Assessing the Cost-Effectiveness of Ecological Restoration Programs Across China’s Desert and Desertification-Prone Regions by Integrating Vegetation Dynamics and Investment Data
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. NDVI Data
2.2.2. Climate Datasets
2.2.3. Atmospheric CO2 Concentration Dataset
2.2.4. Ecological Restoration Program Datasets
2.2.5. Auxiliary Datasets
3. Methods
3.1. Ecological Restoration Effect Quantification
3.1.1. Turning Points Detection
3.1.2. Linear Regression Analysis
3.1.3. Residual Trend Analysis
3.2. Geodetector Model
3.3. Assessment of the Cost-Effectiveness
3.4. Uncertainty and Sensitivity Analysis
4. Results
4.1. The Shift Pattern of Vegetation Trends in China’s D & DPRs
4.2. Changes in Vegetation Trends
4.3. Ecological Restoration Effect
4.4. The Influencing Factors of the Ecological Restoration Effect
4.5. Cost-Effectiveness of Ecological Restoration Programs
5. Discussion
5.1. Vegetation Trend Changes and Shift Characteristics
5.2. Ecological Restoration Effect and Its Influencing Factors
5.3. Cost-Effectiveness of Ecological Restoration in Different Regions
5.3.1. Potential Factors of Cost-Effectiveness Disparities
5.3.2. Cost-Effectiveness Metric Comparison in a Global Context
5.3.3. Policy Suggestions for Future Ecological Restoration
5.4. Methodological Limitations and Uncertainties
6. Conclusions
- (1)
- From 1982 to 2020, vegetation trends in 21.8% of China’s D & DPRs experienced significant shifts, dominated by “accelerated greening”. Among these shifts, 82.4% occurred in or after 1999.
- (2)
- Compared with the reference period (1982–1998), vegetation restoration and degradation during the restoration period (1999–2020) increased by 15.5% and 21%, respectively, with accelerated greening primarily occurring around the agro-pastoral ecotone.
- (3)
- Positive impacts of human management were observed in 20.1% of the vegetated area in China’s D & DPRs, whereas negative impacts occurred in 25.3% of the vegetated area.
- (4)
- The ecological restoration effect was influenced by multiple factors, including topographic, climatic, socio-economic, and soil factors, among which population, road density and afforestation area percentage exhibited the strongest explanatory power.
- (5)
- The cost-effectiveness of ecological restoration in China’s D & DPRs was unevenly distributed. Ecological restoration exhibited higher cost-effectiveness in counties located in the northern Loess Plateau, Hexi Corridor, and northeastern Inner Mongolia Plateau. In contrast, counties situated in the central and western Inner Mongolia Plateau, the Tianshan Mountains, and the Tibetan Plateau exhibited relatively lower cost-effectiveness. Administratively, Shaanxi Province demonstrated the highest restoration cost-effectiveness among China’s D & DPRs, followed by Gansu and Qinghai Provinces.
- (6)
- Ecological restoration should formulate policies in combination with the cost-effectiveness level and ecological status of the region, select reasonable restoration measures and strengthen subsequent ecological monitoring.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Dai, E.; Zhao, Z.; Jia, L.; Jiang, X. Contribution of ecosystem services improvement on achieving Sustainable development Goals under ecological engineering projects on the Qinghai-Tibet Plateau. Ecol. Eng. 2024, 199, 107146. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, H. Desertification in north China: Background, anthropogenic impacts and failures in combating it. Land Degrad. Dev. 2005, 16, 367–376. [Google Scholar] [CrossRef]
- Xu, J.; Yin, R.; Li, Z.; Liu, C. China’s ecological rehabilitation: Unprecedented efforts, dramatic impacts, and requisite policies. Ecol. Econ. 2006, 57, 595–607. [Google Scholar] [CrossRef]
- Wang, X.; Ge, Q.; Geng, X.; Wang, Z.; Gao, L.; Bryan, B.A.; Chen, S.; Su, Y.; Cai, D.; Ye, J.; et al. Unintended consequences of combating desertification in China. Nat. Commun. 2023, 14, 1139. [Google Scholar] [CrossRef]
