Modeling Soil Organic Carbon Dynamics Across Land Uses in Tropical Andean Ecosystems
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Site Selection
2.3. Soil Physical, Chemical, and Biological Properties
2.4. Model Design
3. Results
3.1. Soil Properties
3.2. Calibration of Model Parameters
3.3. Calibration and Validation of the SOC Model Under Different Land Uses
3.4. Model Performance: Observed Vs. Modeled SOC
4. Discussion
4.1. Soil Carbon Dynamics Under Different Land Uses
4.2. Implications for Soil Carbon Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Don, A.; Seidel, F.; Leifeld, J.; Kätterer, T.; Martin, M.; Pellerin, S.; Emde, D.; Seitz, D.; Chenu, C. Carbon Sequestration in Soils and Climate Change Mitigation—Definitions and Pitfalls. Glob. Chang. Biol. 2024, 30, e16983. [Google Scholar] [CrossRef]
- Lugato, E.; Leip, A.; Jones, A. Mitigation Potential of Soil Carbon Management Overestimated by Neglecting N2O Emissions. Nat. Clim. Chang. 2018, 8, 219–223. [Google Scholar] [CrossRef]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The Role of Soil in Regulation of Climate. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20210084. [Google Scholar] [CrossRef] [PubMed]
- Pérez Fagua, C.; Landínez Torres, Á.Y.; Silva Parra, A. Carbono Orgánico y Su Dinámica En Suelos Tropicales: Una Revisión. Cult. Científica 2023, 1, 2. [Google Scholar] [CrossRef]
- Lis-Gutiérrez, M.; Rubiano-Sanabria, Y.; Usuga, J.C.L. Soils and Land Use in the Study of Soil Organic Carbon in Colombian Highlands Catena. Acta Univ. Carol. Geogr. 2019, 54, 15–23. [Google Scholar] [CrossRef]
- Torres, B.; Bravo, C.; Torres, A.; Tipán-Torres, C.; Vargas, J.C.; Herrera-Feijoo, R.J.; Heredia, R.M.; Barba, C.; García, A. Carbon Stock Assessment in Silvopastoral Systems along an Elevational Gradient: A Study from Cattle Producers in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2023, 15, 449. [Google Scholar] [CrossRef]
- Veldkamp, E.; Schmidt, M.; Markwitz, C.; Beule, L.; Beuschel, R.; Biertümpfel, A.; Bischel, X.; Duan, X.; Gerjets, R.; Göbel, L.; et al. Multifunctionality of Temperate Alley-Cropping Agroforestry Outperforms Open Cropland and Grassland. Commun. Earth Environ. 2023, 4, 1–10. [Google Scholar] [CrossRef]
- Acosta-Mireles, M.; Paz-Pellat, F.; Hidalgo-Moreno, C.; Etchevers-Barra, J.D. Soil Organic Carbon Depth Distribution Patterns in Different Land Uses and Management. Terra Latinoam. 2022, 40, 1–19. [Google Scholar] [CrossRef]
- Lal, R. Challenges and Opportunities in Soil Organic Matter Research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Campbell, E.E.; Paustian, K. Current Developments in Soil Organic Matter Modeling and the Expansion of Model Applications: A Review. Environ. Res. Lett. 2015, 10, 123004. [Google Scholar] [CrossRef]
- Wieder, W.R.; Grandy, A.S.; Kallenbach, C.M.; Bonan, G.B. Integrating Microbial Physiology and Physio-Chemical Principles in Soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) Model. Biogeosciences 2014, 11, 3899–3917. [Google Scholar] [CrossRef]
