Assessing the Trade-Offs and Synergies Among Ecosystem Services Under Multiple Land-Use Scenarios in the Beijing–Tianjin–Hebei Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Land-Use Simulation
2.2.1. PLUS Model Parameter Settings
2.2.2. Scenario Setting
2.3. Assessment of Ecosystem Services
2.4. Calculation of the Multiple Ecosystem Service Landscape Index
2.5. Methods for Quantifying Trade-Offs and Synergies Among Ecosystem Services
2.6. Spatial Assessment of Trade-Offs and Synergies Among Ecosystem Services
3. Results
3.1. Analysis of LUCC Characteristics
3.2. Characteristics of Dynamic Changes in ESs
3.2.1. Spatial Distribution Characteristics of Individual ESs
3.2.2. Spatial Distribution Characteristics of Multiple Ecosystem Service Provisioning Capacities
3.3. Characteristics of Changes in Trade-Offs and Synergies of ESs
3.3.1. Correlation Characteristics Between ESs
3.3.2. Distribution Characteristics of Trade-Offs and Synergies Among ESs
4. Discussion
4.1. Impacts of Land-Use Changes on ESs
4.2. Analysis of Trade-Off and Synergy Between ESs
4.3. Suggestions for Future Regional Planning
4.4. Limitations and Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Bai, Y.; Alatalo, J.M. Impacts of Rural Tourism-driven Land Use Change on Ecosystems Services Provision in Erhai Lake Basin, China. Ecosyst. Serv. 2020, 42, 101081. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. A Research Framework of Land Use Transition in Suzhou City Coupled with Land Use Structure and Landscape Multifunctionality. Sci. Total. Environ. 2020, 737, 139932. [Google Scholar] [CrossRef] [PubMed]
- Liu, S. Effects of Landscape Pattern Change on Ecosystem Services and Its Interactions in Karst Cities: A Case Study of Guiyang City in China. Ecol. Indic. 2022, 145, 109646. [Google Scholar] [CrossRef]
- Sun, L.; Yu, H.; Sun, M.; Wang, Y. Coupled Impacts of Climate and Land Use Changes on Regional Ecosystem Services. J. Environ. Manag. 2023, 326, 116753. [Google Scholar] [CrossRef]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding Trade-Offs and Synergies of Ecosystem Services to Support the Decision-Making in the Beijing–Tianjin–Hebei Region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, D.; Song, J.; Guo, J.; You, X.; Jiang, Y. Impacts of Land Use Changes on Ecosystem Services at Different Elevations in an Ecological Function Area, Northern China. Ecol. Indic. 2022, 140, 109003. [Google Scholar] [CrossRef]
- Busch, M. Potentials of Quantitative and Qualitative Approaches to Assessing Ecosystem Services. Ecol. Indic. 2012, 21, 89–103. [Google Scholar] [CrossRef]
- Zhou, Z. Experimental Research on Trade-Offs in Ecosystem Services: The Agro-Ecosystem Functional Spectrum. Ecol. Indic. 2019, 106, 105536. [Google Scholar] [CrossRef]
- Feng, Q. Ecosystem Service Trade-Offs and Their Influencing Factors: A Case Study in the Loess Plateau of China. Sci. Total Environ. 2017, 607–608, 1250–1263. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. Effects of Habitat Fragmentation on Ecosystem Services and Their Trade-Offs in Southwest China: A Multi-Perspective Analysis. Ecol. Indic. 2024, 167, 112699. [Google Scholar] [CrossRef]
- Liu, L. Trade-off Analyses of Multiple Mountain Ecosystem Services along Elevation, Vegetation Cover and Precipitation Gradients: A Case Study in the Taihang Mountains. Ecol. Indic. 2019, 103, 94–104. [Google Scholar] [CrossRef]
