.00 |
C. Farming use versus farming use | |||||
KB | KC | 0.15 | 0.44 | −0.45 | 1.23 * |
KB | TG | 0.00 | −0.07 | 0.04 | −0.73 |
KB | SW | 0.68 | −0.55 | −0.37 | 1.04 * |
KC | TG | −0.14 | −0.53 | 0.55 | −2.03 * |
KC | SW | 0.43 | −1.06 * | 0.18 | −0.14 |
TG | SW | 0.71 | −0.48 | −0.68 | 1.63 * |
1st Land Use | 2nd Land Use | PH | TN | AP | XCa | XMg | XK | XNa |
---|---|---|---|---|---|---|---|---|
A. Natural land cover versus natural land cover | ||||||||
HT | SB | 0.35 | 0.78 * | 0.02 | 0.14 | 0.69 * | −0.11 | 0.42 |
B. Natural land cover versus farming use | ||||||||
HT | KB | 1.18 * | 0.09 | 0.98 * | 0.40 | 0.98 * | 1.26 * | 1.75 * |
HT | KC | 0.59 * | 1.04 * | 0.55 * | 0.53 * | 0.00 | 0.56 * | 0.42 |
HT | TG | 0.92 | −0.86 * | −0.35 | 0.36 | 0.97 * | 0.78 * | 1.23 * |
HT | SW | −0.18 | 0.80 * | 0.06 | 0.79 * | 0.39 | 0.13 | 0.00 |
SB | KB | 0.64 * | −0.86 * | 0.80 * | 0.22 | 0.11 | 1.19 * | 1.63 * |
SB | KC | 0.17 | 0.16 | 0.47 | 0.33 | −0.45 | 0.64 | 0.11 |
SB | TG | 0.50 | −1.79 * | −0.26 | 0.17 | 0.15 | 0.73 | 0.92 * |
SB | SW | −0.45 | 0.00 | 0.04 | 0.56 | −0.24 | 0.23 | −0.44 |
C. Farming use versus farming use | ||||||||
KB | KC | −0.59 * | 1.31 * | −0.44 | 0.04 | −0.56 * | −0.89 * | −0.64 * |
KB | TG | 0.18 | −1.06 * | −0.78 | −0.03 | 0.11 | −0.66 | −0.99 |
KB | SW | −1.23 * | 0.92 * | −0.55 | 0.25 | −0.41 | −1.51 * | −2.14 * |
KC | TG | 0.58 | −2.61 * | −0.73 | −0.08 | 0.56 * | 0.34 | 0.38 |
KC | SW | −0.74 * | −0.17 | −0.34 | 0.27 | 0.26 | −0.49 | −0.39 |
TG | SW | −0.82 | 1.89 * | 0.26 | 0.28 | −0.42 | −0.85 * | −1.39 * |
Pair | Number of Properties | Difference * | |
---|---|---|---|
Positive (+) | Negative (−) | ||
A. Natural land cover versus natural land cover | |||
HT vs. SB | 5 | Clay, SOC, TN, XMg | Sand |
B. Natural land cover versus farming use | |||
HT vs. KB | 5 | AP, XMg, XK, PH | Sand |
HT vs. KC | 8 | Silt, SOC, TN, AP, XCa, XK, PH | Sand |
HT vs. TG | 4 | Clay, XMg, XK, XNa | |
HT vs. SW | 3 | SOC, TN, XCa | |
SB vs. KB | 5 | AP, XK, XNa | SOC, TN |
SB vs. KC | 1 | Clay | |
SB vs. TG | 1 | TN | |
SB vs. SW | 0 | ||
C. Farming use versus farming use | |||
KB vs. KC | 6 | SOC, TN | XMg, XK, XNa, PH |
KB vs. TG | 1 | TN | |
KB vs. SW | 4 | SOC, TN | XK, XNa |
KC vs. TG | 2 | Silt, TN | |
KC vs. SW | 2 | Silt, PH | |
TG vs. SW | 2 | TN | AP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulaeman, Y.; Maftuáh, E.; Sukarman, S.; Neswati, R.; Nurdin, N.; Basuki, T.; Suriadi, A.; Vasenev, I. Influence of Land-Use Type on Black Soil Features in Indonesia Based on Soil Survey Data. Land 2025, 14, 599. https://doi.org/10.3390/land14030599
Sulaeman Y, Maftuáh E, Sukarman S, Neswati R, Nurdin N, Basuki T, Suriadi A, Vasenev I. Influence of Land-Use Type on Black Soil Features in Indonesia Based on Soil Survey Data. Land. 2025; 14(3):599. https://doi.org/10.3390/land14030599
Chicago/Turabian StyleSulaeman, Yiyi, Eni Maftuáh, Sukarman Sukarman, Risma Neswati, Nurdin Nurdin, Tony Basuki, Ahmad Suriadi, and Ivan Vasenev. 2025. "Influence of Land-Use Type on Black Soil Features in Indonesia Based on Soil Survey Data" Land 14, no. 3: 599. https://doi.org/10.3390/land14030599
APA StyleSulaeman, Y., Maftuáh, E., Sukarman, S., Neswati, R., Nurdin, N., Basuki, T., Suriadi, A., & Vasenev, I. (2025). Influence of Land-Use Type on Black Soil Features in Indonesia Based on Soil Survey Data. Land, 14(3), 599. https://doi.org/10.3390/land14030599