Improving Traditional Metrics: A Hybrid Framework for Assessing the Ecological Carrying Capacity of Mountainous Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Methods
2.2.1. Ecological Carrying Capacity Model
2.2.2. Ecological Services Assessment
2.2.3. Moran’s I Analysis
2.2.4. Spatial Econometric Model
2.2.5. Standard Deviation Ellipse
2.3. Data Requirements and Preparation
3. Results
3.1. Land Use and Biodiversity Change
3.2. Spatiotemporal Variation Characteristics in the ECCI
3.3. Spatial Autocorrelation Analysis
3.4. Spatial Effects and Driver Analysis of ECCI
3.5. Standard Deviation Ellipse Analysis
3.6. Model Validation
4. Discussion
4.1. The Impact of Land Use Change and Biodiversity on ECCI
4.2. Spatiotemporal Dynamics of the ECCI and Its Driving Factors
4.3. Strategic Management Measures to Address Ecological Carrying Capacity
4.4. Innovations and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sagoff, M. Carrying Capacity and Ecological Economics. BioScience 1995, 45, 610–620. [Google Scholar] [CrossRef]
- Noroozi, J.; Minaei, M.; Khalvati, S.; Kaveh, A.; Nafisi, H.; Nazari, B.; Zare, G.; Vitek, E.; Hülber, K.; Schneeweiss, G.M. Hotspots of (sub) alpine plants in the Irano-Anatolian global biodiversity hotspot are insufficiently protected. Divers. Distrib. 2023, 29, 244–253. [Google Scholar] [CrossRef]
- Hamunyela, E.; Brandt, P.; Shirima, D.; Do, H.T.T.; Herold, M.; Roman-Cuesta, R.M. Space-time detection of deforestation, forest degradation and regeneration in montane forests of Eastern Tanzania. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102063. [Google Scholar] [CrossRef]
- Almulhim, A.I.; Cobbinah, P.B. Can rapid urbanization be sustainable? The case of Saudi Arabian cities. Habitat Int. 2023, 139, 102884. [Google Scholar] [CrossRef]
- Mata-Guel, E.O.; Soh, M.C.; Butler, C.W.; Morris, R.J.; Razgour, O.; Peh, K.S.H. Impacts of anthropogenic climate change on tropical montane forests: An appraisal of the evidence. Biol. Rev. 2023, 98, 1200–1224. [Google Scholar] [CrossRef]
- Luo, C.; Ma, X.; Yan, W.; Wang, Y. Trade-Offs and Optimization of Ecosystem Services in the Plain Terminal Lake Basin: A Case Study of Xinjiang. Land Degrad. Dev. 2024, 35, 5043–5061. [Google Scholar] [CrossRef]
- Singh, K.; Agrawala, M.; Dhyani, S.; Mishra, N.; Bauddh, K.; Byun, C. Land degradation and development in India: Status quo, challenges and opportunities. Land Degrad. Dev. 2024, 35, 2675–2683. [Google Scholar] [CrossRef]
- Sietz, D.; Neudert, R. Taking stock of and advancing knowledge on interaction archetypes at the nexus between land, biodiversity, food and climate. Environ. Res. Lett. 2022, 17, 113004. [Google Scholar] [CrossRef]
- Miralles, C.C.; Barioni, D.; Mancini, M.S.; Jordà, J.C.; Roura, M.B.; Salas, S.P.; Argelaguet, L.L.; Galli, A. The footprint of tourism: A review of water, carbon, and ecological footprint applications to the tourism sector. J. Clean. Prod. 2023, 422, 138568. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Del Monte-Luna, P.; Brook, B.W.; Zetina-Rejón, M.J.; Cruz-Escalona, V.H. The carrying capacity of ecosystems. Glob. Ecol. Biogeogr. 2004, 13, 485–495. [Google Scholar] [CrossRef]
- Świąder, M.; Szewrański, S.; Kazak, J.K. Environmental carrying capacity assessment—The policy instrument and tool for sustainable spatial management. Front. Environ. Sci. 2020, 8, 579838. [Google Scholar] [CrossRef]
- Tang, K.H.D. Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Sci Total Environ. 2019, 650, 1858–1871. [Google Scholar] [CrossRef]
- Harangozo, G.; Szigeti, C. Corporate carbon footprint analysis in practice–With a special focus on validity and reliability issues. J. Clean. Prod. 2017, 167, 1177–1183. [Google Scholar] [CrossRef]
- Davoudi, S.; Sturzaker, J. Urban form, policy packaging and sustainable urban metabolism. Resour. Conserv. Recycl. 2017, 120, 55–64. [Google Scholar] [CrossRef]
