A Feasibility Study on Gradient Boosting Regressor for Subsurface Sensor-Based Surface Instability Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. GBR Model Development
2.2.1. Model Training and Prediction
- Calculating residuals from the current model predictions.
- Training weak learners (decision trees) to minimize these residuals.
- Iteratively updating the model to reduce overall errors.
2.2.2. Model Evaluation Metrics
2.2.3. Hyperparameter Selection and Evaluation
3. Results and Discussion
3.1. Simulation Results
3.2. GBR Model
3.3. Physical and Practical Implications
3.4. Limitations and Future Directions
4. Conclusions
- Subsurface sensors strongly correlate with surface-level displacements, providing valuable insights into slope failure progression and supporting early detection efforts.
- The GBR model achieves high predictive accuracy, with metrics including an R2 value of 0.939, MSE of 0.470, MAE of 0.320, and RMSE of 0.686, underscoring its robustness and reliability.
- Controlled experiments demonstrate the proof-of-concept, showing that subsurface displacement data can complement shallow sensors to effectively capture progressive slope failures.
- This study emphasizes the practicality of subsurface data as a focused monitoring layer for high-risk areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cantarino, I.; Carrion, M.A.; Palencia-Jimenez, J.S.; Martínez-Ibáñez, V. Landslide Risk Management Analysis on Expansive Residential Areas—Case Study of La Marina (Alicante, Spain). Nat. Hazards Earth Syst. Sci. 2021, 21, 1847–1866. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Melillo, M.; Gariano, S.L.; Ciabatta, L.; Brocca, L.; Amarnath, G.; Peruccacci, S. Satellite Rainfall Products Outperform Ground Observations for Landslide Prediction in India. Hydrol. Earth Syst. Sci. 2021, 25, 3267–3279. [Google Scholar] [CrossRef]
- Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial Early Warning Systems for Rainfall-Induced Landslides. Earth-Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
- Segoni, S.; Rosi, A.; Fanti, R.; Gallucci, A.; Monni, A.; Casagli, N. A Regional-Scale Landslide Warning System Based on 20 Years of Operational Experience. Water 2018, 10, 1297. [Google Scholar] [CrossRef]
- Xi, N.; Yang, Q.; Sun, Y.; Mei, G. Machine Learning Approaches for Slope Deformation Prediction Based on Monitored Time-Series Displacement Data: A Comparative Investigation. Appl. Sci. 2023, 13, 4677. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Han, D.; Zhang, J.; Zhuo, L.; Berti, M. Application of Hydrological Model Simulations in Landslide Predictions. Landslides 2020, 17, 877–891. [Google Scholar] [CrossRef]
- Kazumasa, K.; Hiromi, T.; Hirokazu, H.; Masao, A.; Hirotaka, N.; Kohei, F. A study on a method for determining non-linear critical line of slope failures during heavy rainfall based on RBF network. Doboku Gakkai Ronbunshu 2001, 50, 117–132. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating Landslides and Unstable Slopes with Satellite Multi Temporal Interferometry: Current Issues and Future Perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Liao, Z.; Hong, Y.; Wang, J.; Fukuoka, H.; Sassa, K.; Karnawati, D.; Fathani, F. Prototyping an Experimental Early Warning System for Rainfall-Induced Landslides in Indonesia Using Satellite Remote Sensing and Geospatial Datasets. Landslides 2010, 7, 317–324. [Google Scholar] [CrossRef]
- Bardi, F.; Raspini, F.; Frodella, W.; Lombardi, L.; Nocentini, M.; Gigli, G.; Morelli, S.; Corsini, A.; Casagli, N. Monitoring the Rapid-Moving Reactivation of Earth Flows by Means of GB-InSAR: The April 2013 Capriglio Landslide (Northern Appennines, Italy). Remote Sens. 2017, 9, 165. [Google Scholar] [CrossRef]
- Schenato, L.; Palmieri, L.; Camporese, M.; Bersan, S.; Cola, S.; Pasuto, A.; Galtarossa, A.; Salandin, P.; Simonini, P. Distributed Optical Fibre Sensing for Early Detection of Shallow Landslides Triggering. Sci. Rep. 2017, 7, 14686. [Google Scholar] [CrossRef] [PubMed]
- Vera, J.E.; Mora, S.F.; Cervantes, R.A. Design and Testing of a Network of Sensors on Land Surfaces to Prevent Landslides. In Proceedings of the 2016 IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires, Argentina, 15–17 June 2016; pp. 1–4. [Google Scholar]
- Wang, L.; Seko, I.; Fukuhara, M.; Towhata, I.; Uchimura, T.; Tao, S. Risk Evaluation and Warning Threshold of Unstable Slope Using Tilting Sensor Array. Nat. Hazards 2022, 114, 127–156. [Google Scholar] [CrossRef]