- Wang, Z. Exploring the Interdependencies of Ecosystem Services and Social-Ecological Factors on the Loess Plateau through Network Analysis. Sci. Total Environ. 2025, 960, 178362. [Google Scholar] [CrossRef]
- Chen, X.; Zou, C.; Zhang, Y. Spatial Flows of Ecosystem Services under Future Climate and Land-Use Changes. Environ. Res. Lett. 2024, 19, 024044. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, P.; Tian, Y.; Chen, H.; Chen, Y. Exploring the Impact of Integrated Spatial Function Zones on Land Use Dynamics and Ecosystem Services Tradeoffs Based on a Future Land Use Simulation (FLUS) Model. Ecol. Indic. 2023, 150, 110246. [Google Scholar] [CrossRef]
- Ran, C.; Wang, S.; Bai, X.; Tan, Q.; Zhao, C.; Luo, X.; Chen, H.; Xi, H. Trade-Offs and Synergies of Ecosystem Services in Southwestern China. Environ. Eng. Sci. 2020, 37, 669–678. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Y.; Sang, W. Land Use Trade-Offs and Synergies Based on Temporal and Spatial Patterns of Ecosystem Services in South China. Ecol. Indic. 2022, 143, 109335. [Google Scholar] [CrossRef]
- Gou, M. Identifying and Analyzing Ecosystem Service Bundles and Their Socioecological Drivers in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 307, 127208. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.; Yin, L.; Shen, J.; Li, S. Exploring the Complex Relationships and Drivers of Ecosystem Services across Different Geomorphological Types in the Beijing-Tianjin-Hebei Region, China (2000–2018). Ecol. Indic. 2021, 121, 107116. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, B.; Zhang, Y.; Su, Y.; Chen, J.; Zhang, X. Research on the Trade-Offs and Synergies of Ecosystem Services and Their Impact Factors in the Taohe River Basin. Sustainability 2023, 15, 9689. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Fan, X.; Jia, H.; Dong, T.; He, P.; Baqa, M.F.; Jiang, P. Trade-Offs and Synergies of Multiple Ecosystem Services for Different Land Use Scenarios in the Yili River Valley, China. Sustainability 2021, 13, 1577. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, S.; Yung, E.H.K.; Chan, E.H.W.; Luan, B.; Chen, Y. On the Urban Compactness to Ecosystem Services in a Rapidly Urbanising Metropolitan Area: Highlighting Scale Effects and Spatial Non–Stationary. Environ. Impact Assess. Rev. 2023, 98, 106975. [Google Scholar] [CrossRef]
- Kalantari, Z.; Ferreira, C.S.S.; Pan, H.; Pereira, P. Nature-Based Solutions to Global Environmental Challenges. Sci. Total Environ. 2023, 880, 163227. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, L.-J.; Zhu, D.; Zhang, J. Spatiotemporal Changes in Ecosystem Services in the Conservation Priorities of the Southern Hill and Mountain Belt, China. Ecol. Indic. 2021, 122, 107225. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Tang, Q.; Lu, C.; Gao, Y.; Yao, L.; Fan, S.; Dong, J.; Tu, H.; Ai, Z.; et al. Land-Atmosphere Interactions Mitigate the Direct Surface-Drying Effects of Land Use and Cover Change. One Earth 2025, 8, 101210. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Ren, Z.; Yang, F. Ecosystem Service Trade-Offs and Spatial Pattern Optimisation under Different Land Use Scenarios: A Case Study in Guanzhong Region, China. 2023, 12, 236.
