The Policy Spatial Footprint: Causal Identification of Land Value Capitalization Using Network-Time Exposure
Abstract
1. Introduction
1.1. Problem Setting and Motivation
1.2. Research Gaps
1.3. Contributions and Objectives
2. Methods
2.1. Study Area and Policy Families
2.2. PSF Construction
- Clause Parsing and Entity Extraction: We first employ a domain-adapted Natural Language Processing (NLP) model, leveraging transformer-based architectures [46], to parse the semantic content of the policy texts. This stage automatically identifies and extracts key entities (e.g., toponyms, specific facilities, referenced plan sheets) and implementation rules (e.g., spatial boundaries, exemption clauses, and effective dates).
- Geocoding and Disambiguation: The extracted textual entities are then geocoded against official municipal gazetteers, cadastral maps, and transportation base maps. This process, validated against positional error benchmarks [47], resolves textual references into precise vector coordinates (points, lines, or polygons).
- Geometry Composition and Topological Cleaning: This critical stage translates the extracted spatial rules into final policy geometries. We first generate a base geometry (e.g., a buffer around a station, a digitized planning-sheet boundary). Crucially, we then refine this geometry by applying exclusion clauses (e.g., clipping out heritage-listed parcels or ecological red-line zones) using geospatial difference operations. The resulting geometry undergoes topological checks to ensure validity.
- Attribute Assignment: Finally, each validated PSF geometry is assigned its key analytical attributes, including the legal effective date (the temporal marker) and a standardized intensity tier (the regulatory marker) derived from the text.
2.3. Exposure Mapping
2.4. Data and Variables
2.5. Identification and Inference
2.6. Reproducibility, Privacy, and Audit Trail
3. Results
3.1. Baseline Effects Across Policy Families
3.2. Dynamic Adjustment: Event-Study Profiles
3.3. Spatial Decay and Adjacency Spillovers
3.4. Heterogeneity by Market Thickness, Regulatory Slack, and Baseline Accessibility
3.5. Robustness: Exposure Metrics, Sample Restrictions, and Alternative Estimators
3.6. Validation: Temporal Placebos, Pseudo-Boundaries, and Cohort Comparability
3.7. Mapping Summaries and Multiplicity Control
3.8. Interpretation and Caveats
4. Policy Translation, Mapping for Governance, and Implications
4.1. From Estimands to Decision-Support Layers
4.2. Rate Design and Revenue Scheduling for Land Value Capture
4.3. Targeting Rules, Carve-Outs, and Legal Defensibility
4.4. Distributional Incidence and Affordability Safeguards
4.5. Communicating Uncertainty, Scale Sensitivity, and Interference
4.6. Implementation: Catalog Governance, Privacy, and Reproducibility
4.7. Cross-Instrument Coordination and Cost Allocation
4.8. Limitations and Adaptive Monitoring
5. Discussion
5.1. External Validity and Portability Conditions
5.2. Policy Implications
5.3. Limitations
5.4. Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. PSF Implementation Workflow and Worked Example
Appendix A.1. Technical Workflow
- 1.
- Clause Parsing and Entity Extraction: Ordinances are segmented into semantic clauses (e.g., eligibility, exemption, boundary, timing). We utilize a Named Entity Recognition (NER) model, fine-tuned from a transformer-based architecture (BERT) on a corpus of urban planning documents, to identify and tag toponyms, facilities, plan sheet references, and legal triggers. The output for each policy is a structured JSON object containing the extracted parameters.
- 2.
- Disambiguation and Geocoding: Extracted toponyms (e.g., “Suzhou North Station”) are resolved against the AMap (Gaode) API and official municipal cadastral layers. Ambiguous matches (e.g., non-unique names) are flagged with confidence scores for manual review and validation.
- 3.