- Kuradusenge, M.; Kumaran, S.; Zennaro, M. Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda. Int. J. Environ. Res. Public Health 2020, 17, 4147. [Google Scholar] [CrossRef] [PubMed]
- Kadavi, P.R.; Lee, C.W.; Lee, S. Landslide-Susceptibility Mapping in Gangwon-Do, South Korea, Using Logistic Regression and Decision Tree Models. Environ. Earth Sci. 2019, 78, 116. [Google Scholar] [CrossRef]
- Sobolewski, R.A.; Tchakorom, M.; Couturier, R. Gradient Boosting-Based Approach for Short- and Medium-Term Wind Turbine Output Power Prediction. Renew. Energy 2023, 203, 142–160. [Google Scholar] [CrossRef]
- Niu, X.; Ma, J.; Wang, Y.; Zhang, J.; Chen, H.; Tang, H. A Novel Decomposition-Ensemble Learning Model Based on Ensemble Empirical Mode Decomposition and Recurrent Neural Network for Landslide Displacement Prediction. Appl. Sci. 2021, 11, 4684. [Google Scholar] [CrossRef]
- Nayak, A.K.; Xu, X.; Frey, S.K.; Khader, O.; Erler, A.R.; Lapen, D.R.; Russell, H.A.J.; Sudicky, E.A. Quantifying the Potential of Using Soil Moisture Active Passive (SMAP) Soil Moisture Variability to Predict Subsurface Water Dynamics. Hydrol. Earth Syst. Sci. 2025, 29, 215–244. [Google Scholar] [CrossRef]
- Rončević, V.; Živanović, N.; van Boxel, J.H.; Iserloh, T.; Štrbac, S. Dripping Rainfall Simulators for Soil Research—Performance Review. Water 2023, 15, 1314. [Google Scholar] [CrossRef]
- ASTM D698-12; Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 Ft-Lbf/Ft3 (600 kN-m/m3)). ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM D3080; Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- Stojnic, I.; Pfister, M.; Matos, J.; Schleiss, A.J. Effect of 30-Degree Sloping Smooth and Stepped Chute Approach Flow on the Performance of a Classical Stilling Basin. J. Hydraul. Eng. 2021, 147, 04020097. [Google Scholar] [CrossRef]
- Moriwaki, H.; Inokuchi, T.; Hattanji, T.; Sassa, K.; Ochiai, H.; Wang, G. Failure Processes in a Full-Scale Landslide Experiment Using a Rainfall Simulator. Landslides 2004, 1, 277–288. [Google Scholar] [CrossRef]
- Mangeney, A.; Roche, O.; Hungr, O.; Mangold, N.; Faccanoni, G.; Lucas, A. Erosion and Mobility in Granular Collapse over Sloping Beds. J. Geophys. Res. Earth Surf. 2010, 115, F03040. [Google Scholar] [CrossRef]
- Askarinejad, A.; Springman, S.M. A Novel Technique to Monitor Subsurface Movements of Landslides. Can. Geotech. J. 2018, 55, 620–630. [Google Scholar] [CrossRef]
- Li, W.; Yali, L.; Yanhong, C.; Libing, Y. Shock and Vibration of Rainfall on Rotational Landslide and Analysis of Its Deformation Characteristics. Geofluids 2021, 2021, 4119414. [Google Scholar] [CrossRef]
- Merritt, A.J.; Chambers, J.E.; Murphy, W.; Wilkinson, P.B.; West, L.J.; Uhlemann, S.; Meldrum, P.I.; Gunn, D. Landslide Activation Behaviour Illuminated by Electrical Resistance Monitoring. Earth Surf. Process. Landf. 2018, 43, 1321–1334. [Google Scholar] [CrossRef]
Extensometer | Specification |
---|---|
Model | PDP-2000 |
Rate capacity | 2000 mm |
Calibration coefficient | 0.192326 mm × 10⁻6 st |
Strain | 10,399 mm × 10⁻6 st |
Gauge factor | 2.0 ± 1% |
Sensor Location | Time Interval (s) | Average Displacement (mm) | Displacement Variability (mm) | Standard Deviation (mm) |
---|---|---|---|---|
5 cm | 0–45 | 3.43 | 2.09 | 0.95 |
45–75 | 6.03 | 2.08 | 0.52 | |
75–100 | 14.44 | 1.97 | 0.37 | |
120–180 | 17.08 | 2.08 | 0.81 | |
100–120 | 15.25 | 2.08 | 0.95 | |
25 cm | 0–45 | 3.67 | 2.09 | 0.85 |
45–75 | 5.74 | 2.08 | 0.78 | |
75–100 | 14.42 | 22.70 | 7.86 | |
120–180 | 24.86 | 8.32 | 1.55 | |
100–120 | 22.03 | 10.33 | 2.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigazo, S.A.; Cho, J.; Godes, C.R.; Kim, Y.; Kim, Y.; Lee, S.; Yeon, J. A Feasibility Study on Gradient Boosting Regressor for Subsurface Sensor-Based Surface Instability Assessment. Land 2025, 14, 565. https://doi.org/10.3390/land14030565
Rodrigazo SA, Cho J, Godes CR, Kim Y, Kim Y, Lee S, Yeon J. A Feasibility Study on Gradient Boosting Regressor for Subsurface Sensor-Based Surface Instability Assessment. Land. 2025; 14(3):565. https://doi.org/10.3390/land14030565
Chicago/Turabian StyleRodrigazo, Shanelle Aira, Junhwi Cho, Cherry Rose Godes, Yongseong Kim, Yongjin Kim, Seungjoo Lee, and Jaeheum Yeon. 2025. "A Feasibility Study on Gradient Boosting Regressor for Subsurface Sensor-Based Surface Instability Assessment" Land 14, no. 3: 565. https://doi.org/10.3390/land14030565
APA StyleRodrigazo, S. A., Cho, J., Godes, C. R., Kim, Y., Kim, Y., Lee, S., & Yeon, J. (2025). A Feasibility Study on Gradient Boosting Regressor for Subsurface Sensor-Based Surface Instability Assessment. Land, 14(3), 565. https://doi.org/10.3390/land14030565