- Jingjing, Z.; Wenbo, Z.; Lianqi, Z.; Yanhong, L. Multi-Scale Analysis of Trade-off/Synergistic Effects of Forest Ecosystem Services in the Funiu Mountain Region, China. J. Geogr. Sci. 2022, 32, 981–999. [Google Scholar]
- Wang, M. Exploring the Response of Trade-Offs and Synergies among Ecosystem Services to Future Land Use Changes in the Hilly Red Soil Region of Southern China. J. Environ. Manag. 2024, 372, 123283. [Google Scholar] [CrossRef]
- Dong, X. Entwining Ecosystem Services, Land Use Change and Human Well-Being by Nitrogen Flows. J. Clean. Prod. 2021, 308, 127442. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of Land Use Change on Ecosystem Services: A Review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, X.; Liu, Y.; Lu, Y.; Wang, Y.; Liu, Y. Urban Expansion Simulation under Constraint of Multiple Ecosystem Services (MESs) Based on Cellular Automata (CA)-Markov Model: Scenario Analysis and Policy Implications. Land Use Policy 2021, 108, 105667. [Google Scholar] [CrossRef]
- Lei, J.; Wang, S.; Wu, J.; Wang, J.-W.; Xiong, X. Land-Use Configuration Has Significant Impacts on Water-Related Ecosystem Services. Ecol. Eng. 2021, 160, 106133. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Peng, K.; Wang, X.; Deng, Y.; Yin, X.; Ling, Z. Comparative Analysis of Land Use Change Prediction Models for Land and Fine Wetland Types: Taking the Wetland Cities Changshu and Haikou as Examples. Landsc. Urban Plan. 2024, 243, 104975. [Google Scholar] [CrossRef]
- Girma, R.; Fürst, C.; Moges, A. Land Use Land Cover Change Modeling by Integrating Artificial Neural Network with Cellular Automata-Markov Chain Model in Gidabo River Basin, Main Ethiopian Rift. Environ. Chall. 2022, 6, 100419. [Google Scholar] [CrossRef]
- Ma, S.; Huang, J.; Wang, X.; Fu, Y. Multi-Scenario Simulation of Low-Carbon Land Use Based on the SD-FLUS Model in Changsha, China. Land Use Policy 2025, 148, 107418. [Google Scholar] [CrossRef]
- Yang, J.; Gong, J.; Tang, W.; Liu, C. Patch-Based Cellular Automata Model of Urban Growth Simulation: Integrating Feedback between Quantitative Composition and Spatial Configuration. Comput. Environ. Urban Syst. 2020, 79, 101402. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of Future Land Use Changes: Multiple Scenarios-Based Impacts Analysis on Ecosystem Services for Wuhan City, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Huang, J.; Tang, Z.; Liu, D.; He, J. Ecological Response to Urban Development in a Changing Socio-Economic and Climate Context_ Policy Implications for Balancing Regional Development and Habitat Conservation. Land Use Policy 2020, 97, 104772. [Google Scholar] [CrossRef]
- Chang, B.; Chen, B.; Chen, W.; Xu, S.; He, X.; Yao, J.; Huang, Y. Analysis of Trade-off and Synergy of Ecosystem Services and Driving Forces in Urban Agglomerations in Northern China. Ecol. Indic. 2024, 165, 112210. [Google Scholar] [CrossRef]
- Sun, X.; Wu, J.; Tang, H.; Yang, P. An Urban Hierarchy-Based Approach Integrating Ecosystem Services into Multiscale Sustainable Land Use Planning: The Case of China. Resour. Conserv. Recycl. 2022, 178, 106097. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, H.; Kong, L.; Huang, B.; Xu, W.; Ouyang, Z. Mapping Ecosystem Services Bundles to Detect High- and Low-Value Ecosystem Services Areas for Land Use Management. J. Clean. Prod. 2019, 225, 11–17. