Effects of Forest Types and Landscape Factors on PM2.5 Concentrations
Abstract
1. Introduction
2. Study Area, Data and Methods
2.1. Study Area
2.2. Particulate Matter Measurement Data
2.3. Methods
2.3.1. Identification of High PM2.5 Concentration Periods and Dependent Variable
2.3.2. Independent Environmental Variables
| Category | Sub-Category | Abbreviation | Variable Name | Buffer Radius (m) | 
|---|---|---|---|---|
| Landscape Indices [50] | Built-up area | PLAND | Bu_PLAND_radius | 100; 300; 500; 1000; 2000; 3000; 5000 | 
| PD | Bu_PD_radius | |||
| Forest | PLAND | Forest_PLAND_radius | ||
| PD | Forest_PD_radius | |||
| Broad-leaved forest | PLAND | Bro_PLAND_radius | ||
| PD | Bro_PD_radius | |||
| Coniferous forest | PLAND | Con_PLAND_radius | ||
| PD | Con_PD_radius | |||
| Mixed forest | PLAND | Mix_PLAND_radius | ||
| PD | Mix_PD_radius | |||
| Water | PLAND | Water_PLAND_radius | ||
| PD | Water_PD_radius | |||
| Length of major roadways [55] | - | MR | MR_radius | 100; 200; 300; 500; 750; 1000 | 
| Population size [63] | - | POP | POP_radius | 1000; 2000; 5000 | 
| Number of businesses [64] | - | Count_business | Count_business _radius | 100; 300; 500; 1000; 2000; 3000; 5000 | 
| Average official land price [63] | - | Mean_Land_price | Mean_Land_price _radius | |
| Elevation [63] | - | Elevation | Elevation | |
| Distance from the China national border [66] | - | Near_DIST | Near_DIST | - | 
2.3.3. Forest Modeling Approaches
2.3.4. Statistical Analysis
3. Results
3.1. Correlations Between PM2.5 and Environmental Variables
3.2. Stepwise Multiple Regression for Aggregated Forest
3.3. Stepwise Multiple Regression for Forest Type
4. Discussion
4.1. The Importance of Forest Type Classification
4.2. Forest Type and PM2.5 Mitigation Effects
4.3. The Complex Influence of Landscape Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birmili, W.; Schepanski, K.; Ansmann, A.; Spindler, G.; Tegen, I.; Wehner, B.; Nowak, A.; Reimer, E.; Mattis, I.; Müller, K.J.A.C.; et al. A Case of Extreme Particulate Matter Concentrations over Central Europe Caused by Dust Emitted over the Southern Ukraine. Atmos. Chem. Phys. 2008, 8, 997–1016. [Google Scholar] [CrossRef]
- Perrino, C.; Canepari, S.; Catrambone, M.; Dalla Torre, S.; Rantica, E.; Sargolini, T. Influence of Natural Events on the Concentration and Composition of Atmospheric Particulate Matter. Atmos. Environ. 2009, 43, 4766–4779. [Google Scholar] [CrossRef]
- Wang, Q.; Kwan, M.-P.; Zhou, K.; Fan, J.; Wang, Y.; Zhan, D. The Impacts of Urbanization on Fine Particulate Matter (PM2.5) Concentrations: Empirical Evidence from 135 Countries Worldwide. Environ. Pollut. 2019, 247, 989–998. [Google Scholar] [CrossRef] [PubMed]
- OECD. Non-Exhaust Particulate Emissions from Road Transport: An Ignored Environmental Policy Challenge; OECD Publishing: Paris, France, 2020; pp. 1–145. [Google Scholar]
- Pui, D.Y.; Chen, S.-C.; Zuo, Z. PM2.5 in China: Measurements, Sources, Visibility and Health Effects, and Mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Wu, J.; Xie, W.; Li, W.; Li, J. Effects of Urban Landscape Pattern on PM2.5 Pollution—A Beijing Case Study. PLoS ONE 2015, 10, e0142449. [Google Scholar] [CrossRef]
- Viera, L.; Chen, K.; Nel, A.; Lloret, M.G. The impact of air pollutants as an adjuvant for allergic sensitization and asthma. Curr. Allergy Asthma Rep. 2009, 9, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Armstrong, B.; Brunekreef, B. Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiology 2008, 19, 702–710. [Google Scholar] [CrossRef]