- Ding, Z.; Yao, S. Ecological effectiveness of payment for ecosystem services to identify incentive priority areas: Sloping land conversion program in China. Land Use Policy 2021, 104, 105350. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Han, J.; Yan, J.; Liu, W.; Wei, Y.; Lu, N.; Sun, Y. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yu, L.; Chen, J.; Qi, W.; Wu, H.; Peng, D.; Chen, X.; Zhou, Y. Afforestation surpasses abandonment in the recovery of post-agricultural soil organic carbon in China as estimated by machine learning models. Glob. Change Biol. 2025, 31, e70383. [Google Scholar] [CrossRef]
- Hu, Y.; Li, H.; Wu, D.; Chen, W.; Zhao, X.; Hou, M.; Li, A.; Zhu, Y. LAI-indicated vegetation dynamic in ecologically fragile region: A case study in the Three-North Shelter Forest program region of China. Ecol. Indic. 2021, 120, 106932. [Google Scholar] [CrossRef]
- Meng, R.; Meng, Z.; Li, H.; Cai, J.; Qin, L. Changes in landscape ecological risk in the Beijing-Tianjin Sandstorm Source Control Project area from a spatiotemporal perspective. Ecol. Indic. 2024, 167, 112569. [Google Scholar] [CrossRef]
- Cao, B.; Zhu, H.; Wang, Y. Has China’s “Only-out, no-in” staff-reduction policy alleviated the material deprivation of forestry worker families? Evidence from China’s Natural Forest Protection Program. For. Policy Econ. 2025, 170, 103391. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, E. Vegetation cover dynamics and its constraint effect on ecosystem services on the Qinghai-Tibet Plateau under ecological restoration projects. J. Environ. Manag. 2024, 356, 120535. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, H.; Liu, F. Utilizing a vegetation restoration potential model to derive a reference for assessing ecological restoration of the Qinghai-Tibet Plateau. Ecol. Eng. 2025, 212, 107514. [Google Scholar] [CrossRef]
- Bai, R.; Wang, X.; Li, J.; Yang, F.; Shangguan, Z.; Deng, L. The impact of vegetation reconstruction on soil erosion in the Loess plateau. J. Environ. Manag. 2024, 363, 121382. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, S.; Fu, B.; Liu, J. Spatial variation and influencing factors of the effectiveness of afforestation in China’s Loess Plateau. Sci. Total Environ. 2021, 771, 144904. [Google Scholar] [CrossRef]
- Lyu, F.; Tang, J.; Olhnuud, A.; Hao, F.; Gong, C. The impact of large-scale ecological restoration projects on trade-offs/synergies and clusters of ecosystem services. J. Environ. Manag. 2024, 365, 121591. [Google Scholar] [CrossRef]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef]
- Fan, J.; Liu, S.; Wang, W.; Li, Y.; Zhao, Y.; Wu, G. Quantifying the ecological network dynamics associated with ecological restoration projects: A case study in Southwest China. Global Ecol. Conserv. 2025, 62, e03744. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Guo, M.; Zhou, N.; Cai, Y.; Wang, X.; Zhang, X.; Lu, S.; Liu, K.; Zhao, W. Quantitative estimation of vegetation carbon source/sink and its response to climate variability and anthropogenic activities in Dongting Lake Wetland, China. Remote Sens. 2025, 17, 2475. [Google Scholar] [CrossRef]
- Chen, D.; Wu, L.; Wei, H.; Yang, D.; Xiong, L.; Chen, G.; Du, J.; Jia, J.; Xia, Y. Stronger climatic impact than anthropogenic control on vegetation carbon sink growth in China. Ecol. Front. 2025, 45, 1860–1873. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, Y.; Niu, C.; Liu, J.; Jin, J.; Liao, Z.; Wang, M.; Li, G.; Zhang, J. Spatiotemporal variation in fractional vegetation coverage and quantitative analysis of its driving forces: A case study in the Tabu River Basin, Northern China, 1986–2023. Remote Sens. 2025, 17, 2490. [Google Scholar] [CrossRef]
- Shi, S.; Zheng, W.; Han, J.; Zhan, X.; Wang, F. Dominance of human activities in reducing soil erosion on the Loess Plateau. J. Hydrol. 2025, 662, 133835. [Google Scholar] [CrossRef]
