Compost Mitigates Metal Toxicity and Human Health Risks and Improves the Growth and Physiology of Lettuce Grown in Acidic and Neutral Loam-Textured Soils Polluted with Copper and Zinc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening Tests
2.2. Characterization of Soils, Wastewater, and Compost
2.3. Pot Experiment
2.4. Growth, Physiology, and Metal Analysis
2.5. Metal Intake and Health Risk Assessment
2.6. Soil Dehydrogenase Activity
2.7. Data Collection, Analysis, and Visualization
3. Results
3.1. Screening Tests
3.2. Pot Experiment
3.2.1. Growth, Metal Tolerance Index, and Physiology of Lettuce
3.2.2. Metal Concentrations, Uptake, and Translocation
3.2.3. Metal Intake and Health Risk Assessment
3.2.4. Soil Properties
3.2.5. Correlation and Principal Component Analysis
4. Discussion
4.1. Screening Tests
4.2. Pot Experiment
4.2.1. Growth, Metal Tolerance Index, and Physiology of Lettuce
4.2.2. Metal Concentrations, Uptake, and Translocation
4.2.3. Metal Intake and Health Risk Assessment
4.2.4. Soil Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yi, X.-H.; Wang, C.-C. Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chin. Chem. Lett. 2023, 35, 109094. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, Y.; Liu, Y.; Jiang, X.; Guo, H.; Wang, S.; Li, Z. Climate change driven land use evolution and soil heavy metal release effects in lakes on the Qinghai Tibet Plateau. Sci. Total Environ. 2025, 958, 177898. [Google Scholar] [CrossRef] [PubMed]
- Abidi, M.; Bachtouli, S.; Ibn Ali, Z.; Zairi, M. Soil contamination by heavy metals through irrigation with treated wastewater in a semi-arid area. Environ. Earth Sci. 2024, 83, 25. [Google Scholar] [CrossRef]
- Li, S.; Tao, Z.; Liu, Y.; Li, S.; Kama, R.; Hu, C.; Fan, X.; Li, Z. Influence of Swine Wastewater Irrigation and Straw Return on the Accumulation of Selected Metallic Elements in Soil and Plants. Agriculture 2024, 14, 317. [Google Scholar] [CrossRef]
- Edo, G.I.; Samuel, P.O.; Oloni, G.O.; Ezekiel, G.O.; Ikpekoro, V.O.; Obasohan, P.; Ongulu, J.; Otunuya, C.F.; Opiti, A.R.; Ajakaye, R.S.; et al. Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals. Chem. Ecol. 2024, 40, 322–349. [Google Scholar] [CrossRef]
- Kama, R.; Liu, Y.; Zhao, S.; Hamani, A.K.M.; Song, J.; Cui, B.; Aidara, M.; Liu, C.; Li, Z. Combination of intercropping maize and soybean with root exudate additions reduces metal mobility in soil-plant system under wastewater irrigation. Ecotoxicol. Environ. Saf. 2023, 266, 115549. [Google Scholar] [CrossRef]
- Fu, Z.; Wu, F.; Chen, L.; Xu, B.; Feng, C.; Bai, Y.; Liao, H.; Sun, S.; Giesy, J.P.; Guo, W. Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environ. Pollut. 2016, 219, 1069–1076. [Google Scholar] [CrossRef]
- Feszterová, M.; Kowalska, M.; Hudec, M. Assessing the Impact of Soil Humic Substances, Textural Fractions on the Sorption of Heavy Metals (Cd, Pb). Appl. Sci. 2024, 14, 2806. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Zhao, Y.-Y.; Xue, A.-R.; Song, C.G.; Zhang, M.Z.; Qin, J.C.; Yang, Y.W. Metal-organic framework-based dual function nanosystems for aluminum detoxification and plant growth in acidic soil. J. Control. Release 2025, 377, 106–115. [Google Scholar] [CrossRef]
- Saxena, V. Water Quality, Air Pollution, and Climate Change: Investigating the Environmental Impacts of Industrialization and Urbanization. Water Air Soil Pollut. 2025, 236, 73. [Google Scholar] [CrossRef]
- Negassa, B.; Dadi, D.; Soboksa, N.E.; Fekadu, S. Presence of Heavy Metals in Vegetables Irrigated with Wastewater-Impacted Rivers and Its Health Risks in Ethiopia: Systematic Review. Environ. Health Insights 2025, 19, 11786302241310660. [Google Scholar] [CrossRef]