- Pope, C.A., III; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef]
- Wan Mahiyuddin, W.R.; Ismail, R.; Mohammad Sham, N.; Ahmad, N.I.; Nik Hassan, N.M.N. Cardiovascular and Respiratory Health Effects of Fine Particulate Matters (PM2.5): A Review on Time Series Studies. Atmosphere 2023, 14, 856. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kiyomizu, T.; Yamagishi, S.; Kinoshita, T.; Kumpitsch, L.; Kume, A.; Hanba, Y.T. Responses of photosynthesis and long-term water use efficiency to ambient air pollution in urban roadside trees. Urban Ecosyst. 2022, 25, 1029–1042. [Google Scholar] [CrossRef]
- Rai, P.K. Impacts of Particulate Matter Pollution on Plants: Implications for Environmental Biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Tian, X. The Impact of Fine Particulate Matter (PM2.5) on China’s Agricultural Production from 2001 to 2010. J. Clean. Prod. 2018, 178, 133–141. [Google Scholar] [CrossRef]
- Saenz-de-Miera, O.; Rosselló, J. Modeling Tourism Impacts on Air Pollution: The Case Study of PM10 in Mallorca. Tour. Manag. 2014, 40, 273–281. [Google Scholar] [CrossRef]
- Sivarethinamohan, R.; Sujatha, S.; Priya, S.; Gafoor, A.; Rahman, Z. Impact of Air Pollution in Health and Socio-Economic Aspects: Review on Future Approach. Mater. Today Proc. 2021, 37, 2725–2729. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Copenhagen, Denmark, 2006. [Google Scholar]
- U.S. Environmental Protection Agency. The Benefits and Costs of the Clean Air Act from 1990 to 2020; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Ministry of Environment. Comprehensive Measures for Particulate Matter Management; Joint Korean Ministries, Ed.; Ministry of Environment: Sejong, Republic of Korea, 2019.
- Wang, S.; Hao, J. Air quality management in China: Issues, challenges, and options. J. Environ. Sci. 2012, 24, 2–13. [Google Scholar] [CrossRef]
- Yousefi, R.; Shaheen, A.; Wang, F.; Ge, Q.; Wu, R.; Lelieveld, J.; Wang, J.; Su, X. Fine Particulate Matter (PM2.5) Trends from Land Surface Changes and Air Pollution Policies in China during 1980–2020. J. Environ. Manag. 2023, 326, 116847. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Yoon, T.; Shim, C.; Kang, E.; Hong, Y.; Lee, Y. Beyond Strict Regulations to Achieve Environmental and Economic Health—An Optimal PM2.5 Mitigation Policy for Korea. Int. J. Environ. Res. Public Health 2020, 17, 5725. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Baklanov, A.; Grimmond, S.; Mahura, A.; Athanassiadou, M. Meteorological and Air Quality Models for Urban Areas; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Salizzoni, P.; Soulhac, L.; Mejean, P. Street Canyon Ventilation and Atmospheric Turbulence. Atmos. Environ. 2009, 43, 5056–5067. [Google Scholar] [CrossRef]
- Jiang, P.; Yang, J.; Huang, C.; Liu, H. The Contribution of Socioeconomic Factors to PM2.5 Pollution in Urban China. Environ. Pollut. 2018, 233, 977–985. [Google Scholar] [CrossRef]
