The Differential Impact Mechanisms of the Built Environment on Running-Space Selection: A Case Study of Suzhou’s Gusu District and Industrial Park District
Abstract
1. Introduction
2. Literature Review
2.1. General Research on Running Behavior
2.2. The Multifaceted Impact of the Built Environment on Running Behavior
2.3. The Methodology and Data of the Built Environment on Running Behavior
2.4. Research Gaps
3. Study Area and Data
3.1. Study Area
3.2. Data Source and Processing
3.2.1. Running-Space Selection
3.2.2. Indicators
4. Methodology
4.1. Linear Regression
4.2. Interpretable Machine Learning
4.3. GWR
5. Results
5.1. The Baseline Linear Regression
5.2. Nonlinear Effects Revealed by Interpretable Machine Learning
5.3. Spatial Heterogeneity Identified by GWR
5.3.1. Density
5.3.2. Diversity
5.3.3. Design
5.3.4. Accessibility
5.3.5. Vision
6. Discussion
6.1. Integrated Nonlinearities and Spatial Heterogeneity in Environmental Effects
6.2. The Differential Results of Old District and New District
6.3. Planning Implications for Historic and Modern Districts
6.4. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Physical Activity 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, 1077–1086. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143. [Google Scholar] [CrossRef]
- Lee, D.C.; Brellenthin, A.G.; Thompson, P.D.; Sui, X.; Lee, I.M.; Lavie, C.J. Running as a key lifestyle medicine for longevity. Prog. Cardiovasc. Dis. 2017, 60, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Oja, P.; Memon, A.R.; Titze, S.; Jurakic, D.; Chen, S.T.; Shrestha, N.; Pedisic, Z. Health benefits of different sports: A systematic review and meta-analysis of longitudinal and intervention studies including 2.6 million adult participants. Sports Med.-Open 2024, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Lee, D.C.; Sui, X.; Arena, R.; O’Keefe, J.H.; Church, T.S.; Blair, S.N. Effects of running on chronic diseases and cardiovascular and all-cause mortality. Mayo Clin. Proc. 2015, 90, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Belon, A.P.; Nieuwendyk, L.M.; Vallianatos, H.; Nykiforuk, C.I. How community environment shapes physical activity: Perceptions revealed through the photovoice method. Soc. Sci. Med. 2014, 116, 10–21. [Google Scholar] [CrossRef]
- Cattell, V.; Dines, N.; Gesler, W.; Curtis, S. Mingling, observing, and lingering: Everyday public spaces and their implications for well-being and social relations. Health Place 2008, 14, 544–561. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Spanos, M.; Li, G.; Lu, R.; Bei, Y.; Xiao, J. Exercise training maintains cardiovascular health: Signaling pathways involved and potential therapeutics. Signal Transduct. Target. Ther. 2022, 7, 306. [Google Scholar] [CrossRef]
- Fitzgerald, L. Exercise and the immune system. Immunol. Today 1988, 9, 337–339. [Google Scholar] [CrossRef]
- Montesi, L.; Moscatiello, S.; Malavolti, M.; Marzocchi, R.; Marchesini, G. Physical activity for the prevention and treatment of metabolic disorders. Intern. Emerg. Med. 2013, 8, 655–666. [Google Scholar] [CrossRef]
- Oja, P.; Titze, S.; Kokko, S.; Kujala, U.M.; Heinonen, A.; Kelly, P.; Koski, P.; Foster, C. Health benefits of different sport disciplines for adults: Systematic review of observational and intervention studies with meta-analysis. Br. J. Sports Med. 2015, 49, 434–440. [Google Scholar] [CrossRef]