- Geometry Construction and Topological Cleaning: We compose vector geometries based on the extracted rules. For network-based rules (e.g., “500-m network distance”), Dijkstra’s algorithm is used on the road-rail graph [51,79]. For Euclidean rules, standard buffers are generated. Exclusion geometries (e.g., heritage parcels, ecological zones) are loaded from existing municipal GIS layers and subtracted from the base geometries using a geospatial difference (clip) operation. All final geometries are topologically cleaned (e.g., removing self-intersections and sliver polygons) to ensure validity.
- 4.
- Attribute Assignment and Auditing: We assign temporal metadata (recording {announcement, legal effectiveness, enforcement} dates where available) and intensity metadata (e.g., encoding FAR headroom or development restrictions into standardized quantiles).
- 5.
- Version Control and Reproducibility: To ensure full reproducibility, every edit is linked via a commit note to the source ordinance (including page numbers) and parameters (e.g., buffer distance, CRS). A minimal replication bundle—containing source ordinance PDFs, final GeoPackage geometries, PSF metadata (CSV/JSON), and the audit log—is archived.
Appendix A.2. Worked Example: “Suzhou Rail Transit Line 2 TOD Plan” (Policy ID: P3001)
“… [It is] decided to designate 15 stations, including ‘Pinglonglu East Station’ and ‘Suzhoubei Railway Station’, as TOD comprehensive development core areas. The core area is defined as: the area within a 500 m radius of the station entrance’s center point… Land within the ecological red line protection area is not applicable to this ordinance… This plan is effective June 1, 2012…”
- a.
- Base Geometry Generation: A 500 m Euclidean buffer is generated around each of the 15 station coordinates, creating 15 overlapping circular polygons.
- b.
- Exclusion Geometry Loading: The “ecological_red_line_areas” (a pre-existing GIS polygon layer for Suzhou) is loaded.
- c.
- Final Geometry (Topological Operation): A geospatial Difference operation is performed. The ecological red line areas are “clipped” (subtracted) from the 500 m buffer zones. The result is the final, non-contiguous PSF geometry representing the actual land eligible for the TOD policy.
Appendix B. Geographic Regression Discontinuity Robustness Check

Appendix C. Exposure Raster

References
- Saiz, A. The geographic determinants of housing supply. Q. J. Econ. 2010, 125, 1253–1296. [Google Scholar] [CrossRef]
- Hilber, C.A.L.; Vermeulen, W. The impact of supply constraints on house prices in England. Econ. J. 2016, 126, 358–405. [Google Scholar] [CrossRef]
- Oates, W.E. The effects of property taxes and local public spending on property values: A theoretical comment. J. Polit. Econ. 1969, 77, 957–971. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Polit. Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Tiebout, C.M. A pure theory of local expenditures. J. Polit. Econ. 1956, 64, 416–424. [Google Scholar] [CrossRef]
- Black, S.E. Do better schools matter? Parental valuation of elementary education. Q. J. Econ. 1999, 114, 577–599. [Google Scholar] [CrossRef]
- Chay, K.Y.; Greenstone, M. Does air quality matter? Evidence from the housing market. J. Polit. Econ. 2005, 113, 376–424. [Google Scholar] [CrossRef]