- Horion, S.; Prishchepov, A.V.; Verbesselt, J.; de Beurs, K.; Tagesson, T.; Fensholt, R. Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Glob. Change Biol. 2016, 22, 2801–2817. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Liu, S.; Ning, J.; Liu, G.; Yang, F.; Zhang, X.; Niu, L.; Huang, H.; Fan, J.; Liu, J. Assessment of ecological benefits of key national ecological projects in China in 2000–2019 using remote sensing. Acta Geogr. Sin. 2022, 77, 2133–2153. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Zhao, L.; Yang, Z.; Wang, X.; Yang, L.; Wen, M.; Geng, S.; Zeng, Q.; Wang, J. Unfolding the effectiveness of ecological restoration programs in combating land degradation: Achievements, causes, and implications. Sci. Total Environ. 2020, 748, 141552. [Google Scholar] [CrossRef]
- Huang, B.; Lu, F.; Wang, X.; Wu, X.; Zheng, H.; Su, Y.; Yuan, Y.; Ouyang, Z. The impact of ecological restoration on ecosystem services change modulated by drought and rising CO2. Glob. Change Biol. 2023, 29, 5304–5320. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, J.; Li, Y.; Chen, W.; Zhang, Y.; Yi, K.; Dai, Y. Environmental variables affect the effectiveness of ecosystem services of ecological restoration project: Evidence from Xiangjiang River Basin-Dongting Lake. J. Clean. Prod. 2025, 527, 146739. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Liu, B.; Lee, T.M. Integrated outcomes of large-scale ecological restoration projects on biodiversity–eco-environment–society in China. Geogr. Sustain. 2025, 6, 100243. [Google Scholar] [CrossRef]
- Hu, T.; Peng, J.; Qiu, S.; Dong, J.; Hu, Y.N.; Lin, Y.; Xia, P. Social-ecological heterogeneity drove contrasting tree cover restoration in south China karst. Commun. Earth Environ. 2024, 5, 484. [Google Scholar] [CrossRef]
- Li, J.; Dong, S.; Li, Y.; Li, Z.; Li, F.; Fan, F. Do ecosystem service gains promote human well-being? Unpacking the ecosystem–human well-being link in fragile landscapes. Ecol. Indic. 2025, 179, 114177. [Google Scholar] [CrossRef]
- Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 2008, 42, 1826–1831. [Google Scholar] [CrossRef]
- Hua, F.; Wang, X.; Zheng, X.; Fisher, B.; Wang, L.; Zhu, J.; Tang, Y.; Yu, D.W.; Wilcove, D.S. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 2016, 7, 12717. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, T.; Shi, X.; Cao, S. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Cleaner Prod. 2018, 176, 1213–1222. [Google Scholar] [CrossRef]
- Wang, X.; Geng, X.; Liu, B.; Cai, D.; Li, D.; Xiao, F.; Zhu, B.; Hua, T.; Lu, R.; Liu, F. Desert ecosystems in China: Past, present, and future. Earth Sci. Rev. 2022, 234, 104206. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- National Forestry and Grassland Administration. The Overall Planning of the Green Great Wall Program. 2022. Available online: https://www.forestry.gov.cn/c/sbj/gcgh/355834.jhtml (accessed on 28 October 2025).
- Zhejiang Forestry Bureau. World Famous Ecological Program—“Natural Forest Protection Program” in China. 2022. Available online: http://lyj.zj.gov.cn/art/2022/2/11/art_1277845_59025920.html (accessed on 28 October 2025).
- Quanzhou Forestry Bureau. The White Paper “China’s 20 Years of Returning Farmland to Forest and Grassland” Was Released. 2020. Available online: https://lyj.quanzhou.gov.cn/zwgk/lydt/lyyw/202007/t20200703_2380461.htm (accessed on 28 October 2025).
- National Development and Reform Commission. Planning of the Beijing-Tianjin Sandstorm Source Control Program (2001–2010). 2007. Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/200709/t20070928_1196575.html (accessed on 28 October 2025).
- The Central People’s Government of the People’s Republic of China. Notice on the Assignment of the 2003 Task of Returning Grazing Land to Grassland. 2003. Available online: https://www.gov.cn/gongbao/content/2003/content_62103.htm (accessed on 28 October 2025).
- Shao, Q. The Dataset for Ecological Benefit Assessment of Major Ecological Projects in China. 2022. Available online: https://www.nesdc.org.cn/theme/index?projectId=636334037e28173e66a7243b (accessed on 28 October 2025).