- Lee, D.; Pate, R.R.; Lavie, C.J.; Sui, X.; Church, T.S.; Blair, S.N. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol. 2014, 64, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Pedisic, Z.; Shrestha, N.; Kovalchik, S.; Stamatakis, E.; Liangruenrom, N.; Grgic, J.; Titze, S.; Biddle, S.J.; Bauman, A.E.; Oja, P. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? a systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Herbert, C. Enhancing mental health, well-being and active lifestyles of university students by means of physical ac-tivity and exercise research programs. Front. Public Health 2022, 10, 849093. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.R. The influence of physical activity on mental well-being. Public Health Nutr. 1999, 2, 411–418. [Google Scholar] [CrossRef]
- Carek, P.J.; Laibstain, S.E.; Carek, S.M. Exercise for the treatment of depression and anxiety. Int. J. Psychiatry Med. 2011, 41, 15–28. [Google Scholar] [CrossRef]
- Kvam, S.; Kleppe, C.L.; Nordhus, I.H.; Hovland, A. Exercise as a treatment for depression: A meta-analysis. J. Affect. Disord. 2016, 202, 67–86. [Google Scholar] [CrossRef]
- Schuch, F.B.; Vancampfort, D.; Richards, J.; Rosenbaum, S.; Ward, P.B.; Stubbs, B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J. Psychiatr. Res. 2016, 77, 42–51. [Google Scholar] [CrossRef]
- Noetel, M.; Sanders, T.; Gallardo-Gómez, D.; Taylor, P.; Del Pozo Cruz, B.; van den Hoek, D.; Smith, J.J.; Mahoney, J.; Spathis, J.; Moresi, M.; et al. Effect of exercise for depression: Systematic review and network meta-analysis of randomised controlled trials. BMJ 2024, 384, e075847. [Google Scholar] [CrossRef]
- Yang, J.; Ju, F.Y.; Tian, Z.G. Sports and social interaction: Sports experiences and attitudes of the urban running community. Int. J. Environ. Res. Public Health 2022, 19, 14412. [Google Scholar] [CrossRef]
- Shipway, R.; Holloway, I.; Jones, I. Organisations, practices, actors, and events: Exploring inside the distance running social world. Int. Rev. Sociol. Sport 2013, 48, 259–276. [Google Scholar] [CrossRef]
- Filo, K.; Funk, D.C.; O’Brien, D. The meaning behind attachment: Exploring camaraderie, cause, and competency at a charity sport event. J. Sport Manag. 2009, 23, 361–387. [Google Scholar] [CrossRef]
- Scheerder, J.; Breedveld, K.; Borgers, J. (Eds.) Running Across Europe: The Rise and Size of One of the Largest Sport Markets; Palgrave Macmillan: London, UK, 2015; ISBN 978-1-349-49601-3. [Google Scholar]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemp. Educ. Psychol. 2000, 25, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Sebire, S.J.; Standage, M.; Vansteenkiste, M. Examining intrinsic versus extrinsic exercise goals: Cognitive, affective, and behavioral outcomes. J. Sport Exerc. Psychol. 2009, 31, 189–210. [Google Scholar] [CrossRef]
- Vallerand, R.J. From motivation to passion: In search of the motivational processes involved in a meaningful life. Can. Psychol. Can. 2012, 53, 42. [Google Scholar] [CrossRef]
- Richard, M.; Christina, M.F.; Deborah, L.S.; Rubio, N.; Kennon, M.S. Intrinsic motivation and exercise adherence. Int. J. Sport Psychol. 1997, 28, 335–354. [Google Scholar]
- Ingledew, D.K.; Markland, D. The role of motives in exercise participation. Psychol. Health 2008, 23, 807–828. [Google Scholar] [CrossRef]
- Rodriguez, K.M. Intrinsic and extrinsic factors affecting patient engagement in diabetes self-management: Perspectives of a certified diabetes educator. Clin. Ther. 2013, 35, 170–178. [Google Scholar] [CrossRef]
- Xie, M.; Feng, Z.; Long, W.; Wang, S.; Liu, X.; Ji, G.; Guo, X. What are the environmental preferences of runners? evidence from Guangzhou. Appl. Geogr. 2025, 174, 103469. [Google Scholar] [CrossRef]
- Yang, W.; Hu, J.; Liu, Y.; Guo, W. Examining the influence of neighborhood and street-level built environment on fitness jogging in chengdu, china: A massive gps trajectory data analysis. J. Transp. Geogr. 2023, 108, 103575. [Google Scholar] [CrossRef]