- Gibbons, S.; Machin, S. Valuing rail access using transport innovations. J. Urban Econ. 2005, 57, 148–169. [Google Scholar] [CrossRef]
- Bowes, D.R.; Ihlanfeldt, K.R. Identifying the impacts of rail transit stations on residential property values. J. Urban Econ. 2001, 50, 1–25. [Google Scholar] [CrossRef]
- Debrezion, G.; Pels, E.; Rietveld, P. The impact of railway stations on residential and commercial property value: A meta-analysis. J. Real Estate Financ. Econ. 2007, 35, 161–180. [Google Scholar] [CrossRef]
- Donaldson, D. Railroads of the Raj: Estimating the impact of transportation infrastructure. Am. Econ. Rev. 2018, 108, 899–934. [Google Scholar] [CrossRef]
- Duranton, G.; Turner, M.A. The fundamental law of road congestion: Evidence from US cities. Am. Econ. Rev. 2011, 101, 2616–2652. [Google Scholar] [CrossRef]
- Gyourko, J.; Molloy, R. Regulation and housing supply. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2015; Volume 5, pp. 1289–1337. [Google Scholar] [CrossRef]
- Cervero, R.; Murakami, J. Rail + property development in Hong Kong: Experiences and extensions. Urban Stud. 2009, 46, 2019–2043. [Google Scholar] [CrossRef]
- Medda, F. Land value capture finance for transport accessibility: A review. J. Transp. Geogr. 2012, 25, 154–161. [Google Scholar] [CrossRef]
- Walters, L.C. Land value capture in policy and practice. J. Prop. Tax Assess. Adm. 2013, 10, 5–21. [Google Scholar] [CrossRef]
- Suzuki, H.; Cervero, R.; Iuchi, K. Transforming Cities with Transit: Transit and Land-Use Integration for Sustainable Urban Development; World Bank Publications: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Ingram, G.K.; Hong, Y.-H. (Eds.) Value Capture and Land Policies; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2012. [Google Scholar]
- Higgins, C.D.; Kanaroglou, P.S. Infrastructure or attraction? Image-driven transit-oriented development in large cities. Transp. Res. Part A Policy Pract. 2016, 90, 164–183. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Kelejian, H.H.; Prucha, I.R. Specification and estimation of spatial autoregressive models with autoregressive disturbances. J. Econom. 2010, 157, 53–67. [Google Scholar] [CrossRef]
- Hudgens, M.G.; Halloran, M.E. Toward causal inference with interference. J. Am. Stat. Assoc. 2008, 103, 832–842. [Google Scholar] [CrossRef]
- Aronow, P.M.; Samii, C. Estimating average causal effects under general interference. Ann. Appl. Stat. 2017, 11, 1912–1947. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Wong, D.W.S. The modifiable areal unit problem in multivariate statistical analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Openshaw, S. The Modifiable Areal Unit Problem; Geo Books: Norwich, UK, 1984. [Google Scholar]
- Monkkonen, P.; Zhang, X. Innovative measurement of spatial segregation: Comparative evidence from Hong Kong and San Francisco. Reg. Sci. Urban Econ. 2014, 47, 99–111. [Google Scholar] [CrossRef]
- Kunz, P.; Bodeker, J.; Lautenbach, S.; Müller, B.; Seppelt, R.; Beckmann, M. Spatially explicit economic analysis of crop rotation patterns in an agricultural landscape. Ecosyst. Serv. 2019, 35, 155–166. [Google Scholar]
- Peterson, G.E. Unlocking Land Values to Finance Urban Infrastructure; World Bank Publications: Washington, DC, USA, 2009. [Google Scholar]