- Solecki, W.; Roberts, D.; Seto, K. Strategies to improve the impact of the IPCC Special Report on Climate Change and Cities. Nat. Clim. Change 2024, 14, 685–691. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Zeng, X.; Wang, Q. Characteristics and the constraint relationship between ecosystem services and vegetation coverage in the Southwest China. Acta Ecol. Sin. 2023, 43, 2253–2270. [Google Scholar]
- Ali, Q.; Yaseen, M.R.; Anwar, S.; Makhdum, M.S.A.; Khan, M.T.I. The impact of tourism, renewable energy, and economic growth on ecological footprint and natural resources: A panel data analysis. Resour. Policy 2021, 74, 102365. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.; Zang, C. A comprehensive evaluation of the eco-carrying capacity and green economy in the Guangdong-Hong Kong-Macao Greater Bay Area, China. J. Clean. Prod. 2021, 281, 124945. [Google Scholar] [CrossRef]
- Bi, M.; Yao, C.; Xie, G. Improvement of human sustainable development index and international comparison. J. Nat. Resour. 2020, 35, 1017–1029. [Google Scholar] [CrossRef]
- Gao, J. Exploration of Sustainable Development Theory: Ecological Carrying Capacity Theory, Methods, and Applications; China Environmental Science Press: Beijing, China, 2001. [Google Scholar]
- Mancini, M.S.; Galli, A.; Coscieme, L.; Niccolucci, V.; Lin, D.; Pulselli, F.M.; Bastianoni, S.; Marchettini, N. Exploring ecosystem services assessment through Ecological Footprint accounting. Ecosyst. Serv. 2018, 30, 228–235. [Google Scholar] [CrossRef]
- Wackernagel, M.; Monfreda, C.; Schulz, N.B.; Erb, K.-H.; Haberl, H.; Krausmann, F. Calculating national and global ecological footprint time series: Resolving conceptual challenges. Land Use Policy 2004, 21, 271–278. [Google Scholar] [CrossRef]
- Wackernagel, M.; Monfreda, C.; Moran, D.; Wermer, P.; Goldfinger, S.; Deumling, D.; Murray, M. National Footprint and Biocapacity Accounts 2005: The Underlying Calculation Method; Global Footprint Network: Oakland, CA, USA, 2005. [Google Scholar]
- Wang, H.; Yao, S.; Guo, Y.; Zhao, M. Spatial and Temporal Evolution of Ecological Carrying Capacity Based on Ecological Footprint-Service Value Approach. Resour. Environ. Yangtze Basin 2018, 27, 2316–2327. [Google Scholar]
- Xu, Y.; Zhao, X.; Huang, P.; Pu, J.; Ran, Y.; Zhou, S.; Zhao, Q.; Feng, Y.; Tang, Y.; Tao, J. A new framework for multi-level territorial spatial zoning management: Integrating ecosystem services supply-demand balance and land use structure. J. Clean. Prod. 2024, 441, 141053. [Google Scholar] [CrossRef]
- Carpenter, S.R.; DeFries, R.; Dietz, T.; Mooney, H.A.; Polasky, S.; Reid, W.V.; Scholes, R.J. Ecology. Millennium ecosystem assessment: Research needs. Science 2006, 314, 257–258. [Google Scholar] [CrossRef]
- Weinzettel, J.; Vačkář, D.; Medková, H. Human footprint in biodiversity hotspots. Front. Ecol. Environ. 2018, 16, 447–452. [Google Scholar] [CrossRef]
- Yu, H.; Tang, J.; Chen, R. The spatiotemporal evolution characteristics and multi-scale spatial balance and matching analysis of ecosystem service supply and demand in Hubei Province. J. Ecol. 2024, 45, 6477–6488. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [Google Scholar] [CrossRef]
- Bivand, R.S.; Wong, D.W. Comparing implementations of global and local indicators of spatial association. Test 2018, 27, 716–748. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Wang, J.; Jiang, J. The impact of the urban digital economy on China’s carbon intensity: Spatial spillover and mediating effect. Resour. Conserv. Recycl. 2023, 189, 106762. [Google Scholar] [CrossRef]
- Anselin, L. Spatial econometrics. Handb. Spat. Anal. Soc. Sci. 2022, 1, 101–122. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Dordrecht, The Netherlands, 2013; Volume 4. [Google Scholar]