- National Forestry and Grassland Administration. China Forestry and Grassland Statistical Yearbook; China Forestry Publishing House: Beijing, China, 2020. [Google Scholar]
- National Bureau of Statistics; Ministry of Ecology and Environment. China Statistical Yearbook on Environment; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Editorial Department of China Environmental Yearbook. China Environment Yearbook; China Environmental Yearbook Society: Beijing, China, 2010. [Google Scholar]
- China Afforestation (Greening) Committee. Bulletin on the Status of Land Greening in China; China Afforestation (Greening) Committee: Beijing, China, 2020. [Google Scholar]
- Pinzon, J.E.; Pak, E.W.; Tucker, C.J.; Bhatt, U.S.; Frost, G.V.; Macander, M.J. Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022. 2023. Available online: https://www.earthdata.nasa.gov/data/catalog/ornl-cloud-global-veg-greenness-gimms-3g-2187-1 (accessed on 18 November 2024).
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A Simple Method for Reconstructing a High-Quality NDVI Time-Series Data Set Based on the Savitzky–Golay Filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Change Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Ministry of Finance of the People’s Republic of China; Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Guiding Opinions on the Implementation of the 2011 Grassland Ecological Protection Subsidy and Reward Mechanism Policy. 2011. Available online: https://www.mof.gov.cn/gp/xxgkml/nys/201201/t20120116_2500355.htm (accessed on 13 June 2025).
- GEBCO Organization. Available online: https://www.gebco.net/data-products/gridded-bathymetry-data (accessed on 29 October 2024).
- Resource and Environmental Science and Data Center. A Dataset of Annual Average Conditions of Meteorological Elements in China. Available online: https://www.resdc.cn/data.aspx?DATAID=378 (accessed on 29 October 2024).
- Chinese Academy of Meteorological Sciences. Available online: https://www.camscma.cn/ (accessed on 15 July 2024).
- Rose, A.; McKee, J.; Sims, K.; Bright, E.; Reith, A.; Urban, M. LandScan Global 2000–2020. Oak Ridge National Laboratory. 2021. Available online: https://landscan.ornl.gov/ (accessed on 30 October 2024).
- Li, Y.; Zhang, D.; Zhang, X.; Peng, J.; Shang, M. A Dataset of 1 km Grid Road Network Density in China (2019). 2019. Available online: https://www.scidb.cn/en/detail?dataSetId=de7e723223f846c3a116c64af291f4a6 (accessed on 17 November 2024).
- Nachtergaele, F.; Velthuizen, H.; Verelst, L. Harmonized World Soil Database. 2009. Available online: https://gaez.fao.org/pages/hwsd (accessed on 17 November 2024).
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN grid V061. 2022. Available online: https://ui.adsabs.harvard.edu/abs/2022lp...data..424F/abstract (accessed on 16 October 2025).
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. Beijing-Tianjin Sandstorm Source Control Program. 2022. Available online: https://www.forestry.gov.cn/c/www/zxdt/18716.jhtml (accessed on 28 October 2025).
- Cai, D.; Ge, Q.; Wang, X.; Liu, B.; Goudie, A.S.; Hu, S. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. 2020, 15, 114046. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Li, W.; Tian, L.; Zhu, Q.; Chen, H.; Xiao, X. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Cheng, D.; Zhang, H.; Qi, G.; Wang, W. Vegetation response to climate and human interventions on the Loess Plateau: Trends, variability, and the influence of the Grain for Green Program. Sustainability 2025, 17, 8233. [Google Scholar] [CrossRef]
- Wang, J.; Sun, M.; Gao, X.; Zhao, X.; Zhao, Y. Spatial and temporal characteristics of precipitation and potential Influencing factors in the Loess Plateau before and after the implementation of the Grain for Green Project. Water 2021, 13, 234. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, W.; Sun, H.; Zhao, Y.; Zhang, P.; Li, Z.; Zhou, Z.; Tong, Y.; Liu, S.; Zhou, J.; et al. Soil Moisture decline in China’s Monsoon Loess critical zone: More a result of land-use conversion than climate change. Proc. Natl. Acad. Sci. USA 2024, 121, e2322127121. [Google Scholar] [CrossRef]