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of Urban Expansion on Ecosystem Services in the Beijing-Tianjin-Hebei Urban Agglomeration, China: A Scenario Analysis Based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Li, Z.Z.; Hu, B.; Qin, Y.; Cheng, X. Drivers of Spatiotemporal Disparities in the Supply-Demand Budget of Ecosystem Services: A Case Study in the Beijing-Tianjin-Hebei Urban Agglomeration, China. Front. Environ. Sci. 2022, 10, 955876. [Google Scholar] [CrossRef]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of Ecosystem Service Bundles and Driving Factors in Beijing and Its Surrounding Areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.X.; Zhang, Y.H.; Li, Y.H. Spatio-Temporal Variation and Prediction of Carbon Storage in Beijing-Tianjin-Hebei Region-A PLUS-InVEST Model Approach. J. Arid Land Resour. Environ. 2023, 37, 20–28. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, P.P.; Wang, X.Y.; Wen, J.Y.; Ren, J.X.; Liu, M.M. Multi-Scenario Simulation and Functional Relationship Analysis of Land Use Change in the Beijing-Tianjin-Hebei Region Based on GMOP-PLUS Coupling Model. Geogr. Geogr. Inf. Sci. 2023, 39, 8–16. [Google Scholar]
- Li, Q.; Bao, Y.; Wang, Z.; Chen, X.; Lin, X. Trade-Offs and Synergies of Ecosystem Services in Karst Multi-Mountainous Cities. Ecol. Indic. 2024, 159, 111637. [Google Scholar] [CrossRef]
- Peng, L.; Deng, W.; Huang, P.; Liu, Y. Evaluation of Multiple Ecosystem Services Landscape Index and Identification of Ecosystem Services Bundles in Sichuan Basin. Acta Ecol. Sin. 2021, 41, 9328–9340. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Li, D.; Wu, S. Exploring the Heterogeneity and Nonlinearity of Trade-Offs and Synergies among Ecosystem Services Bundles in the Beijing-Tianjin-Hebei Urban Agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- He, L.; Xie, Z.; Wu, H.; Liu, Z.; Zheng, B.; Wan, W. Exploring the Interrelations and Driving Factors among Typical Ecosystem Services in the Yangtze River Economic Belt, China. J. Environ. Manag. 2024, 351, 119794. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X.; Fu, B.; Ma, H.; Zohner, C.M.; Crowther, T.W.; Huang, Y.; Wu, X.; Wei, F. Maps with 1 Km Resolution Reveal Increases in Above- and Belowground Forest Biomass Carbon Pools in China over the Past 20 Years. Earth Syst. Sci. Data 2023, 15, 897–910. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Liu, L.; Cao, Y.; Zhang, M.; Yuan, Z.; Ma, R.; Liu, X.; Liu, Y. Scaling Effects of Ecosystem Service Trade-off and Synergy in Arid Inland River Basins: A Case Study of the Manas River Basin of Xinjiang, China. Ecol. Indic. 2025, 173, 113358. [Google Scholar] [CrossRef]
- Xu, J.; Wang, S.; Xiao, Y.; Xie, G.; Wang, Y.; Zhang, C.; Li, P.; Lei, G. Mapping the Spatiotemporal Heterogeneity of Ecosystem Service Relationships and Bundles in Ningxia, China. J. Clean. Prod. 2021, 294, 126216. [Google Scholar] [CrossRef]
- Xu, W.; Xu, H.; Li, X.; Qiu, H.; Wang, Z. Ecosystem Services Response to Future Land Use/Cover Change (LUCC) under Multiple Scenarios: A Case Study of the Beijing-Tianjin-Hebei (BTH) Region, China. Technol. Forecast. 2024, 205, 123525. [Google Scholar]
- Tasser, E.; Leitinger, G.; Tappeiner, U.; Schirpke, U. Shaping the European Alps Trends in Landscape Patterns, Biodiversity and Ecosystem Services. Catena 2024, 235, 107607. [Google Scholar] [CrossRef]
- Yan, Y.; Qin, Y.W.; Dong, J.Q.; Cao, J.S.; Xiao, J.Y. Analysis on ecosystem service trade-offs/synergies and drivers in Beijing-Tianjin-Hebei region. Acta Sci. Circumstantiae 2025, 45, 493–506. [Google Scholar]
- Dou, P.F.; Zuo, S.D.; Ren, Y.; Dai, S.Q.; Yun, G.L. The Impacts of Climate and Land Use/Land Cover Changes on Water Yield Service in Ningbo Region. Acta Sci. Circumstantiae 2019, 39, 2398–2409. [Google Scholar] [CrossRef]