- Porras, R.C.S.; Ghoreishi, G.; Sánchez, A.; Barrena, R.; Font, X.; Ballardo, C.; Artola, A. Solid-state fermentation of green waste for the production of biostimulants to enhance lettuce (Lactuca sativa L.) cultivation under water stress: Closing the organic waste cycle. Chemosphere 2025, 370, 143919. [Google Scholar] [CrossRef] [PubMed]
- Nurhayati, D.R.; Aplanaidu, S.D.; Wibowo, E.; Avisema, S. Increased growth and yield of green lettuce (Lactuca sativa, L.) using inorganic fertiliser types. Braz. J. Biol. 2024, 84, e283598. [Google Scholar] [CrossRef] [PubMed]
- Zemanová, V.; Lhotská, M.; Novák, M.; Hnilička, F.; Popov, M.; Pavlíková, D. Multicontamination Toxicity Evaluation in the Model Plant Lactuca sativa L. Plants 2024, 13, 1356. [Google Scholar] [CrossRef] [PubMed]
- Pruvost, C.; Mathieu, J.; Vallet, J.; Dubs, F.; Gigon, A.; Lerch, T.; Blouin, M. Technosols made of urban wastes are suitable habitats for flora and soil macrofauna. Ecol. Eng. 2025, 211, 107457. [Google Scholar] [CrossRef]
- Barčauskaitė, K.; Žydelis, R.; Mažeika, R. Screening of chemical composition and risk index of different origin composts produced in Lithuania. Environ. Sci. Pollut. Res. 2020, 27, 24480–24494. [Google Scholar] [CrossRef]
- Chen, D.; Ye, X.; Jiang, Y.; Xiao, W.; Zhang, Q.; Zhao, S.; Hu, J. Continuously applying compost for three years alleviated soil acidity and heavy metal bioavailability in a soil-asparagus lettuce system. Front. Plant Sci. 2022, 13, 972789. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- Jachimowicz, P.; Radzevičius, A.; Wojnarová, P.; Šadzevičius, R.; Horoszko, B.; Dapkienė, M.; Klik, B. Two decades of heavy metal fluctuations in wastewater sludge in Lithuania with evolving trends and implications for treatment efficiency. J. Geochem. Explor. 2025, 269, 107642. [Google Scholar] [CrossRef]
- Carmo, L.I.D.; Fuentes, A.L.B.; Ríos, A.d.L.; de Iorio, A.F.; Rendina, A.E. Effects of green waste compost addition to dredged sediments of the Matanza-Riachuelo river (Argentina) on heavy metal extractability and bioaccumulation in lettuce (Lactuca sativa). Water Air Soil Pollut. 2021, 232, 200. [Google Scholar] [CrossRef]
- WRB IUSS. The International Soil Classification System WRB, 3rd ed.; IUSS Working Group WRB: Vienna, Austria, 2014. [Google Scholar]
- ISO 11277:2020; Soil Quality-Determination of Particle Size Distribution in Mineral Soil Material-Method by Sieving and Sedimentation. International Organization for Standardization: Geneva, Switzerland, 2020.
- Dean, W.E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Res. 1974, 44, 242–248. [Google Scholar]
- Swify, S.; Avizienyte, D.; Mazeika, R.; Braziene, Z. Influence of modified urea compounds to improve nitrogen use efficiency under corn growth system. Sustainability 2022, 14, 14166. [Google Scholar] [CrossRef]
- Oreshkin, N.G. Extraction of mobile forms of phosphorus and potassium by the Egner-Riehm-Domingo method. Agrokhimiia 1980, 8, 135–138. [Google Scholar]
- ISO 11047:1998; Soil Quality-Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc-Flame and Electrothermal Atomic Absorption Spectrometric Methods. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 11885:2007; Water Quality-Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 10694:1995; Soil Quality-Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO 13395:1996; Water Quality-Determination of Nitrite Nitrogen and Nitrate Nitrogen and the Sum of Both by Flow Analysis (CFA and FIA) and Spectrometric Detection. International Organization for Standardization: Geneva, Switzerland, 1996.