- Carbajal, M.; Ramírez, D.A.; Turin, C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaorduña, L.; et al. From Rangelands to Cropland, Land-Use Change and Its Impact on Soil Organic Carbon Variables in a Peruvian Andean Highlands: A Machine Learning Modeling Approach. Ecosystems 2024, 27, 899–917. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Li, C.; Huang, S.; Li, X.; Li, S.; Ma, Y. Testing the RothC and DNDC Models against Long-Term Dynamics of Soil Organic Carbon Stock Observed at Cropping Field Soils in North China. Soil Tillage Res. 2016, 163, 290–297. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K. Modeling Soil Organic Carbon with DNDC and RothC Models in Different Wheat-Based Cropping Systems in North-Western India. Commun. Soil Sci. Plant Anal. 2020, 51, 1184–1203. [Google Scholar] [CrossRef]
- Falloon, P.; Smith, P. Simulating SOC Changes in Long-Term Experiments with RothC and CENTURY: Model Evaluation for a Regional Scale Application. Soil Use Manag. 2002, 18, 101–111. [Google Scholar] [CrossRef]
- von Lützow, M.; Kögel-Knabner, I. Temperature Sensitivity of Soil Organic Matter Decomposition-What Do We Know? Biol. Fertil. Soils 2009, 46, 1–15. [Google Scholar] [CrossRef]
- Meena, M.; Dheebakaran, J.; Rangasamy, A.; Kaliappan, S.B.; Kovilpillai, B.; Alagarswamy, S.; Ramanathan, R. Microbial Carbon Dynamics in Tropical Forests: Linking Soil Processes to Atmospheric Impacts under Climate Stress. Sci. Total Environ. 2025, 991, 179918. [Google Scholar] [CrossRef]
- Wieder, W.R.; Hartman, M.D.; Sulman, B.N.; Wang, Y.P.; Koven, C.D.; Bonan, G.B. Carbon Cycle Confidence and Uncertainty: Exploring Variation among Soil Biogeochemical Models. Glob. Chang. Biol. 2018, 24, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, D.S.; Rayner, J.H. The Turnover of Soil Organic Matter in Some of the Rothamsted Classical Experiments. Soil Sci. 1977, 123, 298–305. [Google Scholar] [CrossRef]
- Ordoñez, M.C.; Olaya, J.F.C.; Galicia, L.; Figueroa, A. Soil Carbon Dynamics under Pastures in Andean Socio-Ecosystems of Colombia. Agronomy 2020, 10, 507. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. Methods Soil Anal. Part 1 Phys. Mineral. Methods 2018, 5, 363–375. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-Size Analysis. Methods Soil Anal. Part 1 Phys. Mineral. Methods 2018, 5, 383–411. [Google Scholar] [CrossRef]
- Valencia, V.A.M.; Hurtado, F.M.; Jaramillo, D.F.J. Impact of Land Use on Organic Carbon Sequestration in a Natural Area of Medellín, Colombia. Acta Agron. 2022, 71, 39–46. [Google Scholar] [CrossRef]
- Montoya Salazar, J.C.; Menjivar Flores, J.C.; Bravo Realpe, I.D.S. Fraccionamiento y Cuantificación de La Materia Orgánica En Andisoles Bajo Diferentes Sistemas de Producción. Acta Agron. 2013, 62, 333–343. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995; p. 576. [Google Scholar] [CrossRef]
- Celentano, D.; Zahawi, R.A.; Finegan, B.; Casanoves, F.; Ostertag, R.; Cole, R.J.; Holl, K.D. Restauración Ecológica de Bosques Tropicales En Costa Rica: Efecto de Varios Modelos En La Producción, Acumulación y Descomposición de Hojarasca. Rev. Biol. Trop. 2011, 59, 1323–1336. [Google Scholar] [CrossRef] [PubMed]
- Mondragón Valencia, V.A.; Figueroa Casas, A.; Macias Pinto, D.J.; Rosas-Luis, R. Soil Organic Carbon Storage in Different Land Uses in Tropical Andean Ecosystems and the Socio-Ecological Environment. Earth 2025, 6, 106. [Google Scholar] [CrossRef]