- Lin, M.Z.; Liu, H.Y.; Zhou, R.B.; Gong, J.Z. Evaluation and trade-offs of ecosystem services in Guangdong-Hong Kong-Macao Greater Bay Area under multi-scenario simulation. Geographical Research 2021, 40, 2657–2669. [Google Scholar]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-Temporal Heterogeneity of Ecosystem Service Interactions and Their Social-Ecological Drivers: Implications for Spatial Planning and Management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, F.; Dong, X.; Wang, X.-C. Exploring the Complex Trade-Offs and Synergies among Ecosystem Services in the Tibet Autonomous Region. J. Clean. Prod. 2023, 384, 135483. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E. Spatial-Temporal Changes in Ecosystem Services and the Trade-off Relationship in Mountain Regions: A Case Study of Hengduan Mountain Region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Zhang, W.; Meng, G.; Cao, M.; Li, J.; Xu, C.; Wu, R.; Leng, H.; Wen, Q.; et al. Relationships among Multiple Ecosystem Services in Mountainous Regions: A Case Study of the Gaoligong Mountains. J. Environ. Manag. 2025, 387, 125765. [Google Scholar] [CrossRef]
- Luo, R.; Yang, S.; Wang, Z.; Zhang, T.; Gao, P. Impact and Trade off Analysis of Land Use Change on Spatial Pattern of Ecosystem Services in Chishui River Basin. Environ. Sci. Pollut. Res. 2022, 29, 20234–20248. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, W.J.; Wang, L.; Ma, S.; Liu, Z.; Zhang, W.; Zou, Y.; Jiang, M. Impacts of Future Climate and Land Use/Cover Changes on Water-Related Ecosystem Services in Changbai Mountains, Northeast China. Front. Ecol. Evol. 2022, 10, 854497. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Liu, X.; Liu, L.; Li, F.P.; Li, X.G.; Bai, Y. Spatio-Temporal Dynamics and Influencing Factors of Trade-off Intensity among Territorial Space Functions in the Beijing-Tianjin-Hebei Region (2000–2020). Acta Ecol. Sin. 2024, 44, 977–991. [Google Scholar] [CrossRef]
- Bi, S.; Li, Z.; Chen, Y.; Zhang, Q.; Ye, T. Identification of Priority Conservation Areas in Beijing-Tianjin-Hebei Using Multi-Scenario Trade-Offs Based on Different Spatial Scales and Their Drivers. Ecol. Indic. 2024, 166, 112508. [Google Scholar] [CrossRef]
- Yao, S.; Li, Y.; Quan, X.; Huang, G.; Xu, J. Exploring the Trade-Offs and Synergies among Ecosystem Services to Support Ecological Management in the Yangtze River Delta Urban Agglomeration. J. Environ. Manag. 2025, 393, 127028. [Google Scholar] [CrossRef]
- Liu, J. Leveraging the Metacoupling Framework for Sustainability Science and Global Sustainable Development. Natl. Sci. Rev. 2023, 10, nwad090. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global Projections of Future Urban Land Expansion under Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [PubMed]












| Type | Name | Resolution | Sources |
|---|---|---|---|
| Land use | Land-use types | 30 m | The 30 m land cover dataset for China developed by Professor Yang Jie and Professor Huang Xin’s team at Wuhan University |
| Natural factors | Soil types, soil texture, and soil organic matter content | 1 km | Harmonized World Soil Database (HWSD) (http://data.tpdc.ac.cn/zh-hans/, accessed on 3 September 2024) |
| Precipitation, temperature, and evapotranspiration | 1 km | National Qinghai–Tibet Plateau Data Center (https://data.tpdc.ac.cn/, accessed on 3 September 2024) | |
| DEM, and slope | 30 m | Geospatial Data Cloud (https://www.gscloud.cn/, accessed on 3 September 2024) | |
| Socioeconomic | Population density and GDP | 1 km | Resource and Environment Data Cloud Platform (https://www.resdc.cn/DOI/, accessed on 3 September 2024) |