- Schuetz, J.; Been, V.; Ellen, I.G. Neighborhood effects of concentrated mortgage foreclosures. J. Hous. Econ. 2008, 17, 306–319. [Google Scholar] [CrossRef]
- Lawrimore, M.A.; Sanchez, G.; Cothron, C.; Tulbure, M.G. Creating spatially complete zoning maps using machine learning. Comput. Environ. Urban Syst. 2024, 112, 102157. [Google Scholar] [CrossRef]
- Sanchez, T.W.; Fu, X.; Yigitcanlar, T.; Ye, X. The research landscape of AI in urban planning: A topic analysis of the literature with ChatGPT. Urban Sci. 2024, 8, 197. [Google Scholar] [CrossRef]
- Bertrand, M.; Duflo, E.; Mullainathan, S. How much should we trust differences-in-differences estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef]
- Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 2021, 225, 254–277. [Google Scholar] [CrossRef]
- Sun, L.; Abraham, S. Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. J. Econom. 2021, 225, 175–199. [Google Scholar] [CrossRef]
- Wang, G.; Hamad, R.; White, J.S. Advances in difference-in-differences methods for policy evaluation research. Epidemiology 2024, 35, 628–637. [Google Scholar] [CrossRef]
- Kennedy-Shaffer, L.; Buonaccorsi, J.P.; Rosenberg, E.S. Spillovers and effect attenuation in firearm policy research in the United States. Am. J. Epidemiol. 2025, 194, 628–637. [Google Scholar] [CrossRef]
- Cervero, R.; Kang, C.D. Bus rapid transit impacts on land values and land development in Seoul, Korea. Transp. Policy 2011, 18, 102–116. [Google Scholar] [CrossRef]
- Huang, X.; He, W. Urban rail-bus-walk network service integration towards accessibility and heat exposure consideration: Models and column-generation solution approaches. Transp. Res. Part C Emerg. Technol. 2024, 165, 104693. [Google Scholar] [CrossRef]
- Conley, T.G. GMM estimation with cross sectional dependence. J. Econom. 1999, 92, 1–45. [Google Scholar] [CrossRef]
- Keele, L.; Titiunik, R. Geographic boundaries as regression discontinuities. Polit. Anal. 2015, 23, 127–155. [Google Scholar] [CrossRef]
- Kendall, E.B.; DiTraglia, F.J.; Porter, J.R. Robust inference for geographic regression discontinuity: Evidence from policing in New York City. J. R. Stat. Soc. Ser. A 2025, 188, qnae058. [Google Scholar]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-differences with multiple time periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Calonico, S.; Cattaneo, M.D.; Titiunik, R. Robust nonparametric confidence intervals for regression-discontinuity designs. Econometrica 2014, 82, 2295–2326. [Google Scholar] [CrossRef]
- Kok, N.; Monkkonen, P.; Quigley, J.M. Land use regulations and the value of land and housing: An intra-urban analysis. J. Urban Econ. 2014, 81, 136–148. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Zandbergen, P.A. A comparison of address point, parcel and street geocoding techniques. Comput. Environ. Urban Syst. 2008, 32, 214–232. [Google Scholar] [CrossRef]
- Peng, R.D. Reproducible research in computational science. Science 2011, 334, 1226–1227. [Google Scholar] [CrossRef]
- Geurs, K.T.; van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Kwan, M.-P. The uncertain geographic context problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