- Manzoni, S.; Porporato, A. Soil Carbon and Nitrogen Mineralization: Theory and Models across Scales. Soil Biol. Biochem. 2009, 41, 1355–1379. [Google Scholar] [CrossRef]
- Allison, S.D.; Wallenstein, M.D.; Bradford, M.A. Soil-Carbon Response to Warming Dependent on Microbial Physiology. Nat. Geosci. 2010, 3, 336–340. [Google Scholar] [CrossRef]
- Soetaert, K.; Petzoldt, T.; Setzer, R.W. Solving Differential Equations in R: Package DeSolve. J. Stat. Softw. 2010, 33, 1–25. [Google Scholar] [CrossRef]
- Tao, F.; Huang, Y.; Hungate, B.A.; Manzoni, S.; Frey, S.D.; Schmidt, M.W.I.; Reichstein, M.; Carvalhais, N.; Ciais, P.; Jiang, L.; et al. Microbial Carbon Use Efficiency Promotes Global Soil Carbon Storage. Nature 2023, 618, 981–985. [Google Scholar] [CrossRef]
- Afzal, T.; Wakeel, A.; Cheema, S.A.; Iqbal, J.; Sanaullah, M. Influence of Quality and Quantity of Crop Residues on Organic Carbon Dynamics and Microbial Activity in Soil. Soil Environ. 2024, 43, 53–64. [Google Scholar] [CrossRef]
- Alavi-Murillo, G.; Diels, J.; Gilles, J.; Willems, P. Soil Organic Carbon in Andean High-Mountain Ecosystems: Importance, Challenges, and Opportunities for Carbon Sequestration. Reg. Environ. Chang. 2022, 22, 128. [Google Scholar] [CrossRef]
- Gao, Y.; Tariq, A.; Zeng, F.; Sardans, J.; Al-Bakre, D.A.; Peñuelas, J. Long-Term Anthropogenic Disturbances Exacerbate Soil Organic Carbon Loss in Hyperarid Desert Ecosystems. Glob. Chang. Biol. 2025, 31, e70423. [Google Scholar] [CrossRef]
- Bhatia, R.K.; Walia, A. Advancements in Microbial Biotechnology for Soil Health; Springer: Berlin/Heidelberg, Germany, 2024; Volume 50, ISBN 978-981-99-9481-6. [Google Scholar]
- Zhang, C.; Liu, G.; Song, Z.; Wang, J.; Guo, L. Interactions of Soil Bacteria and Fungi with Plants during Long-Term Grazing Exclusion in Semiarid Grasslands. Soil Biol. Biochem. 2018, 124, 47–58. [Google Scholar] [CrossRef]
- Xun, W.; Yan, R.; Ren, Y.; Jin, D.; Xiong, W.; Zhang, G.; Cui, Z.; Xin, X.; Zhang, R. Grazing-Induced Microbiome Alterations Drive Soil Organic Carbon Turnover and Productivity in Meadow Steppe. Microbiome 2018, 6, 1–13. [Google Scholar] [CrossRef]
- Van Keulen, H. (Tropical) Soil Organic Matter Modelling: Problems and Prospects. Nutr. Cycl. Agroecosystems 2001, 61, 33–39. [Google Scholar] [CrossRef]
- Yang, S.; Jansen, B.; Absalah, S.; Kalbitz, K.; Chunga Castro, F.O.; Cammeraat, E.L.H. Soil Organic Carbon Content and Mineralization Controlled by the Composition, Origin and Molecular Diversity of Organic Matter: A Study in Tropical Alpine Grasslands. Soil Tillage Res. 2022, 215, 105203. [Google Scholar] [CrossRef]
- Philipp, L.; Blagodatskaya, E.; Tarkka, M.; Reitz, T. Soil Microbial Communities Are More Disrupted by Extreme Drought than by Gradual Climate Shifts under Different Land-Use Intensities. Front. Microbiol. 2025, 16, 1649443. [Google Scholar] [CrossRef]
- Díaz-Vallejo, E.J.; Seeley, M.; Smith, A.P.; Marín-Spiotta, E. A Meta-Analysis of Tropical Land-Use Change Effects on the Soil Microbiome: Emerging Patterns and Knowledge Gaps. Biotropica 2021, 53, 738–752. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Cerri, C.C.; Koutika, L.-S.; Bartoli, F.; Andreux, F.; Burtin, G.; Chon6, T.; Philippy, R. Organic Matter Dynamics and Aggregation in Soils under Rain Forest and Pastures of Increasing Age in the Eastern Amazon Basin. Geoderma 1997, 76, 87–112. [Google Scholar] [CrossRef]