- Shan, S.Y.; Xu, H.J.; Qi, X.L.; Chen, T.; Wang, X.D. Evaluation and prediction of ecological carrying capacity in the Qilian Mountain National Park, China. J Environ. Manag. 2023, 339, 117856. [Google Scholar] [CrossRef] [PubMed]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Song, S.H.; Koh, W. Testing panel data regression models with spatial error correlation. J. Econom. 2003, 117, 123–150. [Google Scholar] [CrossRef]
- Anselin, L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Perrings, C.; Pimentel, D. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 91–95. [Google Scholar]
- Fang, Z.; Wang, H.; Xue, S.; Zhang, F.; Wang, Y.; Yang, S.; Zhou, Q.; Cheng, C.; Zhong, Y.; Yang, Y.; et al. A comprehensive framework for detecting economic growth expenses under ecological economics principles in China. Sustain. Horiz. 2022, 4, 100035. [Google Scholar] [CrossRef]
- Li, Z.; Pei, Y.; Chen, T.; Li, Y.; Zheng, W. Research on Ecological Security in Yunnan Province Based on Ecological Footprint Improvement Model. Ecol. Econ. 2022, 38, 191–197. [Google Scholar]
- Lu, Y. Trade Driven Changes in Ecosystems: A Case Study of Pingbian County, Yunnan Province, China; Yunnan University: Kunming, China, 2006. [Google Scholar]
- Nedd, R.; Light, K.; Owens, M.; James, N.; Johnson, E.; Anandhi, A. A synthesis of land use/land cover studies: Definitions, classification systems, meta-studies, challenges and knowledge gaps on a global landscape. Land 2021, 10, 994. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, B.; Stafford-Smith, M.; Wang, S.; Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. 2021, 5, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Yang, S.; Zhou, Y.; Gao, P.; Zhang, T. Spatial pattern analysis of a water-related ecosystem service and evaluation of the grassland-carrying capacity of the heihe river basin under land use change. Water 2021, 13, 2658. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Lindenmayer, D.; Guariguata, M.R.; Crouzeilles, R.; Benayas, J.M.R.; Chavero, E.L. Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 2020, 15, 043002. [Google Scholar] [CrossRef]
- Allred, S.; Stedman, R.; Heady, L.; Strong, K. Incorporating biodiversity in municipal land-use planning: An assessment of technical assistance, policy capacity, and conservation outcomes in New York’s Hudson Valley. Land Use Policy 2021, 104, 105344. [Google Scholar] [CrossRef]
- Galli, A.; Iha, K.; Pires, S.M.; Mancini, M.S.; Alves, A.; Zokai, G.; Lin, D.; Murthy, A.; Wackernagel, M. Assessing the ecological footprint and biocapacity of Portuguese cities: Critical results for environmental awareness and local management. Cities 2020, 96, 102442. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Wang, X.; Wang, Y. Understanding the impacts of ‘Grain for Green’land management practice on land greening dynamics over the Loess Plateau of China. Land Use Policy 2020, 99, 105084. [Google Scholar] [CrossRef]
- Penghui, J.; Manchun, L.; Liang, C. Dynamic response of agricultural productivity to landscape structure changes and its policy implications of Chinese farmland conservation. Resour. Conserv. Recycl. 2020, 156, 104724. [Google Scholar] [CrossRef]
- Batala, L.K.; Qiao, J.; Regmi, K.; Weiwen, W.; Rehman, A. The implications of forest resources depletion, agricultural expansion, and financial development on energy demand and ecological footprint in BRI countries. Clean Technol. Environ. Policy 2023, 25, 2845–2861. [Google Scholar] [CrossRef]
- Le Gallo*, J.; Baumont, C.; Dall’erba, S.; Ertur, C. On the property of diffusion in the spatial error model. Appl. Econ. Lett. 2005, 12, 533–536. [Google Scholar] [CrossRef]
- Carrión-Flores, C.; Irwin, E.G. Identifying spatial interactions in the presence of spatial error autocorrelation: An application to land use spillovers. Resour. Econ. 2010, 32, 135–153. [Google Scholar] [CrossRef]