- Newson, P.; Krumm, J. Hidden Markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009; pp. 336–343. [Google Scholar] [CrossRef]
- Hansen, W.G. How accessibility shapes land use. J. Am. Inst. Plann. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed]
- de Chaisemartin, C.; D’Haultfœuille, X. Two-way fixed effects estimators with heterogeneous treatment effects. Am. Econ. Rev. 2020, 110, 2964–2996. [Google Scholar] [CrossRef]
- Rambachan, A.; Roth, J. A more credible approach to parallel trends. Rev. Econ. Stud. 2023, 90, 2533–2571. [Google Scholar] [CrossRef]
- Abadie, A. Semiparametric difference-in-differences estimators. Rev. Econ. Stud. 2005, 72, 57–76. [Google Scholar] [CrossRef]
- Abadie, A.; Diamond, A.; Hainmueller, J. Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program. J. Am. Stat. Assoc. 2010, 105, 493–505. [Google Scholar] [CrossRef]
- Arkhangelsky, D.; Athey, S.; Hirshberg, D.A.; Imbens, G.W.; Wager, S. Synthetic difference-in-differences. Am. Econ. Rev. 2021, 111, 4088–4118. [Google Scholar] [CrossRef]
- Hainmueller, J. Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in observational studies. Polit. Anal. 2012, 20, 25–46. [Google Scholar] [CrossRef]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Bester, C.A.; Conley, T.G.; Hansen, C.B. Inference with dependent data using cluster covariance estimators. J. Econom. 2011, 165, 137–151. [Google Scholar] [CrossRef]
- Cameron, A.C.; Miller, D.L. A practitioner’s guide to cluster-robust inference. J. Hum. Resour. 2015, 50, 317–372. [Google Scholar] [CrossRef]
- Cameron, A.C.; Gelbach, J.B.; Miller, D.L. Bootstrap-based improvements for inference with clustered errors. Rev. Econ. Stat. 2008, 90, 414–427. [Google Scholar] [CrossRef]
- MacKinnon, J.G.; Webb, M.D. Wild bootstrap inference for wildly different cluster sizes. J. Appl. Econom. 2017, 32, 487–514. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Gibbons, S.; Overman, H.G. Mostly pointless spatial econometrics? J. Reg. Sci. 2012, 52, 172–191. [Google Scholar] [CrossRef]
- Belloni, A.; Chernozhukov, V.; Hansen, C. Inference on treatment and structural parameters using high-dimensional Controls. Rev. Econ. Stud. 2014, 81, 608–650. [Google Scholar] [CrossRef]
- Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2002, 10, 557–570. [Google Scholar] [CrossRef]
- Dwork, C. Differential privacy: A survey of results. In Theory and Applications of Models of Computation; Agrawal, M., Du, D., Duan, Z., Li, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–19. [Google Scholar] [CrossRef]
- Andrews, D.W.K. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 1991, 59, 817–858. [Google Scholar] [CrossRef]
- Newey, W.K.; West, K.D. A simple, positive semidefinite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 1987, 55, 703–708. [Google Scholar] [CrossRef]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817–838. [Google Scholar] [CrossRef]
- McCrary, J. Manipulation of the running variable in the regression discontinuity design: A density test. J. Econom. 2008, 142, 698–714. [Google Scholar] [CrossRef]
- Suzuki, H.; Murakami, J.; Hong, Y.-H.; Tamayose, B. Financing Transit-Oriented Development with Land Values: Adapting Land Value Capture in Developing Countries; World Bank Publications: Washington, DC, USA, 2015. [Google Scholar]