- Visconti-Moreno, E.F.; Valenzuela-Balcázar, I.G. Impact of Soil Use on Aggregate Stability and Its Relationship with Soil Organic Carbon at Two Different Altitudes in the Colombian Andes. Agron. Colomb. 2019, 37, 263–273. [Google Scholar] [CrossRef][Green Version]
- Kov, R.; Camps-Arbestain, M.; Calvelo Pereira, R.; Suárez-Abelenda, M.; Shen, Q.; Garbuz, S.; Macías Vázquez, F. A Farm-Scale Investigation of the Organic Matter Composition and Soil Chemistry of Andisols as Influenced by Land Use and Management. Biogeochemistry 2018, 140, 65–79. [Google Scholar] [CrossRef]
- Wasner, D.; Abramoff, R.; Griepentrog, M.; Venegas, E.Z.; Boeckx, P.; Doetterl, S. The Role of Climate, Mineralogy and Stable Aggregates for Soil Organic Carbon Dynamics Along a Geoclimatic Gradient. Glob. Biogeochem. Cycles 2024, 38, e2023GB007934. [Google Scholar] [CrossRef]
- Yang, S.; Jansen, B.; Absalah, S.; Van Hall, R.L.; Kalbitz, K.; Cammeraat, E.H.E. Lithology-and Climate-Controlled Soil Aggregate-Size Distribution and Organic Carbon Stability in the Peruvian Andes. Soil 2020, 6, 1–15. [Google Scholar] [CrossRef]
- Xiao, S.; Liu, X.; Zhang, W.; Ye, Y.; Chen, W.; Wang, K. Tillage-Induced Fragmentation of Large Soil Macroaggregates Increases Nitrogen Leaching in a Subtropical Karst Region. Land 2022, 11, 1648. [Google Scholar] [CrossRef]
- Fiedler, S.R.; Leinweber, P.; Jurasinski, G.; Eckhardt, K.U.; Glatzel, S. Tillage-Induced Short-Term Soil Organic Matter Turnover and Respiration. Soil 2016, 2, 475–486. [Google Scholar] [CrossRef]
- Gong, Y.; Li, P.; Guo, Y.; Aso, H.; Huang, Q.; Araki, H.; Nishizawa, T.; Komatsuzaki, M. Long-Term No-Tillage and Rye Cover Crops Affect Soil Biological Indicators on Andosols in a Humid, Subtropical Climate. Eur. J. Soil Sci. 2022, 73, e13306. [Google Scholar] [CrossRef]
- Conant, R.T.; Klopatek, J.M.; Malin, R.C.; Klopatek, C.C. Carbon Pools and Fluxes along an Environmental Gradient in Northern Arizona. Biogeochemistry 1998, 43, 43–61. [Google Scholar] [CrossRef]
- Xu, H.; You, C.; Tan, B.; Xu, L.; Liu, Y.; Wang, M.; Xu, Z.; Sardans, J.; Peñuelas, J. Effects of Livestock Grazing on the Relationships between Soil Microbial Community and Soil Carbon in Grassland Ecosystems. Sci. Total Environ. 2023, 881, 163416. [Google Scholar] [CrossRef]
- Zhu, Y.; Merbold, L.; Leitner, S.; Wolf, B.; Pelster, D.; Goopy, J.; Butterbach-Bahl, K. Interactive Effects of Dung Deposited onto Urine Patches on Greenhouse Gas Fluxes from Tropical Pastures in Kenya. Sci. Total Environ. 2021, 761, 143184. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Merbold, L.; Pelster, D.; Diaz-Pines, E.; Wanyama, G.N.; Butterbach-Bahl, K. Effect of Dung Quantity and Quality on Greenhouse Gas Fluxes From Tropical Pastures in Kenya. Glob. Biogeochem. Cycles 2018, 32, 1589–1604. [Google Scholar] [CrossRef]
- Abs, E.; Chase, A.B.; Manzoni, S.; Ciais, P.; Allison, S.D. Microbial Evolution—An under-Appreciated Driver of Soil Carbon Cycling. Glob. Chang. Biol. 2024, 30, e17268. [Google Scholar] [CrossRef] [PubMed]




| Variable | Land Use | |||