- Wang, D.; Ziegler, A.D.; Holden, J.; Spracklen, D.V.; Ciais, P.; Peng, L.; Zeng, Z. Vegetation cover change as a growing driver of global leaf area index dynamics. Nat. Commun. 2025, 16, 9259. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Gao, P.; Tian, B.; Wu, C.; Mu, X. Spatio temporal patterns of NDVI and its influencing factors based on the ESTARFM in the Loess Plateau of China. Remote Sens. 2023, 15, 2553. [Google Scholar] [CrossRef]
- He, J.; Shi, X. Detection of social ecological drivers and impact thresholds of ecological degradation and ecological restoration in the last three decades. J. Environ. Manag. 2022, 318, 115513. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Du, Z.; Zhang, Q.; Ye, T. Ecological restoration zoning and its driving factors in Beijing-Tianjin-Hebei based on landscape ecological risk and ecosystem services. Ecol. Indic. 2025, 178, 114086. [Google Scholar] [CrossRef]
- Lai, S.; Li, X.; Jiang, W.; Li, F.Y.; Wu, H.; Zhang, Z.; Li, Z. Evaluating the sustainability of ecological quality in Inner Mongolia Autonomous Region: Bridging the millennium development goals and sustainable development goals. Land Degrad. Dev. 2025, in press. [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, J.; Dong, G.; Wei, Y. Quantitative analysis of NDVI driving factors based on the geographical detector model in the Chengdu-Chongqing region, China. Ecol. Indic. 2023, 155, 110978. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, X.; Ruan, W.; Zheng, M.; Gen, K.; Li, X.; Liu, M. Quantifying the direct and indirect effects of terrain, climate and human activity on the spatial pattern of kNDVI-based vegetation growth: A case study from the Minjiang River Basin, Southeast China. Ecol. Inform. 2024, 80, 102493. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Hei, Y.; Sui, Y.; Gao, W.; Zhao, M.; Hu, M.; Gao, M. Geodetector-based analysis of spatiotemporal distribution characteristics and influencing mechanisms for rural homestays in Beijing. Land 2025, 14, 997. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Z.; Zhou, J.; Qin, G.; Bai, Y.; Sanders, C.J.; Macreadie, P.I.; Yuan, J.; Huang, X.; Wang, F. Getting the best of carbon bang for mangrove restoration buck. Nat. Commun. 2025, 16, 1297. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhou, J.; Jiang, H.; Yang, W.; Wang, G. Assessing the true value of ecological restoration in mining areas: An input output approach based on ecosystem service valuation. Ecol. Indic. 2024, 166, 112591. [Google Scholar] [CrossRef]
- Hu, Z.; Kong, D.; Jin, L. Grassland eco-compensation: Rate differentiations of “Reward for Balanced Grazing” and its reasons. Chin. J. Popul. Resour. 2015, 25, 152–159. Available online: https://cohd.cau.edu.cn/module/download/downfile.jsp?classid=0&filename=1604271154396271595.pdf (accessed on 5 November 2024).
- Dou, Y.; Tong, X.; Horion, S.; Feng, L.; Fensholt, R.; Shao, Q.; Tian, F. The success of ecological engineering projects on vegetation restoration in China strongly depends on climatic conditions. Sci. Total Environ. 2024, 915, 170041. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Chen, H. Changes in drought characteristics over China during 1961–2019. Front. Earth Sci. 2023, 11, 1138795. [Google Scholar] [CrossRef]
- Gou, Y.; Tao, Y.; Kou, P.; Alonso, A.; Luo, X.; Tian, H. Elucidate the complex drivers of significant greening on the Loess Plateau from 2000 to 2020. Environ. Dev. 2024, 50, 100991. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, H.; Yang, K.; Li, W.; Hu, Z.; Ma, Y.; Qiao, S. Vegetation productivity slowdown on the Tibetan Plateau around the late 1990s. Geophys. Res. Lett. 2024, 51, e2023GL103865. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, H.; Wang, J.; Wang, X.; Sun, J. Dual influence of climate change and anthropogenic activities on the spatiotemporal vegetation dynamics over the Qinghai-Tibetan Plateau from 1981 to 2015. Earth’s Future 2022, 10, e2021EF002566. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y. Heterogeneous impacts of human activities and climate change on transformed vegetation dynamics on the Qinghai-Tibet Plateau. J. Environ. Manag. 2025, 392, 126575. [Google Scholar] [CrossRef]