- Wager, S.; Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 2018, 113, 1228–1242. [Google Scholar] [CrossRef]
- Egami, N.; Imai, K. Causal interaction in factorial experiments: Application to conjoint analysis. J. Am. Stat. Assoc. 2019, 114, 529–540. [Google Scholar] [CrossRef]
- Armstrong, T.B.; Kolesár, M. Optimal inference in a class of regression models. Econometrica 2018, 86, 655–683. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Imbens, G.; Kalyanaraman, K. Optimal bandwidth choice for the regression discontinuity estimator. Rev. Econ. Stud. 2012, 79, 933–959. [Google Scholar] [CrossRef]
- Gelman, A.; Imbens, G. Why high-order polynomials should not be used in regression discontinuity designs. J. Bus. Econ. Stat. 2019, 37, 447–456. [Google Scholar] [CrossRef]








| Dataset | Records | Time Span | Spatial Unit | Key Fields | Notes | Data Source |
|---|---|---|---|---|---|---|
| Transactions (primary) | 1,214,560 | 2012–2024 | Parcel | Price, area, use, date, buyer/seller type | 93.0% with parcel-level geocodes | Municipal Bureau of Natural Resources and Planning (Land transaction registration system) |
| Assessments at transfer (aux.) | 352,780 | 2013–2024 | Parcel | Assessed value, date | Used only where sales sparse | Municipal Tax Authority (Property transfer assessment records) |
| Parcel registry | 2,018,430 | 2010–2024 | Parcel | ID, geometry, baseline use | Versioned topology, split/merge history | Municipal Bureau of Natural Resources and Planning (Cadastral database) |
| PSF catalog | 64 | 2012–2024 | Mixed geometry | Family, geometry, adoption/effectiveness | Regulatory (27), Transport (22), Industrial/functional (15) | Author’s construction from statutory documents including:
|
| Network graph | — | 2024 | Node/edge | Road–rail links, speeds | Basis for network-time bands | OpenStreetMap (road network) + Official transit maps (rail network) + Baidu Maps/AMap API (travel speeds) |
| Outcome | N | Mean | SD | P10 | P50 | P90 |
|---|---|---|---|---|---|---|
| ln(Price per m2), sales | 1,103,290 | 8.82 | 0.44 | 8.21 | 8.83 | 9.39 |
| ln(Assessed per m2), transfer | 312,740 | 8.75 | 0.45 | 8.13 | 8.76 | 9.33 |
| City | Ring_Min | Share_Exposed |
|---|---|---|
| Suzhou | 3 | 0.208 |
| Suzhou | 7 | 0.419 |
| Suzhou | 12 | 0.685 |
| Wuxi | 3 | 0.157 |
| Wuxi | 7 | 0.391 |
| Wuxi | 12 | 0.642 |
| Changzhou | 3 | 0.162 |
| Changzhou | 7 | 0.355 |
| Changzhou | 12 | 0.631 |
| Jiaxing | 3 | 0.218 |
| Jiaxing | 7 | 0.417 |
| Jiaxing | 12 | 0.668 |
| Huzhou | 3 | 0.165 |
| Huzhou | 7 | 0.378 |
| Huzhou | 12 | 0.659 |
| Variable | Definition | Mean | SD | Unit |
|---|---|---|---|---|
| NetTime_Job | Network minutes to nearest employment hub | 20.8 | 9.2 | minutes |
| NetTime_Rail | Network minutes to nearest rail node | 14.2 | 7.0 | minutes |
| Dist_Park | Euclidean distance to park centroid | 0.90 | 0.65 | km |
| Dist_School | Euclidean distance to primary/secondary school | 0.80 | 0.52 | km |
| Dist_Hospital | Euclidean distance to hospital | 2.05 | 1.33 | km |
| PreFAR | Baseline FAR allowance (tiers 1–4) | 2.4 | 0.9 | index |
| LandUse_Residential | Residential (=1) | 0.63 | 0.48 | share |
| NTL | Nighttime lights (scaled 0–100) | 42.3 | 18.5 | index |
| LotArea | Parcel area | 2150 | 1520 | m2 |
| BldgAge | Building age at sale | 9.8 | 6.6 | years |