- ISO 5663:1984; Water Quality-Determination of Kjeldahl Nitrogen-Method After Mineralization with Selenium. International Organization for Standardization: Geneva, Switzerland, 1984.
- ISO 9964-3:1993; Water Quality—Determination of Sodium and Potassium—Part 3: Determination of Sodium and Potassium by Flame Emission Spectrometry. International Organization for Standardization: Geneva, Switzerland, 1993.
- ISO 6878:2004; Water Quality-Determination of Phosphorus-Ammonium Molybdate Spectrometric Method. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 8288:1986; Water Quality-Determination of Cobalt, Nickel, Copper, Zinc, Cadmium and Lead-Flame Atomic Absorption Spectrometric Methods. International Organization for Standardization: Geneva, Switzerland, 1986.
- LST EN 13040; Soil Improvers and Growing Media—Sample Preparation for Chemical and Physical Tests, Determination of Dry Matter Content, Moisture Content and Laboratory Compacted Bulk Density. iTeh Standards: San Francisco, CA, USA, 2007.
- Ullah, S.; Naeem, A.; Praspaliauskas, M.; Vaskeviciene, I.; Hosney, A.; Barcauskaite, K. Comparative toxicity of copper and zinc contaminated wastewater irrigation on growth, physiology, and mineral absorption of wheat. Water Environ. Res. 2025, 97, e70001. [Google Scholar] [CrossRef] [PubMed]
- Kapoulas, N.; Koukounaras, A.; Ilić, Z.S. Nutritional quality of lettuce and onion as companion plants from organic and conventional production in north Greece. Sci. Hortic. 2017, 219, 310–318. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef]
- Ullah, S.; Naeem, A.; Calkaite, I.; Hosney, A.; Depar, N.; Barcauskaite, K. Zinc (Zn) mitigates copper (Cu) toxicity and retrieves yield and quality of lettuce irrigated with Cu and Zn-contaminated simulated wastewater. Environ. Sci. Pollut. Res. 2023, 30, 54800–54812. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global vegetable intake and supply compared to recommendations: A systematic review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef]
- Walpole, S.C.; Prieto-Merino, D.; Edwards, P.; Cleland, J.; Stevens, G.; Roberts, I. The weight of nations: An estimation of adult human biomass. BMC Public Health 2012, 12, 439. [Google Scholar] [CrossRef]
- Latif, A.; Bilal, M.; Asghar, W.; Ahmad, M.I.; Abbas, A.; Shahzad, T. Heavy metal accumulation in vegetables and assessment of their potential health risk. J. Environ. Anal. Chem. 2018, 5, 2380–2391. [Google Scholar] [CrossRef]
- Khalid, M.U.; Imran, M.; Ashraf, M. The interactive effect of selenium and farmyard manure on soil microbial activities, yield and selenium accumulation by wheat (Triticum aestivum L.) grains. J. Plant Growth Regul. 2021, 41, 2669–2677. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, G.; Shi, G.; Pan, F. Toxicity of Cu, Pb, and Zn on seed germination and young seedlings of wheat (Triticum aestivum L.). In Computer and Computing Technologies in Agriculture IV, Proceedings of the 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, 22–25 October 2010, Selected Papers, Part III 4; Springer: Berlin/Heidelberg, Germany, 2011; pp. 231–240. [Google Scholar]
- Mousavi, S.S.; Karami, A.; Haghighi, T.M.; Tahmasebi, A. Lead, copper, zinc and aluminum tolerance in contrasting ecotypes of Scrophularia striata. Acta Ecol. Sin. 2023, 43, 125–138. [Google Scholar] [CrossRef]