|---|---|---|---|---|
| ER | LS | NR | RF | |
| ECEC (meq100 g−1 soil) | 4.1 ± 0.22 | 5.7 ± 0.50 | 4.38 ± 0.39 | 3.73 ± 0.23 |
| pH | 4.6 ± 0.10 | 5.12 ± 0.15 | 4.93 ± 0.21 | 4.93 ± 0.05 |
| C% | 3.75 ± 0.75 | 3.81 ± 0.84 | 3.41 ± 2.77 | 4.97 + 0.93 |
| N% | 0.79 ± 0.06 | 1.03 ± 0.08 | 0.87 ± 0.19 | 1.18 ± 0.10 |
| C/N% | 4.75 ± 0.70 | 3.70 ± 0.29 | 3.92 ± 0.21 | 4.21 ± 0.50 |
| SOC (Mg ha−1) | 119.24 ± 5.05 | 102.85 ± 5.55 | 97.3 ± 14.13 | 148.68 ± 6.07 |
| CL (Mg ha−1month−1) | 2.23 ± 0.11 | 1.08 ± 0.19 | 2 ± 0.32 | 4.65 ± 0.52 |
| CMU (Mg ha−1) | 5.6 ± 0.51 | 2.37 ± 0.63 | 3.8 ± 0.38 | 8.1 ± 1.02 |
| BD (g cm−3) | 1.06 ± 0.01 | 0.9 ± 0.02 | 0.95 ± 0.08 | 1 ± 0.01 |
| Sand (%) | 72.5 ± 3.0 | 73.5 ± 2.52 | 73.5 ± 2.52 | 73.5 ± 2.52 |
| Silt (%) | 23.5 ± 3.0 | 21 ± 2.0 | 22.5 ± 2.52 | 21.5 ± 1.91 |
| Clay (%) | 4 ± 0.01 | 5.5 ± 0.99 | 4 ± 0.01 | 5 ± 1.13 |
| HSM (%) | 11.32 ± 0.56 | 10.08 ± 0.49 | 10.52 ± 0.55 | 13.49 ± 0.4 |
| SM (%) | 65.65 ± 0.61 | 62.75 ± 0.72 | 62.81 ± 0.25 | 64.96 ± 0.80 |
| MicC. (μg C g−1) | 199.19 ± 1.17 | 108.18 ± 2.47 | 191.51 ± 0.68 | 198.18 ± 0.87 |
| SMicR CO2 (eq C) (kg ha−1 month−1) | 145.94 ± 4.38 | 112.65 ± 8.58 | 121.11 ± 2.31 | 108.01 ± 2.41 |
| Range Values | RF | ER | NR | LS | |
|---|---|---|---|---|---|
| K1 (month−1) | 0.001–0.9 | 0.308 | 0.190 | 0.154 | 0.001 |
| K2 (month−1) | 2.5 × 10−6–0.001 | 1.00 × 10−4 | 8.00 × 10−5 | 1.00 × 10−4 | 0.01 |
| Fh | 0.2–0.5 | 0.20 | 0.20 | 0.20 | 0.249 |
| Fr | 0.2–0.8 | 0.80 | 0.80 | 0.787 | 0.20 |
| Kd (month−1) | 0.01–1.20 | 0.139 | 0.632 | 0.555 | 0.010 |
| Land Use | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RF | MAE | ER | MAE | NR | MAE | LS | MAE | |||||
| Observed | Modeled | Observed | Modeled | Observed | Modeled | Observed | Modeled | |||||
| SOC (Mg ha−1) | 148.69 | 148.17 | 0.10 | 119.24 | 108.24 | 0.01 | 97.29 | 98.78 | 0.30 | 102.85 | 98.60 | 0.03 |
| MB (Mg ha−1) | 1.99 | 1.01 | 1.01 | 2.12 | 1.78 | 1.34 | 0.98 | 0.77 | 0.31 | 0.98 | 0.67 | 0.31 |
| eqC (Mg ha−1) | 1.42 | 1.39 | 0.03 | 1.11 | 1.09 | 0.02 | 0.41 | 1.08 | 0.10 | 0.41 | 1.08 | 0.67 |
| Humus pool (Mg ha−1) | 107.01 | 82.20 | 77.87 | 66.99 | ||||||||
| Litter pool (Mg ha−1) | 30.94 | 25.34 | 21.34 | 21.61 | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondragón Valencia, V.A.; Figueroa Casas, A.; Macias Pinto, D.J.; Rosas-Luis, R. Modeling Soil Organic Carbon Dynamics Across Land Uses in Tropical Andean Ecosystems. Land 2025, 14, 2425. https://doi.org/10.3390/land14122425
Mondragón Valencia VA, Figueroa Casas A, Macias Pinto DJ, Rosas-Luis R. Modeling Soil Organic Carbon Dynamics Across Land Uses in Tropical Andean Ecosystems. Land. 2025; 14(12):2425. https://doi.org/10.3390/land14122425
Chicago/Turabian StyleMondragón Valencia, Víctor Alfonso, Apolinar Figueroa Casas, Diego Jesús Macias Pinto, and Rigoberto Rosas-Luis. 2025. "Modeling Soil Organic Carbon Dynamics Across Land Uses in Tropical Andean Ecosystems" Land 14, no. 12: 2425. https://doi.org/10.3390/land14122425
APA StyleMondragón Valencia, V. A., Figueroa Casas, A., Macias Pinto, D. J., & Rosas-Luis, R. (2025). Modeling Soil Organic Carbon Dynamics Across Land Uses in Tropical Andean Ecosystems. Land, 14(12), 2425. https://doi.org/10.3390/land14122425