- Huang, D.; Jiang, B.; Yuan, L. Analyzing the effects of nature exposure on perceived satisfaction with running routes: An activity path-based measure approach. Urban For. Urban Green. 2022, 68, 127480. [Google Scholar] [CrossRef]
- Laddu, D.; Paluch, A.E.; LaMonte, M.J. The role of the built environment in promoting movement and physical activity across the lifespan: Implications for public health. Prog. Cardiovasc. Dis. 2021, 64, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Badland, H.; Schofield, G. Transport, urban design, and physical activity: An evidence-based update. Transp. Res. Part Transp. Environ. 2005, 10, 177–196. [Google Scholar] [CrossRef]
- Lopez, R.P.; Hynes, H.P. Obesity, physical activity, and the urban environment: Public health research needs. Environ. Health 2006, 5, 25. [Google Scholar] [CrossRef]
- Molnar, B.E.; Gortmaker, S.L.; Bull, F.C.; Buka, S.L. Unsafe to play? neighborhood disorder and lack of safety predict reduced physical activity among urban children and adolescents. Am. J. Health Promot. 2004, 18, 378–386. [Google Scholar] [CrossRef]
- Zeng, Q.; Bao, X.; Dewancker, B.J. Association between built environment on transport and recreational walking in japan: The case of kitakyushu. City Built Environ. 2023, 1, 10. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Y.; Zeng, W.; Chiaradia, A. A systematic measurement of street quality through multi-sourced urban data: A human-oriented analysis. Int. J. Environ. Res. Public Health 2019, 16, 1782. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A synthesis. Transp. Res. Rec. 2001, 1780, 87–114. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plann. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cerin, E.; Conway, T.L.; Adams, M.A.; Frank, L.D.; Pratt, M.; Owen, N. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet 2016, 387, 2207–2217. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Tian, M.; Yuan, L. Sustainable design of running friendly streets: Environmental exposures predict runnability by volunteered geographic information and multilevel model approaches. Sustain. Cities Soc. 2023, 89, 104336. [Google Scholar] [CrossRef]
- Wang, S.; Scheider, S.; Sporrel, K.; Deutekom, M.; Timmer, J.; Kröse, B. What are good situations for running? A machine learning study using mobile and geographical data. Front. Public Health 2021, 8, 536370. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Ewing, R.; Scheer, B.C.; Tian, G. The impacts of built environment characteristics of rail station areas on household travel behavior. Cities 2018, 74, 277–283. [Google Scholar] [CrossRef]
- Jiang, H.; Dong, L.; Qiu, B. How are macro-scale and micro-scale built environments associated with running activity? The application of Strava data and deep learning in inner London. ISPRS Int. J. Geo-Inf. 2022, 11, 504. [Google Scholar] [CrossRef]
- Wolf, I.D.; Wohlfart, T. Walking, hiking and running in parks: A multidisciplinary assessment of health and well-being benefits. Landsc. Urban Plan. 2014, 130, 89–103. [Google Scholar] [CrossRef]
- Song, L.; Zhang, A. Predict the suitable places to run in the urban area of beijing by using the maximum entropy model. ISPRS Int. J. Geo-Inf. 2021, 10, 534. [Google Scholar] [CrossRef]
- Handy, S. Regional versus local accessibility: Implications for nonwork travel. Transp. Res. Rec. 1993, 1400, 58–66. [Google Scholar]
- McCormack, G.R.; Giles-Corti, B.; Bulsara, M. The relationship between destination proximity, destination mix and physical activity behaviors. Prev. Med. 2008, 46, 33–40. [Google Scholar] [CrossRef]
- Cerin, E.; Conway, T.L.; Adams, M.A.; Barnett, A.; Cain, K.L.; Owen, N.; Sallis, J.F. Objectively-assessed neighbourhood destination accessibility and physical activity in adults from 10 countries: An analysis of moderators and perceptions as mediators. Soc. Sci. Med. 2018, 211, 282–293. [Google Scholar] [CrossRef]