- Hafeez, A.; Rasheed, R.; Ashraf, M.A.; Qureshi, F.F.; Hussain, I.; Iqbal, M. Effect of heavy metals on growth, physiological and biochemical responses of plants. In Plants and Their Interaction to Environmental Pollution; Elsevier: Amsterdam, The Netherlands, 2023; pp. 139–159. [Google Scholar]
- Chen, H.; Song, L.; Zhang, H.; Wang, J.; Wang, Y.; Zhang, H. Cu and Zn Stress affect the photosynthetic and antioxidative systems of alfalfa (Medicago sativa). J. Plant Interact. 2022, 17, 695–704. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Chi, H.Y.; Kim, S.-H. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. Plant Physiol. Biochem. 2024, 207, 108370. [Google Scholar] [CrossRef]
- Barrow, N.J.; Hartemink, A.E. The effects of pH on nutrient availability depend on both soils and plants. Plant Soil 2023, 487, 21–37. [Google Scholar] [CrossRef]
- Siddique, A.B.; Rahman, M.M.; Islam, M.R.; Naidu, R. Influences of soil pH, iron application and rice variety on cadmium distribution in rice plant tissues. Sci. Total Environ. 2022, 810, 152296. [Google Scholar] [CrossRef]
- Davis, R.D.; Beckett, P.H.T. Upper critical levels of toxic elements in plants: II. Critical levels of copper in young barley, wheat, rape, lettuce and ryegrass, and of nickel and zinc in young barley and ryegrass. New Phytol. 1978, 80, 23–32. [Google Scholar] [CrossRef]
- De Carolis, C.; Iori, V.; Narciso, A.; Gentile, D.; Casentini, B.; Pietrini, F.; Iannelli, M.A. The Effects of Different Combinations of Cattle Organic Soil Amendments and Copper on Lettuce (cv. Rufus) Plant Growth. Environments 2024, 11, 134. [Google Scholar] [CrossRef]
- Wani, P.A.; Khan, M.S.; Zaidi, A. Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull. Environ. Contam. Toxicol. 2008, 81, 152–158. [Google Scholar] [CrossRef]
- Malecka, A.; Piechalak, A.; Mensinger, A.; Hanć, A.; Baralkiewicz, D.; Tomaszewska, B. Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn). Pol. J. Environ. Stud. 2012, 21, 1721–1730. [Google Scholar]
- Goncharuk, E.A.; Zagoskina, N.V. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium. Molecules 2023, 28, 3921. [Google Scholar] [CrossRef] [PubMed]
- Badiaa, O.; Yssaad, H.A.R.; Topcuoglu, B. Effect of heavy metals (copper and zinc) on proline, polyphenols and flavonoids content of tomato (Lycopersicon esculentum Mill.). Plant Arch. 2020, 20, 2125–2137. [Google Scholar]
- Stuckey, J.W.; Neaman, A.; Verdejo, J.; Navarro-Villarroel, C.; Peñaloza, P.; Dovletyarova, E.A. Zinc alleviates copper toxicity to lettuce and oat in copper-contaminated soils. J. Soil Sci. Plant Nutr. 2021, 21, 1229–1235. [Google Scholar] [CrossRef]
- Irin, I.J.; Hasanuzzaman, M. Organic amendments: Enhancing plant tolerance to salinity and metal stress for improved agricultural productivity. Stresses 2024, 4, 185–209. [Google Scholar] [CrossRef]
- Gao, J.; Han, H.; Gao, C.; Wang, Y.; Dong, B.; Xu, Z. Organic amendments for in situ immobilization of heavy metals in soil: A review. Chemosphere 2023, 335, 139088. [Google Scholar] [CrossRef]