| Distance from rivers, railways, and highways | 500 m | National Catalogue Services For Geographic Information (https://www.webmap.cn/, accessed on 3 September 2024) | |
| Administrative boundaries | Administrative boundary vector map of the BTH | -- | National Geomatics Center of China (https://www.ngcc.cn/, accessed on 3 September 2024) |
| Land-Use Type | BS | ST | HX | TZ | BH | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ND | EP | EC | ND | EP | EC | ND | EP | EC | ND | EP | EC | ND | EP | EC | |
| Cropland | 0.35 | 0.42 | 0.32 | 0.35 | 0.38 | 0.31 | 0.35 | 0.36 | 0.29 | 0.35 | 0.4 | 0.34 | 0.35 | 0.36 | 0.28 |
| Forest | 0.15 | 0.3 | 0.12 | 0.15 | 0.31 | 0.13 | 0.15 | 0.18 | 0.11 | 0.15 | 0.25 | 0.11 | 0.15 | 0.2 | 0.1 |
| Grassland | 0.08 | 0.13 | 0.09 | 0.08 | 0.15 | 0.07 | 0.08 | 0.09 | 0.06 | 0.08 | 0.1 | 0.05 | 0.08 | 0.09 | 0.06 |
| Water | 0.09 | 0.12 | 0.07 | 0.09 | 0.11 | 0.09 | 0.09 | 0.08 | 0.08 | 0.09 | 0.1 | 0.07 | 0.09 | 0.1 | 0.08 |
| Urbanland | 0.7 | 0.64 | 0.8 | 0.7 | 0.6 | 0.74 | 0.7 | 0.61 | 0.76 | 0.7 | 0.7 | 0.89 | 0.7 | 0.68 | 0.9 |
| Bareland | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| Services Type | Methodology | Calculation Formula | Meaning of Indicators |
|---|---|---|---|
| HQ | The HQ module in the InVEST model is calculated based on an analysis of LUCC and its associated threats to biodiversity [47]. For the key parameters, see the Supplementary Materials. | Hj is the habitat suitability scores of land-use type j; z represents a normalization constant, generally taken to be 2.5; Dxj is the habitat degradation index of grid x in land-use type j; K represents the half-saturation constant, typically taken as half the maximum value of Dxj; and Qxj represents the habitat quality index of grid x in land-use type j | |
| CS | The carbon storage and sequestration module of the InVEST model is used to estimate CS [26]. For the key parameters, see the Supplementary Materials. | Ctotali is the average carbon density of land-use category i, and Ai represents the corresponding area; Ctotal is the total carbon storage in the Beijing–Tianjin–Hebei region (t/hm2); and Cabove, Cbelow, Csoil, and Cdead represent above-ground carbon storage, below-ground carbon storage, soil carbon storage, and the dead carbon storage capacity, in t/hm2, respectively | |
| WY | The InVEST model’s water balance principle is used to estimate the WY. This module determines the WY of each grid based on the water-balancing principle by deducting the actual evapotranspiration from the rainfall [47]. For the key parameters, see the Supplementary Materials. | AETxj represents the annual actual evapotranspiration of grid x in land-use category j; Px represents the annual precipitation of grid x; and Yxj represents the water yield of grid x in land-use type j | |
| SC | The Sediment Delivery Ratio module of the InVEST model is used to estimate SC [47]. For the key parameters, see the Supplementary Materials. | SC represents the annual soil conservation quantity; C corresponds to the vegetation cover and management factor, while P indicates the support practice factor for soil conservation; K stands for the soil erodibility factor; R denotes the rainfall erosivity index, derived from yearly precipitation data; and the topographic factor, LS, is computed using slope gradient and slope length |
| Service Relationship | Type | Supply Capacity Mix | Number of Combinations |
|---|---|---|---|
| trade-off | high trade-off | 1 high 3 low | 4 |
| 1 high 1 medium 2 low | 12 | ||
| 1 high 2 medium 1 low | 12 | ||
| low trade-off | 2 high 2 low | 6 | |