- Zhou, W.; Liang, Z.; Fan, Z.; Li, Z. Spatio–temporal effects of built environment on running activity based on a random forest approach in Nanjing, China. Health Place 2024, 85, 103176. [Google Scholar] [CrossRef]
- Zhong, Q.; Li, B.; Jiang, B.; Dong, T. Unleashing the potential of urban jogging: Exploring the synergistic relationship of high-density environments and exercise on residents’ health. J. Clean. Prod. 2024, 466, 142882. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Sun, G.; Gou, Z. Associations between overhead-view and eye-level urban greenness and cycling behaviors. Cities 2019, 88, 10–18. [Google Scholar] [CrossRef]
- Lu, X.; Sun, L.; Zhang, Y.; Du, J.; Wang, G.; Huang, X.; Wang, X. Predicting cd accumulation in crops and iden-tifying nonlinear effects of multiple environmental factors based on machine learning models. Sci. Total Environ. 2024, 951, 175787. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Kurths, J.; Lin, W.; Ott, E.; Kocarev, L. Introduction to focus issue: When machine learning meets complex systems: Networks, chaos, and nonlinear dynamics. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 063151. [Google Scholar] [CrossRef]
- Ryo, M.; Rillig, M.C. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere 2017, 8, 01976. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Q.; Yu, M.; Wu, Z.; Huang, C.; Fu, J.; Yao, J. Exploring spatial and environmental heterogeneity affecting energy consumption in commercial buildings using machine learning. Sustain. Cities Soc. 2023, 95, 104586. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, Z.; Wang, L.; Zhang, W.; Zhang, Y.; Hu, Y. The heterogeneous effects of microscale-built environ-ments on land surface temperature based on machine learning and street view images. Atmosphere 2024, 15, 549. [Google Scholar] [CrossRef]
- Han, C.; Zhou, L.; Zhou, T. How does the built environment affect hotel prices? A study using multiscale gwr and deep learning. J. Asian Archit. Build. Eng. 2024, 23, 1717–1734. [Google Scholar] [CrossRef]
- Huang, X.; Lu, G.; Yin, J.; Tan, W. Non-linear associations between the built environment and the physical activity of children. Transp. Res. Part Transp. Environ. 2021, 98, 102968. [Google Scholar] [CrossRef]
- Schaefer-McDaniel, N.; Dunn, J.R.; Minian, N.; Katz, D. Rethinking measurement of neighborhood in the context of health research. Soc. Sci. Med. 2010, 71, 651–656. [Google Scholar] [CrossRef]
- Spittaels, H.; Foster, C.; Oppert, J.M.; Rutter, H.; Oja, P.; Sjöström, M.; Bourdeaudhuij, I. Assessment of envi-ronmental correlates of physical activity: Development of a european questionnaire. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 39. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Lu, Y.; Yuan, Y.; Zhang, J.; Liu, P.; Yao, Y. The linkage between the perception of neighbourhood and physical activity in guangzhou, china: Using street view imagery with deep learning techniques. Int. J. Health Geogr. 2019, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Breyer, B.; Cummings, C.; Hoang, K.; Ng, V. Greenspace moderates heat avoidance in physical activity during extreme heat: Evidence from strava data in houston, texas. J. Transp. Health 2025, 43, 102058. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Shi, Q.; Zhu, J.; Liu, Z.; Guo, H.; Liu, M.; Liu, Z.; Liu, X. A First High-Quality Vector Data of Buildings in East Asian Countries Based on a Comprehensive Large-Scale Mapping Framework. 2023. Available online: https://doi.org/10.5281/zenodo.8174931 (accessed on 20 November 2024).