- Alavian, A.; Osouleddini, N.; Hakimi, L. Biochar and vermicompost modulated Pb toxicity in summer savory (Satureja hortensis, L.) plants through inducing physiological and biochemical changes. Arab. J. Chem. 2024, 17, 105547. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Y.; Ming, C.; Wang, J.; Zhang, Y. Amended compost alleviated the stress of heavy metals to pakchoi plants and affected the distribution of heavy metals in soil-plant system. J. Environ. Manag. 2023, 336, 117674. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Shang, K.; Fang, H.; Zhang, G.; Nissim, W.G. Strategy on rapid selection of woody species for phytoremediation in soils contaminated with copper, lead and zinc in Shanghai. Int. J. Phytoremediation 2025, 27, 1–10. [Google Scholar] [CrossRef]
- Cui, W.; Li, X.; Duan, W.; Xie, M.; Dong, X. Heavy metal stabilization remediation in polluted soils with stabilizing materials: A review. Environ. Geochem. Health 2023, 45, 4127–4163. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.; Wang, H.; Hu, Y.; Cheng, H. The leaching behavior of heavy metal from contaminated mining soil: The effect of rainfall conditions and the impact on surrounding agricultural lands. Sci. Total Environ. 2024, 914, 169877. [Google Scholar] [CrossRef]
- Choudhury, B.U.; Zafar; Balusamy, A.; Moirangthem, P.; Thangavel, R.; Kumar, M.; Verma, B.C.; Talang, H.; Hazarika, S.; Mishra, V.K. Spatial mapping of acidity and vegetal multi-micronutrients in soils of the Meghalaya Plateau, northeastern Himalaya, India. Curr. Sci. 2024, 126, 694. [Google Scholar] [CrossRef]
- Supriatin, S.; Salam, A.K. Total and Extractable Micronutrients in Tropical Acid Soils of Lampung, Indonesia. Commun. Soil Sci. Plant Anal. 2024, 55, 2529–2544. [Google Scholar] [CrossRef]
- Lahori, A.H.; Tunio, M.; Ahmed, S.R.; Mierzwa-Hersztek, M.; Vambol, V.; Afzal, A.; Kausar, A.; Vambol, S.; Umar, A.; Muhammad, A. Role of pressmud compost for reducing toxic metals availability and improving plant growth in polluted soil: Challenges and recommendations. Sci. Total Environ. 2024, 951, 175493. [Google Scholar] [CrossRef] [PubMed]
- Poornima, S.; Dadi, M.; Subash, S.; Manikandan, S.; Karthik, V.; Deena, S.; Balachandar, R.; Kumaran, S.; Subbaiya, R. Review on advances in toxic pollutants remediation by solid waste composting and vermicomposting. Sci. Afr. 2024, 23, e02100. [Google Scholar] [CrossRef]
- Ejileugha, C.; Onyegbule, U.O.; Osuoha, J.O. Use of additives in composting promotes passivation and reduction in bioavailability of heavy metals (HMS) in compost. Rev. Environ. Contam. Toxicol. 2024, 262, 2. [Google Scholar] [CrossRef]
- Atav, V.; Yüksel, O. Heavy metal accumulation in soil and plants using municipal solid waste compost in variable pH conditions. Soil Sediment Contam. Int. J. 2024, 1–17. [Google Scholar] [CrossRef]
- Görl, J.; Lohr, D.; Meinken, E.; Hülsbergen, K.-J. Co-composting of hop bines and wood-based biochar: Effects on composting and plant growth in copper-contaminated soils. Agronomy 2023, 13, 3065. [Google Scholar] [CrossRef]
- WHO. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA): Copper; World Health Organization: Geneva, Switzerland, 1982. [Google Scholar]
- WHO. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA): Zinc; World Health Organization: Geneva, Switzerland, 1982. [Google Scholar]
- Sharma, N.; Sharma, R.K.; Samant, S.S.; Pande, V.; Kumar, U.; Singh, P.K. Land application of municipal compost in mountain ecosystem: Effects on growth, biomass and heavy metal uptake by vegetable crops. Int. J. Agric. Plant Sci. 2022, 4, 1–9. [Google Scholar]