- Shao, Q.; Fan, J.W.; Liu, J.Y.; Huang, L.; Cao, W.; Xu, X.; Ge, J.; Wu, D.; Li, Z.; Gong, G.; et al. Assessment on the effects of the first stage ecological conservation and restoration project in Sanjiangyuan Region. Acta Geogr. Sin. 2016, 71, 3–20. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain Region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, A. Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method. GISci. Remote Sens. 2021, 58, 235–260. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Li, C.; Ye, C.; Gao, D.; Chen, P. The trend shift caused by ecological restoration accelerates the vegetation greening of China’s drylands since the 1980s. Environ. Res. Lett. 2022, 17, 044062. [Google Scholar] [CrossRef]
- Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ. 2024, 910, 168676. [Google Scholar] [CrossRef]
- McVicar, T.R.; Li, L.; Van Niel, T.G.; Zhang, L.; Li, R.; Yang, Q.; Zhang, X.; Mu, X.; Wen, Z.; Liu, W.; et al. Developing a decision support tool for China’s re-vegetation program: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. For. Ecol. Manag. 2007, 251, 65–81. [Google Scholar] [CrossRef]
- Cao, S.; Xia, C.; Suo, X.; Wei, Z. A framework for calculating the net benefits of ecological restoration programs in China. Ecosyst. Serv. 2021, 50, 101325. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.; Zhu, Y.; Liu, Z. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 2011, 151, 437–448. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, D.; Yang, Y.; Piao, S.; Yang, H.; Lei, H.; Fu, B. Excessive afforestation and soil drying on China’s Loess Plateau. J. Geophys. Res. Biogeosci. 2018, 123, 923–935. [Google Scholar] [CrossRef]
- Xue, Z.; Kappas, M.; Wyss, D. Spatio-Temporal Grassland Development in Inner Mongolia after Implementation of the First Comprehensive Nation-Wide Grassland Conservation Program. Land 2021, 10, 38. [Google Scholar] [CrossRef]
- Byrne, A.T.; Hadrich, J.C.; Robinson, B.E.; Han, G. A factor-income approach to estimating grassland protection subsidy payments to livestock herders in Inner Mongolia, China. Land Use Policy 2020, 91, 104352. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, X.; Li, T.; Liu, Y.; Yang, Y.; Cui, X. Fundamental strategic shift required by the expensive ecological policy in Chinese grasslands. J. Resour. Ecol. 2022, 13, 955–963. [Google Scholar] [CrossRef]
- Zhou, L.; Hou, C. Key problems of grassland utilization and the graze ban policy in farming-pastoral ecotone of Northern China. Arid Land Geogr. 2019, 42, 354–362. Available online: http://alg.xjegi.com/EN/10.12118/j.issn.1000-6060.2019.02.15 (accessed on 5 November 2024).
- Song, M.; Tian, Y.; Li, Y.; Xu, X.; Zheng, L.; Zhou, H.; Kuzyakov, Y.; Wang, G.; Zhang, Y.; Cornelissen, J.H.C. Loss of taxonomic and functional diversity and decrease in primary productivity with nitrogen enrichment after a long-term release from grazing in an alpine grassland. Sci. Total Environ. 2024, 957, 177570. [Google Scholar] [CrossRef]
- Ren, J. Grazing, the basic form of grassland ecosystem and its transformation. J. Nat. Resour. 2012, 27, 1259–1275. [Google Scholar] [CrossRef]
- Ju, W.; Fang, L.; Shen, G.; Delgado-Baquerizo, M.; Chen, J.; Zhou, G.; Ma, D.; Bing, H.; Liu, L.; Liu, J. New perspectives on microbiome and nutrient sequestration in soil aggregates during long-term grazing exclusion. Glob. Change Biol. 2024, 30, e17027. [Google Scholar] [CrossRef] [PubMed]
- Peacock, R.; Bently, M.; Rees, P.; Blignaut, J.N. The benefits of ecological restoration exceed its cost in South Africa: An evidence-based approach. Ecosyst. Serv. 2023, 61, 101528. [Google Scholar] [CrossRef]
- Mirzabaev, A.; Sacande, M.; Motlagh, F.; Shyrokaya, A.; Martucci, A. Economic efficiency and targeting of the African Great Green Wall. Nat. Sustain. 2022, 5, 17–25. [Google Scholar] [CrossRef]
- Lucchesi, A.; Khanna, M.; Pereda, P.C.; Ussami, K.A.; Ruggiero, P.G.; Dornelas, V.S.; Lallement, T. Araguaia Biodiversity Corridor cost benefit analysis: Large scale restoration and sustainable agribusiness in Amazon and Cerrado. Land Use Policy 2024, 141, 107122. [Google Scholar] [CrossRef]
- Reij, C.; Pasiecznik, N.; Mahamoudou, S.; Kassa, H.; Winterbottom, R.; Livingstone, J. Dryland restoration successes in the Sahel and Greater Horn of Africa show how to increase scale and impact. ETFRN News 2020, 60, 1–24. Available online: https://hdl.handle.net/10568/111706 (accessed on 25 October 2025).