- Li, X.; Li, B.; Su, Y. Temporal evolution of multi-dimensional built environment perceptions and street vitality: A longitudinal analysis in rapidly urbanizing cities. Sustainability 2025, 17, 8428. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Ye, Y.; Wang, L.; Zhang, Y.; Qin, W.; Chi, Y.; Liu, G.; Yao, S. Nonlinear relationships and interaction effects of urban built environment on urban vitality based on explainable machine learning. City Environ. Interact. 2025, 28, 100244. [Google Scholar] [CrossRef]
- Soltani, A.; Heydari, M.; Aghaei, F.; Pettit, C.J. Housing price prediction incorporating spatio-temporal dependency into machine learning algorithms. Cities 2022, 131, 103941. [Google Scholar] [CrossRef]
- Cerin, E.; Nathan, A.; van Cauwenberg, J.; Barnett, D.W.; Barnett, A.; on behalf of the Council on Environment and Physical Activity (CEPA)—Older Adults working group. The neighbourhood physical environment and active travel in older adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 15. [Google Scholar] [CrossRef]
- Grasser, G.; Van Dyck, D.; Titze, S.; Stronegger, W. Objectively measured walkability and active transport and weight-related outcomes in adults: A systematic review. Int. J. Public Health 2013, 58, 615–625. [Google Scholar] [CrossRef]
- Horak, J.; Kukuliac, P.; Maresova, P.; Orlikova, L.; Kolodziej, O. Spatial pattern of the walkability index, walk score and walk score modification for elderly. ISPRS Int. J. Geo-Inf. 2022, 11, 279. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, D.; Xiao, Z. Integrating variable importance and spatial heterogeneity to reveal the environmental effects on outdoor jogging. Comput. Urban Sci. 2024, 4, 45. [Google Scholar] [CrossRef]
- He, S.; Zhang, Z.; Yu, S.; Xia, C.; Tung, C.-L. Investigating the effects of urban morphology on vitality of community life circles using machine learning and geospatial approaches. Appl. Geogr. 2024, 167, 103287. [Google Scholar] [CrossRef]
- Yang, Y.; He, D.; Gou, Z.; Wang, R.; Liu, Y.; Lu, Y. Association between street greenery and walking behavior in older adults in Hong Kong. Sustain. Cities Soc. 2019, 51, 101747. [Google Scholar] [CrossRef]
- Balsas, C.J.L. Making hidden sustainable urban planning and landscape knowledge visual and multisensorial. Land 2025, 14, 1. [Google Scholar] [CrossRef]
- Montgomery, J. Making a city: Urbanity, vitality and urban design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Ye, Y.; Li, D.; Liu, X. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China. Urban Geogr. 2018, 39, 631–652. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; Long, Y. Association between leisure-time physical activity and the built environment in china: Empirical evidence from an accelerometer and GPS-based fitness app. PLoS ONE 2021, 16, e0260570. [Google Scholar] [CrossRef]
- Xu, Q.; Park, Y.; Huang, X.; Hollenbeck, A.; Blair, A.; Schatzkin, A.; Chen, H. Physical activities and future risk of parkinson disease. Neurology 2010, 75, 341–348. [Google Scholar] [CrossRef]
- Cheng, L.; Shi, K.; De Vos, J.; Cao, M.; Witlox, F. Examining the spatially heterogeneous effects of the built environment on walking among older adults. Transp. Policy 2021, 100, 21–30. [Google Scholar] [CrossRef]
- Ki, D.; Lee, S. Analyzing the effects of green view index of neighborhood streets on walking time using Google street view and deep learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Qi, F.; Parra, A.O.; Block-Lerner, J.; McManus, J. Psychological impacts of urban environmental settings: A micro-scale study on a university campus. Urban Sci. 2024, 8, 73. [Google Scholar] [CrossRef]