| 2 high 1 medium 1 low | 12 | ||
| 3 high 1 low | 4 | ||
| synergy | low synergy | 3 medium 1 low | 4 |
| 2 medium 2 low | 6 | ||
| 1 medium 3 low | 4 | ||
| 4 low | 1 | ||
| high synergy | 4 high | 1 | |
| 3 high 1 medium | 4 | ||
| 2 high 2 medium | 6 | ||
| 1 high 3 medium | 4 | ||
| 4 medium | 1 |
| HQ | Change/% | CS /(108 t) | Change/% | WY /(108 m3) | Change/% | SC /(108 t) | Change/% | |
|---|---|---|---|---|---|---|---|---|
| 2020 | 0.2659 | --- | 25.49 | --- | 230.21 | --- | 264.11 | --- |
| 2035ND | 0.2564 | −3.57 | 25.58 | 0.35 | 165.62 | −28.06 | 208.80 | −20.94 |
| 2035EP | 0.2590 | −2.59 | 25.71 | 0.86 | 164.55 | −28.09 | 208.51 | −21.05 |
| 2035EC | 0.2543 | −4.36 | 25.48 | −0.04 | 166.82 | −27.54 | 208.64 | −21.00 |
| 1 | Low-Value Area | Moderate-Value Area | High-Value Area |
|---|---|---|---|
| 2020 | 43.46 | 118.31 | 54.03 |
| (20.14) | (54.83) | (25.04) | |
| 2035ND | 55.41 | 102.96 | 57.43 |
| (25.67) | (47.71) | (26.61) | |
| 2035EP | 53.49 | 104.65 | 57.65 |
| (24.79) | (48.50) | (26.71) | |
| 2035EC | 56.28 | 102.17 | 57.34 |
| (26.08) | (47.35) | (26.57) |
| HQ_CS | HQ_SC | CS_SC | HQ_WY | CS_WY | SC_WY | ||
|---|---|---|---|---|---|---|---|
| BTH | 2020–2035ND | +0.07 | +0.07 | +0.10 | −0.11 | −0.05 | −0.10 |
| 2020–2035EP | +0.04 | +0.03 | +0.04 | −0.06 | −0.04 | −0.07 | |
| 2020–2035EC | +0.07 | +0.07 | +0.09 | −0.12 | −0.06 | −0.09 | |
| BS | 2020–2035ND | +0.02 | −0.02 | +0.05 | −0.14 | −0.15 | −0.21 |
| 2020–2035EP | 0 | −0.03 | −0.01 | −0.12 | −0.14 | −0.17 | |
| 2020–2035EC | −0.02 | −0.04 | −0.03 | −0.11 | −0.17 | −0.15 | |
| ST | 2020–2035ND | +0.02 | +0.03 | +0.01 | 0 | −0.03 | −0.02 |
| 2020–2035EP | +0.03 | +0.04 | +0.02 | 0 | −0.01 | −0.02 | |
| 2020–2035EC | +0.02 | +0.04 | +0.02 | −0.01 | −0.04 | −0.02 | |
| HX | 2020–2035ND | +0.08 | +0.04 | +0.03 | −0.03 | 0 | −0.03 |
| 2020–2035EP | +0.06 | −0.01 | −0.03 | −0.04 | −0.04 | 0 | |
| 2020–2035EC | +0.08 | 0 | −0.03 | −0.06 | −0.05 | −0.01 | |
| TZ | 2020–2035ND | +0.08 | +0.02 | +0.01 | 0 | +0.05 | 0 |
| 2020–2035EP | +0.03 | −0.01 | −0.02 | +0.02 | +0.03 | −0.02 | |
| 2020–2035EC | +0.04 | 0 | −0.01 | 0 | +0.02 | 0 | |
| BH | 2020–2035ND | +0.02 | −0.04 | −0.03 | −0.09 | −0.08 | −0.11 |
| 2020–2035EP | +0.03 | −0.05 | −0.05 | −0.11 | −0.10 | −0.09 | |
| 2020–2035EC | +0.06 | −0.04 | −0.05 | −0.16 | −0.13 | −0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Li, Y.; Li, W.; Shen, Z.; Xie, B.; Yu, S.; Wang, S.; Wang, N.; Li, Z.; Zhao, J.; et al. Assessing the Trade-Offs and Synergies Among Ecosystem Services Under Multiple Land-Use Scenarios in the Beijing–Tianjin–Hebei Region. Land 2025, 14, 2176. https://doi.org/10.3390/land14112176
He X, Li Y, Li W, Shen Z, Xie B, Yu S, Wang S, Wang N, Li Z, Zhao J, et al. Assessing the Trade-Offs and Synergies Among Ecosystem Services Under Multiple Land-Use Scenarios in the Beijing–Tianjin–Hebei Region. Land. 2025; 14(11):2176. https://doi.org/10.3390/land14112176
Chicago/Turabian StyleHe, Xiaoru, Yang Li, Wei Li, Zhijun Shen, Baoni Xie, Shuhui Yu, Shufei Wang, Nan Wang, Zhe Li, Jianxia Zhao, and et al. 2025. "Assessing the Trade-Offs and Synergies Among Ecosystem Services Under Multiple Land-Use Scenarios in the Beijing–Tianjin–Hebei Region" Land 14, no. 11: 2176. https://doi.org/10.3390/land14112176
APA StyleHe, X., Li, Y., Li, W., Shen, Z., Xie, B., Yu, S., Wang, S., Wang, N., Li, Z., Zhao, J., Li, Y., & Zhao, S. (2025). Assessing the Trade-Offs and Synergies Among Ecosystem Services Under Multiple Land-Use Scenarios in the Beijing–Tianjin–Hebei Region. Land, 14(11), 2176. https://doi.org/10.3390/land14112176