- Bhardwaj, P.; Sharma, R.K.; Chauhan, A.; Ranjan, A.; Rajput, V.D.; Minkina, T.; Mandzhieva, S.S.; Mina, U.; Wadhwa, S.; Bobde, P.; et al. Assessment of heavy metal distribution and health risk of vegetable crops grown on soils amended with municipal solid waste compost for sustainable urban agriculture. Water 2023, 15, 228. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Kucharski, J.; Kucharski, M. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 2013, 18, 769–796. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Boros-Lajszner, E.; Borowik, A.; Baćmaga, M.; Kucharski, J.; Tomkiel, M. Implication of zinc excess on soil health. J. Environ. Sci. Health Part B 2016, 51, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Bremaghani, A. Utilization of Organic Waste in Compost Fertilizer Production: Implications for Sustainable Agriculture and Nutrient Management. Law Econ. 2024, 18, 86–98. [Google Scholar]
- Mohammadi, K.; Heidari, G.; Khalesro, S.; Sohrabi, Y. Soil management, microorganisms and organic matter interactions: A review. Afr. J. Biotechnol. 2011, 10, 19840. [Google Scholar]
- Dar, Z.A.; Bhat, J.I.A.; Qazi, G.; Ganie, S.A.; Amin, A.; Farooq, S.; Nazir, A.; Rasool, A. Municipal sewage sludge, aquatic weed compost on soil enzymatic activity and heavy metal accumulation in Kale (Brassica oleracea L.). Appl. Water Sci. 2023, 13, 60. [Google Scholar] [CrossRef]
Parameter | Unit | Acidic Soil | Neutral Soil | Wastewater | Compost |
---|---|---|---|---|---|
pHKCl | - | 3.99 | 6.71 | 7.44 | 6.54 |
Dry matter | % | - | - | - | 52 |
Organic matter | % | 4.13 | 2.57 | 18 | - |
Organic C | % | 1.2 | 0.86 | - | 16 |
NH4+-N | mg kg−1 | 8.7 | 1.1 | - | 10 |
NO3−-N | mg kg−1 | - | - | - | 225 |
NO3−-N + NO2−-N | mg kg−1 | 9.4 | 2.9 | 56 | - |
Kjeldahl N | mg kg−1 | - | - | 2.8 | - |
Total N | mg kg−1 | 18.10 | 4.0 | 58.8 | 235 |
PO4-P | mg kg−1 | 0.30 | |||
Available P | mg kg−1 | 98 | 40 | - | - |
Total P | mg kg−1 | - | - | - | 1819 |
Available K | mg kg−1 | 174 | 131 | - | - |
Total K | mg kg−1 | - | - | 19 | 6558 |
Available Cu | mg kg−1 | 1.5 | 2.6 | 4.6 | |
Total Cu | mg kg−1 | 6.0 | 7.1 | <0.02 | 36 |
Available Zn | mg kg−1 | 1.2 | 0.3 | 11 | |
Total Zn | mg kg−1 | 34 | 33 | <0.02 | 254 |
Sand | % | 45.5 | 50.2 | - | - |
Silt | % | 38.2 | 33.1 | - | - |
Clay | % | 16.3 | 16.7 | - | - |
Textural class | - | Loam | Loam | - | - |
Copper Concentration (mg L−1) | Germination Energy (%) | Germination Percentage (%) | Root Length (cm) | Shoot Length (cm) |
---|---|---|---|---|
Control | 47.5 (5) a | 87.5 (5) a | 3.9 (0.3) a | 6.33 (0.1) a |
2.5 | 45 (5.8) a | 82.5 (5) ab | 3.55 (0.1) a | 5.73 (0.2) b |
5 | 42.5 (5) a | 72.5 (5) bc | 3 (0.2) b | 4.78 (0.2) c |
10 | 27.5 (5) b | 62.5 (5) c | 2.45 (0.2) c | 3.50 (0.2) d |
20 | 12.5 (5) c | 12.5 (5) d | 0.10 (0.0) d | 0.10 (0.0) e |
40 | 10 (0.0) c | 10 (0.0) d | 0.10 (0.0) d | 0.10 (0.0) e |
HSD value at p ≤ 0.05 | 10.59 | 10.25 | 0.40 | 0.34 |
Zinc Concentration (mg L−1) | Germination Energy (%) | Germination Percentage (%) | Root Length (cm) | Shoot Length (cm) |
---|---|---|---|---|
Control | 45 (5.8) a | 87.5 (5) a | 4.63 (0.2) a | 5.98 (0.5) a |
5 | 42.5 (5) ab | 82.5 (5) ab | 4.33 (0.2) a | 5.50 (0.2) a |