- White, M.P.; Elliott, L.R.; Gascon, M.; Roberts, B.; Fleming, L.E. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. Environ. Res. 2020, 191, 110169. [Google Scholar] [CrossRef] [PubMed]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Forns, J.; Plasència, A.; Nieuwenhuijsen, M.J. Mental health benefits of long-term exposure to residential green and blue spaces: A systematic review. Int. J. Environ. Res. Public Health 2015, 12, 4354–4379. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, H.; Yang, Y. Mapping environmental influences on walking behavior across urban morphologies: A local climate zone-based study. Urban Clim. 2025, 62, 102503. [Google Scholar] [CrossRef]
- Pasanen, T.P.; White, M.P.; Wheeler, B.W.; Garrett, J.K.; Elliott, L.R. Neighbourhood blue space, health and wellbeing: The mediating role of different types of physical activity. Environ. Int. 2019, 131, 105016. [Google Scholar] [CrossRef]
- Barreno, M.; Sisa, I.; García, M.C.Y.; Shen, H.; Villar, M.; Kovalskys, I.; Fisberg, M.; Gomez, G.; Rigotti, A.; Cortés, L.Y. Association between built environment and physical activity in latin american countries: A multicentre cross-sectional study. BMJ Open 2021, 11, e046271. [Google Scholar] [CrossRef]
- Fang, C.; He, S.; Wang, L. Spatial characterization of urban vitality and the association with various street network metrics from the multi-scalar perspective. Front. Public Health 2021, 9, 677910. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Washington, S.; Baker, D.; Brown, W.; Giles-Corti, B.; Turrell, G. Built environment impacts on walking for transport in brisbane, australia. Transportation 2016, 43, 53–77. [Google Scholar] [CrossRef]
- Kang, C.; Fan, D.; Jiao, H. Validating activity, time, and space diversity as essential components of urban vitality. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1180–1197. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Long, Y.; Long, Y.; Xu, M. A new urban vitality analysis and evaluation framework based on human activity modeling using multi-source big data. ISPRS Int. J. Geo-Inf. 2020, 9, 617. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, A.; Yeh, A.G.O. The varying relationships between multidimensional urban form and urban vitality in chinese megacities: Insights from a comparative analysis. Ann. Am. Assoc. Geogr. 2022, 112, 141–166. [Google Scholar] [CrossRef]
- Guyot, M.; Araldi, A.; Fusco, G.; Thomas, I. The urban form of brussels from the street perspective: The role of vegetation in the definition of the urban fabric. Landsc. Urban Plan. 2021, 205, 103947. [Google Scholar] [CrossRef]
- Jia, Q.; Zhang, T.; Cheng, L.; Cheng, G.; Jin, M. The impact of the neighborhood built environment on the walking activity of older adults: A multi-scale spatial heterogeneity analysis. Sustainability 2022, 14, 13927. [Google Scholar] [CrossRef]
- Wu, W.; Liu, X.; Zhou, Y.; Zhao, K. Spatial heterogeneity of built environment’s impact on urban vitality using multi-source big data and mgwr. Sci. Rep. 2025, 15, 23459. [Google Scholar] [CrossRef]
- Silva, C.; Xue, S. Situating spatial determinism in urban design and planning for sustainable walkability: A simulation of street morphology and pedestrian behaviour. Discov. Sustain. 2024, 5, 212. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Nakagomi, A.; Hanazato, M.; Abe, N.; Ide, K.; Kondo, K. Perceived urban environment elements associated with momentary and long-term well-being: An experience sampling method approach. Sci. Rep. 2025, 15, 4422. [Google Scholar] [CrossRef]