| Policy_id | City | Type | Geometry | Announce_Year | Effective_Year | Enforce_Year | Intensity_Quantile |
|---|---|---|---|---|---|---|---|
| P3000 | Suzhou | Zoning-upgrade | Polygon | 2012 | 2013 | 2013 | Q4 |
| P3001 | Suzhou | TOD-station-area | Corridor | 2012 | 2012 | 2013 | Q2 |
| P3002 | Suzhou | Green-belt | Node | 2014 | 2015 | 2016 | Q1 |
| P3003 | Suzhou | Industrial-park | Polygon | 2019 | 2020 | 2020 | Q3 |
| P3004 | Suzhou | Road-dedication | Corridor | 2013 | 2013 | 2014 | Q1 |
| P3005 | Wuxi | Zoning-upgrade | Polygon | 2013 | 2014 | 2014 | Q1 |
| P3006 | Wuxi | TOD-station-area | Corridor | 2018 | 2019 | 2020 | Q3 |
| P3007 | Wuxi | Green-belt | Node | 2013 | 2013 | 2013 | Q1 |
| P3008 | Wuxi | Industrial-park | Polygon | 2014 | 2015 | 2015 | Q2 |
| P3009 | Wuxi | Road-dedication | Corridor | 2015 | 2016 | 2017 | Q4 |
| P3010 | Changzhou | Zoning-upgrade | Polygon | 2017 | 2018 | 2019 | Q1 |
| P3011 | Changzhou | TOD-station-area | Corridor | 2019 | 2019 | 2019 | Q1 |
| P3012 | Changzhou | Green-belt | Node | 2014 | 2014 | 2014 | Q1 |
| P3013 | Changzhou | Industrial-park | Polygon | 2013 | 2014 | 2015 | Q3 |
| P3014 | Jiaxing | Zoning-upgrade | Polygon | 2015 | 2015 | 2016 | Q4 |
| P3015 | Jiaxing | TOD-station-area | Corridor | 2018 | 2019 | 2020 | Q3 |
| P3016 | Jiaxing | Green-belt | Node | 2018 | 2018 | 2019 | Q2 |
| P3017 | Jiaxing | Industrial-park | Polygon | 2012 | 2012 | 2013 | Q4 |
| P3018 | Jiaxing | Road-dedication | Corridor | 2018 | 2019 | 2020 | Q3 |
| P3019 | Jiaxing | Zoning-upgrade | Polygon | 2012 | 2013 | 2014 | Q1 |
| P3020 | Huzhou | Zoning-upgrade | Polygon | 2012 | 2012 | 2013 | Q1 |
| P3021 | Huzhou | TOD-station-area | Corridor | 2019 | 2020 | 2020 | Q1 |
| P3022 | Huzhou | Green-belt | Node | 2014 | 2015 | 2016 | Q3 |
| P3023 | Huzhou | Industrial-park | Polygon | 2018 | 2018 | 2018 | Q1 |
| Model | Beta | SE | Ci_l | Ci_u |
|---|---|---|---|---|
| Baseline TWFE | 0.017 | 0.006 | 0.0052 | 0.0288 |
| TWFE + City × Trend | 0.016 | 0.007 | 0.0023 | 0.0297 |
| TWFE + Conley SE | 0.017 | 0.007 | 0.0033 | 0.0307 |
| IPW-DID | 0.018 | 0.006 | 0.0062 | 0.0298 |
| Entropy-balanced DID | 0.017 | 0.006 | 0.0052 | 0.0288 |
| Policy Family | Coefficient (Log) | HAC SE | % Change (≈100·Coef) | Exposure Definition |
|---|---|---|---|---|
| Regulatory (zoning/plan) | 0.029 | 0.008 | +2.9% | Inside legal polygon |
| Transport (rail/BRT/interchange) | 0.024 | 0.009 | +2.4% | ≤5 min network-time to node/corridor |
| Industrial/functional designation | 0.017 | 0.010 | +1.7% | Inside designation polygon |
| Combined sample (any PSF, direct) | 0.026 | 0.007 | +2.6% | Union of direct exposures |
| k (Years) | −6 | −5 | −4 | −3 | −2 | −1 | +1 | +2 | +3 | +4 | +5 | +6 | +7 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Coef (log) | −0.004 | 0.002 | −0.003 | 0.000 | 0.001 | 0 | 0.010 | 0.018 | 0.026 | 0.030 | 0.031 | 0.031 | 0.030 |
| HAC SE | 0.006 | 0.005 | 0.005 | 0.005 | 0.004 | — | 0.006 | 0.007 | 0.008 | 0.008 | 0.009 | 0.010 | 0.011 |
| Exposure Band | Coef | HAC SE | Interpretation |
|---|---|---|---|
| Direct (inside PSF) | 0.027 | 0.007 | Core footprint response |
| Adjacent (≤3 min) | 0.011 | 0.006 | Near-boundary diffusion |
| Ring 2 (3–7 min) | 0.005 | 0.004 | Secondary proximity |