- Busch, J.; Bukoski, J.J.; Cook-Patton, S.C.; Griscom, B.; Kaczan, D.; Potts, M.D.; Yi, Y.; Vincent, J.R. Cost-effectiveness of natural forest regeneration and plantations for climate mitigation. Nat. Clim. Change 2024, 14, 996–1002. [Google Scholar] [CrossRef]
- Birch, J.C.; Newton, A.C.; Aquino, C.A.; Cantarello, E.; Echeverría, C.; Kitzberger, T.; Schiappacasse, I.; Garavito, N.T. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proc. Natl. Acad. Sci. USA 2010, 107, 21925–21930. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Zou, C.; Xu, D.; Lin, N.; Wang, L.; Zhang, K. China’s ecological conservation redline: A solution for future nature conservation. Ambio 2020, 49, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, S.; Luo, X.; Keenan, T.F.; Fu, L.; Xiao, C.; Zhang, Y.; Gong, P. Incorporating site suitability and carbon sequestration of tree species into China’s climate adaptive forestation. Sci. Bull. 2025, 70, 1834–1845. [Google Scholar] [CrossRef]
- Holl, K.D.; Brancalion, P.H. Tree planting is not a simple solution. Science 2020, 368, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, L.; Wu, P.; Deng, H. A new small-scale system of rainwater harvesting combined with irrigation for afforestation in mine area: Optimizing design and application. J. Environ. Manag. 2022, 322, 116129. [Google Scholar] [CrossRef]
- Fu, F.; Wang, X.; Chen, S.; Tan, Z.; Ye, C.; Grünzweig, J. Integrating hydrological impacts for cost-effective dryland ecological restoration. Commun Earth Environ 2025, 6, 667. [Google Scholar] [CrossRef]
- Li, T.; Li, S.; Zhao, Y.; Zheng, H.; Wang, K.; Yi, M. Multi-objective decision-making considering future demands helps to delineate key areas for ecological restoration in Changsha-Zhuzhou-Xiangtan urban agglomeration, China. J. Environ. Manag. 2025, 381, 125176. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, S.; Liu, H.; Wang, F.; Dong, Y.; Wu, G.; Li, Y.; Wang, W.; Tran, L.; Li, W. Multi-objective ecological restoration priority in China: Cost-benefit optimization in different ecological performance regimes based on planetary boundaries. J. Environ. Manag. 2024, 356, 120701. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Yang, R.; Zhao, Z.; Cao, Y.; Tseng, T.; Wang, F.; Wang, H.; Wang, P.; Wang, X.; Yu, L. A cost-effective approach to identify conservation priority for 30 × 30 biodiversity target on the premise of food security. Sci. Total Environ. 2024, 941, 172870. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, M.; Ran, N.; Xie, D.; Wang, Q.; Teng, M.; Wang, P. China’s key forestry ecological development programs: Implementation, environmental impact and challenges. Forests 2021, 12, 101. [Google Scholar] [CrossRef]










| Program Name | Program Aims | Provinces Included | Period | Countermeasures | Program Investment/Billion Yuan |
|---|---|---|---|---|---|
| GGWP | Plant 35.08 million ha of forest; Raise 33.38 million ha of forest; Transform 1.97 million ha of low-yield forest; Regenerate 6.29 million ha of forest; Increase forest coverage to 14.95% by 2050. | BJ, TJ, HE, SX, SAX, NMG, LN, JL, HLJ, GS, NX, QH, XJ | 1978–2050 | (1) Afforestation, (2) Closing hillsides to facilitate afforestation and sandy land protection, (3) Artificial glass planting in grassland, (4) Transformation for low-yield forest, (5) Forest regeneration | 306.56 |
| NFPP | Protect and restore natural forest resources; Meet domestic demand for wood through plantation. | NMG, HLJ, JL, HI, CQ, SC, GZ, YN, HB, XZ, SX, SAX, GS, NX, QH, XJ, HN | 1998–2035 | (1) Afforestation, (2) Forest management and conservation, (3) Ecological benefit compensation | 416.21 |
| GGP | By 2020, transform qualified sloping farmland and severely desertified farmland into forest or grassland; Gradually remove the steep slopes above 25 °C which are unsuitable for cultivation and harmful to ecology from basic cropland. | HJL, JL, LN, NMG, BJ, TJ, HE, HA, AH, HB, HN, JX, HI, CQ, SC, GZ, YN, GX, SX, SAX, GS, NX, QH, XJ, XZ | 1999–2020 | (1) Grain for green, (2) Afforestation, (3) Seeding, (4) Subsidy | 539.16 |