- Jorgensen, A. Beyond the view: Future directions in landscape aesthetics research. Landsc. Urban Plan. 2011, 100, 353–355. [Google Scholar] [CrossRef]
- Reid, C.E.; Clougherty, J.E.; Shmool, J.L.; Kubzansky, L.D. Is all urban green space the same? A comparison of the health benefits of trees and grass in New York city. Int. J. Environ. Res. Public Health 2017, 14, 1411. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kogure, M.; Hanibuchi, T.; Nakaya, N.; Hozawa, A.; Nakaya, T. Effects of greenery at different heights in neighbourhood streetscapes on leisure walking: A cross-sectional study using machine learning of streetscape images in Sendai city, Japan. Int. J. Health Geogr. 2023, 22, 29. [Google Scholar] [CrossRef]
- Tabatabaie, S.; Litt, J.S.; Carrico, A. A study of perceived nature, shade and trees and self-reported physical activity in Denver. Int. J. Environ. Res. Public Health 2019, 16, 3604. [Google Scholar] [CrossRef]
- Syamili, M.S.; Takala, T.; Korrensalo, A.; Tuittila, E.-S. Happiness in urban green spaces: A systematic literature review. Urban For. Urban Green. 2023, 86, 128042. [Google Scholar] [CrossRef]
- Zhou, C.; An, Y.; Zhao, J.; Xue, Y.; Fu, L. How do mini-parks serve in groups? A visit analysis of mini-park groups in the neighbourhoods of Nanjing. Cities 2022, 129, 103804. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Van Dillen, S.M.; Verheij, R.A.; Groenewegen, P.P. Social contacts as a possible mechanism behind the relation between green space and health. Health Place 2009, 15, 586–595. [Google Scholar] [CrossRef]
- Di, X.; Zhang, J. Spatiotemporal heterogeneity of influencing factors for urban spaces suitable for running workouts based on multi-source big data. ISPRS Int. J. Geo-Inf. 2025, 14, 366. [Google Scholar] [CrossRef]










| Domain | Variables | Description | Data Source |
|---|---|---|---|
| Dependent variable | Running space selection | Number of color pixels in grid cell | Strava Heatmap |
| Density | Street density | Street length/grid cell area (m/ha) | Open Street Map (OSM) |
| Building density | Ground floor area/grid cell area (%) | Shi et al. [69] | |
| Population density | Population/grid cell area (people/ha) | Seventh National Population Census of China | |
| Intersection density | Number of intersections/grid cell area (per km2) | OSM | |
| Diversity | Mixed land use | Represented by POI entropy value. POI entropy =, where refers to the proportion of each POI type. Twelve types are include: catering, scenic spots, public facilities, shopping, finance and insurance, science, education and culture, business and residential, life services, sports and leisure, medical care, government institutions and social groups, accommodation services. | AMAP |
| Design | Waterfront area | Proportion (%) of waterfront area in grid cell. Waterfront area takes the 100 m buffer area outside the water network | OSM, Esri |
| Park and green space area | Proportion of park and green space area in grid cell (%) | OSM | |
| Accessibility | Parking lot density | Parking lot density in grid cell (per km2) | AMAP |
| Public transit station density | Public transit station density in grid cell (per km2), including bus and subway stops | AMAP | |
| Vision | Green index | Mean value of the proportion of visible greenery in semantic segmentation results of Street View Map in grid cell (%) | Baidu Street View Map |