- Wang, N.; Fu, X.; Wang, S. Spatial-temporal variation and coupling analysis of residential energy consumption and economic growth in China. Appl. Energy 2022, 309, 118504. [Google Scholar] [CrossRef]
- Dijkstra, L.; Garcilazo, E.; McCann, P. The economic performance of European cities and city regions: Myths and realities. Eur. Plan. Stud. 2013, 21, 334–354. [Google Scholar] [CrossRef]
- Mandle, L.; Shields-Estrada, A.; Chaplin-Kramer, R.; Mitchell, M.G.; Bremer, L.L.; Gourevitch, J.D.; Hawthorne, P.; Johnson, J.A.; Robinson, B.E.; Smith, J.R. Increasing decision relevance of ecosystem service science. Nat. Sustain. 2021, 4, 161–169. [Google Scholar] [CrossRef]
- Fu, B. On the calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. (In Chinese) [Google Scholar]
- Getis, A. Spatial autocorrelation. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Cham, Switzerland, 2009; Volume 1, pp. 255–278. [Google Scholar]
- Huang, M.; Ji, J.J.; Cao, M.K.; Li, K.R. Modeling study of vegetation shoot and root biomass in China. Acta Ecol. Sin. 2006, 26, 4156–4163. [Google Scholar]
- Jackson, R.B.; Canadell, J.G.; Ehleringer, J.R.; Mooney, H.A.; Schulze, E. A Global Analysis of Root Distributions for Terrestrial Biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef]
- Kerang, L.I.; Wang, S.; Cao, M. Vegetation and soil carbon storage in China. Sci. China 2004, 47, 49–57. [Google Scholar]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P. Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedol. Sin. 2004, 27, 1212–1222. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.; Chiew, F.; Western, A.; Briggs, P. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
Variable Category | Variable | Code | Description Category | Time | ||
---|---|---|---|---|---|---|
2003 | 2013 | 2021 | ||||
Explained variable | Ecological carrying capacity index (village level) | ECCI | Mean | 4.41 | 2.98 | 2.99 |
S.D. | 0.76 | 0.79 | 1.34 | |||
Ecological service value variable | Ecosystem service value coefficient (104 CNY/ha) | ESVC | Mean | 2.53 | 2.69 | 2.71 |
S.D. | 0.39 | 0.33 | 0.37 | |||
Water yield (mm) | WY | Mean | 422.73 | 167.9155 | 119.48 | |
S.D. | 92.18 | 47.4033 | 69.31 | |||
Ecological footprint value variables | Energy consumption value (106 CNY) | ECV | Mean | 1.67 | 4.0304 | 4.65 |
S.D. | 1.73 | 4.2078 | 4.44 | |||
Per capita consumption value (103 CNY per person) | PCV | Mean | 6.02 | 9.2370 | 10.47 | |
S.D. | 2.75 | 5.06 | 8.15 |
Variables | OLS | SEM | SLM | SDM |
---|---|---|---|---|
ESVC | 0.7020 *** | 0.6636 *** | 0.3456 *** | 0.5870 *** |
ECV | −0.4267 *** | −0.1843 *** | −0.1651 *** | −0.1040 ** |
PCV | −0.2428 *** | −0.2829 *** | −0.1750 *** | −0.1630 *** |
WY | 0.3325 *** | 0.0409 | 0.0216 | 0.0103 |
R-sq | 0.5142 | 0.3885 | 0.6883 | 0.2593 |
observation | 294 | 294 | 294 | 294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, R.; Leng, J.; He, D.; Li, Y.; Ma, K.; Xu, Z.; Zhang, K.; Luo, Y. Improving Traditional Metrics: A Hybrid Framework for Assessing the Ecological Carrying Capacity of Mountainous Regions. Land 2025, 14, 549. https://doi.org/10.3390/land14030549
Luo R, Leng J, He D, Li Y, Ma K, Xu Z, Zhang K, Luo Y. Improving Traditional Metrics: A Hybrid Framework for Assessing the Ecological Carrying Capacity of Mountainous Regions. Land. 2025; 14(3):549. https://doi.org/10.3390/land14030549
Chicago/Turabian StyleLuo, Rui, Jiwei Leng, Daming He, Yanbo Li, Kai Ma, Ziyue Xu, Kaiwen Zhang, and Yun Luo. 2025. "Improving Traditional Metrics: A Hybrid Framework for Assessing the Ecological Carrying Capacity of Mountainous Regions" Land 14, no. 3: 549. https://doi.org/10.3390/land14030549
APA StyleLuo, R., Leng, J., He, D., Li, Y., Ma, K., Xu, Z., Zhang, K., & Luo, Y. (2025). Improving Traditional Metrics: A Hybrid Framework for Assessing the Ecological Carrying Capacity of Mountainous Regions. Land, 14(3), 549. https://doi.org/10.3390/land14030549