| BTSSCP | By 2010, transform 2.63 million ha of farmland into forest, plant 4.94 million ha of forest, and manage more than 10.63 million ha of grassland; By 2022, plant 3.58 million ha of forest and facilitate the relocation of 370,400 people; 20.17 million ha of grasslands implement grazing prohibition; 3.56 million ha of grasslands implement fencing and enclosing. | BJ, TJ, HE, SX, NMG, SAX | 1998–2022 | (1) Afforestation, (2) Sand control by science and technology, (3) Grassland management, (4) Ecological migration | 66.18 |
| GEPCP | Accelerate the restoration of grassland ecology; Accelerate the transformation of grassland graziery production methods; Promote the sustained increase in herdsmen’s income. | NMG, GS, NX, XJ, XZ, QH, SC, YN, HE, SX, LN, JL, HLJ | 2003–2020 | (1) Grazing prohibition, subsiding to farmers and herdsmen, (2) Forage-livestock balance, (3) Grassland fencing and enclosing | 240.55 |
| Data | Type | Time Range | Source |
|---|---|---|---|
| DEM | Raster (500 m) | 2020 | GEBCO organization [53] |
| Slope | Raster (500 m) | 2020 | Calculated according to elevation |
| Sunshine duration | Raster (1 km) | 2000–2020 | Resource and Environmental Science and Data Center [54] |
| Dust days at stations | Vector (point) | 2000–2020 | Chinese Academy of Meteorological Sciences [55] |
| Population density | Raster (1 km) | 2000–2020 | Oak Ridge National Laboratory [56] |
| Road density | Raster (1 km) | 2019 | Science Data Bank [57] |
| Soil organic matter content | Raster (1 km) | 2023 | Harmonized World Soil Database [58] |
| Land cover | Raster (500 m) | 2001–2020 | NASA Land Processes Distributed Active Archive Center [59] |
| Land use intensity | Raster (500 m) | 2001–2020 | Calculated according to Land cover |
| Category | Indicator | Unit | Variable |
|---|---|---|---|
| Topography | Elevation | m | X1 |
| Slope | ° | X2 | |
| Climate | Sunshine Duration | h | X3 |
| Dust Days | day | X4 | |
| Social | Population | person | X5 |
| Road Density | km/km2 | X6 | |
| Afforestation Area Percentage | % | X7 | |
| Land Use Intensity | N/A | X8 | |
| Soil | Soil Organic Matter Content | % | X9 |
| Variables | Q-statistic |
|---|---|
| Population (X5) | 0.215 *** |
| Road Density (X6) | 0.214 *** |
| Afforestation Area Percentage (X7) | 0.177 *** |
| Dust days (X4) | 0.135 *** |
| Soil organic matter content (X9) | 0.133 *** |
| Land Use Intensity (X8) | 0.131 *** |
| Elevation (X1) | 0.088 *** |
| Sunshine duration (X3) | 0.068 *** |
| Slope (X2) | 0.044 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Pan, Y.; Wang, X. Assessing the Cost-Effectiveness of Ecological Restoration Programs Across China’s Desert and Desertification-Prone Regions by Integrating Vegetation Dynamics and Investment Data. Land 2025, 14, 2220. https://doi.org/10.3390/land14112220
Li J, Pan Y, Wang X. Assessing the Cost-Effectiveness of Ecological Restoration Programs Across China’s Desert and Desertification-Prone Regions by Integrating Vegetation Dynamics and Investment Data. Land. 2025; 14(11):2220. https://doi.org/10.3390/land14112220
Chicago/Turabian StyleLi, Jie, Ying Pan, and Xunming Wang. 2025. "Assessing the Cost-Effectiveness of Ecological Restoration Programs Across China’s Desert and Desertification-Prone Regions by Integrating Vegetation Dynamics and Investment Data" Land 14, no. 11: 2220. https://doi.org/10.3390/land14112220
APA StyleLi, J., Pan, Y., & Wang, X. (2025). Assessing the Cost-Effectiveness of Ecological Restoration Programs Across China’s Desert and Desertification-Prone Regions by Integrating Vegetation Dynamics and Investment Data. Land, 14(11), 2220. https://doi.org/10.3390/land14112220