| Sky index | Mean value of the proportion of visible sky area in semantic segmentation results of Street View map in grid cell (%) | Baidu Street View Map | |
| Region | Region | Gusu District = 0, Industrial Park District = 1 | / |
| Domain | Independent Variables | Coeff. (Standard Errors) | ||
|---|---|---|---|---|
| Pooled | Gusu | Industrial Park | ||
| Density | Street density | 0.0201 *** | 0.0410 *** | 0.0115 ** |
| (0.0031) | (0.0053) | (0.0037) | ||
| Building density | 0.3986 ** | 0.8785 | 0.1876 | |
| (0.1742) | (0.9222) | (0.1860) | ||
| Population density | 0.0882 *** | 0.0277 | 0.1738 *** | |
| (0.0151) | (0.0204) | (0.0219) | ||
| Intersection density | 0.0679 *** | 0.0873 *** | 0.0460 *** | |
| (0.0086) | (0.0135) | (0.0109) | ||
| Diversity | Mixed land use | 0.0136 *** | 0.0224 *** | 0.0117 *** |
| (0.0027) | (0.0046) | (0.0033) | ||
| Design | Waterfront area | 0.1084 ** | 0.0891 * | 0.1540 *** |
| (0.0342) | (0.0504) | (0.0457) | ||
| Park and green space area | 0.2976 *** | 0.2771 *** | 0.2991 *** | |
| (0.0503) | (0.0834) | (0.0616) | ||
| Accessibility | Parking lot density | 0.0945 *** | 0.1135 *** | 0.0684 ** |
| (0.0186) | (0.0215) | (0.0309) | ||
| Public transit station density | 0.4261 *** | 0.5110 *** | 0.2975 ** | |
| (0.0938) | (0.1260) | (0.1296) | ||
| Vision | Green index | 0.3834 ** | 0.3111 | 0.2826 |
| (0.1346) | (0.1924) | (0.1822) | ||
| Sky index | 0.2063 *** | −0.2829 ** | 0.4733 *** | |
| (0.0606) | (0.0885) | (0.0807) | ||
| Constant | 50.4850 *** | 53.9865 *** | 46.4237 *** | |
| (2.1296) | (4.3457) | (2.5090) | ||
| R2 | 0.2402 | 0.2927 | 0.2501 | |
| Adjusted R2 | 0.2377 | 0.2858 | 0.2464 | |
| Independent Variables | GWR | OLS | ||
|---|---|---|---|---|
| Average | Minimum | Maximum | Value | |
| Street density | 0.0262 | −0.0321 | 0.1142 | 0.0201 *** |
| Building density | 0.4491 | −3.9645 | 4.2862 | 0.3986 ** |
| Population density | 0.1374 | −0.1391 | 0.8242 | 0.0882 *** |
| Intersection density | 0.0700 | −0.1223 | 0.3792 | 0.0679 *** |
| Mixed land use | 0.0114 | −0.0460 | 0.0535 | 0.0136 *** |
| Waterfront area | 0.0422 | −0.5033 | 1.0317 | 0.1084 ** |
| Park and green space area | 0.3408 | −0.8130 | 1.1440 | 0.2976 *** |
| Parking lot density | 0.0219 | −0.4239 | 1.0819 | 0.0945 *** |
| Public transit station density | 0.2875 | −1.3945 | 1.7976 | 0.4261 *** |
| Green index | 0.1417 | −2.1368 | 2.3167 | 0.3834 ** |
| Sky index | 0.1878 | −1.1013 | 1.1220 | 0.2063 *** |
| Constant | 57.8024 | 3.0477 | 112.6153 | 50.4850 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Xu, J.; Mao, Y. The Differential Impact Mechanisms of the Built Environment on Running-Space Selection: A Case Study of Suzhou’s Gusu District and Industrial Park District. Land 2025, 14, 2183. https://doi.org/10.3390/land14112183
Wang C, Xu J, Mao Y. The Differential Impact Mechanisms of the Built Environment on Running-Space Selection: A Case Study of Suzhou’s Gusu District and Industrial Park District. Land. 2025; 14(11):2183. https://doi.org/10.3390/land14112183
Chicago/Turabian StyleWang, Can, Jue Xu, and Yuanyuan Mao. 2025. "The Differential Impact Mechanisms of the Built Environment on Running-Space Selection: A Case Study of Suzhou’s Gusu District and Industrial Park District" Land 14, no. 11: 2183. https://doi.org/10.3390/land14112183
APA StyleWang, C., Xu, J., & Mao, Y. (2025). The Differential Impact Mechanisms of the Built Environment on Running-Space Selection: A Case Study of Suzhou’s Gusu District and Industrial Park District. Land, 14(11), 2183. https://doi.org/10.3390/land14112183