| Ring 3 (7–12 min) | 0.002 | 0.003 | Background neighborhood |
| Ring_Min | Beta | SE | Ci_l | Ci_u |
|---|---|---|---|---|
| 0 | 0.019 | 0.006 | 0.0072 | 0.0308 |
| 3 | 0.011 | 0.005 | 0.0012 | 0.0208 |
| 7 | 0.006 | 0.004 | −0.0018 | 0.0138 |
| 12 | 0.002 | 0.003 | −0.0039 | 0.0079 |
| Stratum | Coef (log) | HAC SE | % Change | Notes (Proxy) |
|---|---|---|---|---|
| Market Thickness | ||||
| Low (NTL Q1) | 0.018 | 0.010 | +1.8% | Thin markets |
| Mid (NTL Q2–Q3) | 0.026 | 0.008 | +2.6% | — |
| High (NTL Q4) | 0.034 | 0.009 | +3.4% | Thick markets (beta = 0.023, SE = 0.006 from sub-spec) |
| Regulatory Slack | ||||
| FAR Tier 1 | 0.016 | 0.011 | +1.6% | Low headroom |
| FAR Tier 2–3 | 0.028 | 0.008 | +2.8% | — |
| FAR Tier 4 | 0.036 | 0.010 | +3.6% | High headroom |
| Baseline Accessibility | ||||
| Fastest Q1 | 0.032 | 0.009 | +3.2% | Network-time quartiles |
| Slowest Q4 | 0.019 | 0.010 | +1.9% | — |
| Variant | Coef (log) | SE Type | SE |
|---|---|---|---|
| Baseline (network-time) | 0.029 | HAC (Conley 20 km) | 0.008 |
| Euclidean 500 m buffer | 0.024 | HAC (20 km) | 0.009 |
| Euclidean 1 km buffer | 0.019 | HAC (20 km) | 0.010 |
| Drop CBD 2 km | 0.027 | Cluster (subdistrict) | 0.011 |
| Balanced cohorts (±3 years) | 0.026 | HAC (15 km) | 0.009 |
| TWFE with cohort interactions | 0.025 | Cluster (city) | 0.012 |
| Synthetic DiD (treated aggregates) | 0.022 | Permutation band | [0.006, 0.038] |
| Test | Result |
|---|---|
| Pre-trend joint test (k ≤ −2) | Pass |
| Anticipation window (k = −2 … −1) | Pass |
| Placebo policy years | Fail |
| Buffer exclusion (±250 m) | Stable |
| Bandwidth sensitivity (RD) | Sensitive |
| Leave-one-city-out | Stable |
| Scale (250 m vs. 500 m) | Stable |
| Diagnostic | Statistic |
|---|---|
| Joint test on leads (−6… −2), χ2 (5) | 6.48 (p = 0.26) |
| Date-shift placebo (−3 years), mean coef | 0.002 (HAC SE 0.006) |
| Pseudo-boundary RD (median across 200) | 0.001 [IQR −0.008, 0.010] |
| Entropy balancing, max standardized diff. (pre) | 0.06 |
| Synthetic-control RMSPE ratio (pre/post) | 0.92 |
| Item | Value |
|---|---|
| Cells evaluated (grid = 250 m) | 28,800 |
| Cells flagged (any positive effect) | 1640 (5.7%) |
| Share within direct exposure | 0.54 |
| Share within adjacency ring | 0.31 |
| Share linked to transport PSFs | 0.46 |
| Share linked to regulatory PSFs | 0.41 |
| Share linked to industrial/functional PSFs | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Liao, X.; Yaguchi, T. The Policy Spatial Footprint: Causal Identification of Land Value Capitalization Using Network-Time Exposure. Land 2025, 14, 2240. https://doi.org/10.3390/land14112240
Xie M, Liao X, Yaguchi T. The Policy Spatial Footprint: Causal Identification of Land Value Capitalization Using Network-Time Exposure. Land. 2025; 14(11):2240. https://doi.org/10.3390/land14112240
Chicago/Turabian StyleXie, Ming, Xiaoxiao Liao, and Tetsuya Yaguchi. 2025. "The Policy Spatial Footprint: Causal Identification of Land Value Capitalization Using Network-Time Exposure" Land 14, no. 11: 2240. https://doi.org/10.3390/land14112240
APA StyleXie, M., Liao, X., & Yaguchi, T. (2025). The Policy Spatial Footprint: Causal Identification of Land Value Capitalization Using Network-Time Exposure. Land, 14(11), 2240. https://doi.org/10.3390/land14112240