10 | 35 (5.8) a−c | 72.5 (5) bc | 3.65 (0.1) b | 4.75 (0.1) b |
20 | 32.5 (5) bc | 65 (5.8) c | 3.30 (0.1) b | 3.98 (0.2) c |
40 | 25 (5.8) c | 52.5 (5) d | 2.48 (0.3) c | 3.30 (0.1) d |
80 | 10 (0.0) d | 10 (0.0) e | 0.10 (0.0) d | 0.10 (0.0) e |
160 | 10 (0.0) d | 10 (0.0) e | 0.10 (0.0) d | 0.10 (0.0) e |
HSD value at p ≤ 0.05 | 10.6 | 10.03 | 0.35 | 0.49 |
Soil | Compost | Metal | Total Polyphenols (RUE g−1 DW) | Total Flavonoids (RUE g−1 DW) | Total Polyphenolic Acids (CA g−1 DW) | Anit Radical Activity (RUE g−1 DW) |
---|---|---|---|---|---|---|
Acidic soil | No Compost | Control | 1.21 (0.02) f | 1.01 (0.01) e | 0.43 (0.003) f | 1.08 (0.02) a |
Cu | 1.53 (0.01) d | 1.12 (0.01) d | 0.54 (0.01) de | 1.14 (0.01) d | ||
Zn | 1.78 (0.01) b | 1.25 (0.01) c | 0.65 (0.003) b | 1.23 (0.01) a | ||
CuZn | 1.52 (0.02) d | 1.12 (0.01) d | 0.54 (0.003) de | 1.15 (0.01) c | ||
Compost | Control | 1.37 (0.02) e | 1.12 (0.01) d | 0.53 (0.003) de | 1.23 (0.01) c | |
Cu | 1.66 (0.02) c | 1.31 (0.01) b | 0.62 (0.003) c | 1.33 (0.02) b | ||
Zn | 2.08 (0.05) a | 1.40 (0.01) a | 0.74 (0.003) a | 1.42 (0.01) a | ||
CuZn | 1.64 (0.01) c | 1.31 (0.01) b | 0.62 (0.001) c | 1.31 (0.01) b | ||
Neutral soil | No Compost | Control | 1.22 (0.02) f | 1.01 (0.004) e | 0.43 (0.002) f | 1.10 (0.01) a |
Cu | 1.54 (0.02) d | 1.12 (0.002) d | 0.54 (0.003) de | 1.15 (0.01) a | ||
Zn | 1.79 (0.01) b | 1.25 (0.002) c | 0.65 (0.001) b | 1.22 (0.01) c | ||
CuZn | 1.53 (0.01) d | 1.12 (0.01) d | 0.54 (0.002) d | 1.14 (0.01) a | ||
Compost | Control | 1.38 (0.01) e | 1.12 (0.005) d | 0.53 (0.001) d | 1.23 (0.01) a | |
Cu | 1.67 (0.01) c | 1.31 (0.002) b | 0.63 (0.001) c | 1.33 (0.01) b | ||
Zn | 2.08 (0.01) a | 1.40 (0.002) a | 0.74 (0.002) a | 1.43 (0.02) a | ||
CuZn | 1.64 (0.02) c | 1.31 (0.01) b | 0.62 (0.01) c | 1.30 (0.02) b | ||
HSD value at p ≤ 0.05 | 0.0557 | 0.0190 | 0.001 | 0.0378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, S.; Praspaliauskas, M.; Vaskeviciene, I.; Hosney, A.; Barcauskaite, K. Compost Mitigates Metal Toxicity and Human Health Risks and Improves the Growth and Physiology of Lettuce Grown in Acidic and Neutral Loam-Textured Soils Polluted with Copper and Zinc. Land 2025, 14, 478. https://doi.org/10.3390/land14030478
Ullah S, Praspaliauskas M, Vaskeviciene I, Hosney A, Barcauskaite K. Compost Mitigates Metal Toxicity and Human Health Risks and Improves the Growth and Physiology of Lettuce Grown in Acidic and Neutral Loam-Textured Soils Polluted with Copper and Zinc. Land. 2025; 14(3):478. https://doi.org/10.3390/land14030478
Chicago/Turabian StyleUllah, Sana, Marius Praspaliauskas, Irena Vaskeviciene, Ahmed Hosney, and Karolina Barcauskaite. 2025. "Compost Mitigates Metal Toxicity and Human Health Risks and Improves the Growth and Physiology of Lettuce Grown in Acidic and Neutral Loam-Textured Soils Polluted with Copper and Zinc" Land 14, no. 3: 478. https://doi.org/10.3390/land14030478
APA StyleUllah, S., Praspaliauskas, M., Vaskeviciene, I., Hosney, A., & Barcauskaite, K. (2025). Compost Mitigates Metal Toxicity and Human Health Risks and Improves the Growth and Physiology of Lettuce Grown in Acidic and Neutral Loam-Textured Soils Polluted with Copper and Zinc. Land, 14(3), 478. https://doi.org/10.3390/land14030478