- Srisaringkarn, T.; Aruga, K. The Spatial Impact of PM2.5 Pollution on Economic Growth from 2012 to 2022: Evidence from Satellite and Provincial-Level Data in Thailand. Urban Sci. 2025, 9, 110. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Identifying the Spatial Effects and Driving Factors of Urban PM2.5 Pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Wang, C.; Guo, M.; Jin, J.; Yang, Y.; Ren, Y.; Wang, Y.; Cao, J. Does the Spatial Pattern of Plants and Green Space Affect Air Pollutant Concentrations? Evidence from 37 Garden Cities in China. Plants 2022, 11, 2847. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.-Y.; Moon, H.-G.; Kang, D.-I.; Cha, J.-G. Analysis of the Seasonal Concentration Differences of Particulate Matter According to Land Cover of Seoul—Focusing on Forest and Urbanized Area. J. Environ. Impact Assess. 2018, 27, 635–646. [Google Scholar]
- Wu, H.; Yang, C.; Chen, J.; Yang, S.; Lu, T.; Lin, X. Effects of Green Space Landscape Patterns on Particulate Matter in Zhejiang Province, China. Atmos. Pollut. Res. 2018, 9, 923–933. [Google Scholar] [CrossRef]
- Junior, D.P.M.; Bueno, C.; da Silva, C.M. The Effect of Urban Green Spaces on Reduction of Particulate Matter Concentration. Bull. Environ. Contam. Toxicol. 2022, 108, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.-A.E.; Zawar-Reza, P.; Wilson, J.G. Spatial Attenuation of Ambient Particulate Matter Air Pollution Within an Urbanised Native Forest Patch. Urban For. Urban Green. 2009, 8, 21–30. [Google Scholar] [CrossRef]
- Popek, R.; Fornal-Pieniak, B.; Chyliński, F.; Pawełkowicz, M.; Bobrowicz, J.; Chrzanowska, D.; Piechota, N.; Przybysz, A. Not Only Trees Matter—Traffic-Related PM Accumulation by Vegetation of Urban Forests. Sustainability 2022, 14, 2973. [Google Scholar] [CrossRef]
- Nguyen, T.; Yu, X.; Zhang, Z.; Liu, M.; Liu, X. Relationship Between Types of Urban Forest and PM2.5 Capture at Three Growth Stages of Leaves. J. Environ. Sci. 2015, 27, 33–41. [Google Scholar] [CrossRef]
- Gao, T.; Liu, F.; Wang, Y.; Mu, S.; Qiu, L. Reduction of Atmospheric Suspended Particulate Matter Concentration and Influencing Factors of Green Space in Urban Forest Park. Forests 2020, 11, 950. [Google Scholar] [CrossRef]
- Łowicki, D. Landscape pattern as an indicator of urban air pollution of particulate matter in Poland. J. Ecol. Indic. 2019, 97, 17–24. [Google Scholar] [CrossRef]
- Li, F.; Zhou, T.; Lan, F. Relationships Between Urban Form and Air Quality at Different Spatial Scales: A Case Study From Northern China. Ecol. Indic. 2021, 121, 107029. [Google Scholar] [CrossRef]
- Bergin, M.S.; West, J.J.; Keating, T.J.; Russell, A.G. Regional Atmospheric Pollution and Transboundary Air Quality Management. Annu. Rev. Environ. Resour. 2005, 30, 1–37. [Google Scholar] [CrossRef]
- Korea Statistical Information Service (KOSIS). KOSIS Top 100 Indicator. Available online: https://kosis.kr/visual/nsportalStats/main.do?sso=ok (accessed on 31 January 2025).
- National Institute of Environmental Research (NIER). Annual Report of Air Quailty in KOREA 2023; National Institute of Environmental Research: Incheon, Republic of Korea, 2024; pp. 1–407. (In Korean)
- Park, S.; Shin, H. Analysis of the Factors Influencing PM2.5 in Korea: Focusing on Seasonal Factors. J. Environ. Policy Adm. 2017, 25, 227–248. [Google Scholar] [CrossRef]
- Korea Forest Service (KFS). 2020 Forest Statistics; Korea Forest Service: Daejeon, Republic of Korea, 2021; pp. 1–381. (In Korean)
- IQAir. 2023 World Air Quality Report: Region & City PM2.5 Ranking; IQAir: Steinach, Switzerland, 2023; pp. 1–45. [Google Scholar]
- Trnka, D. Policies, Regulatory Framework and Enforcement for Air Quality Management: The Case of Korea; OECD Publishing: Paris, France, 2020. [Google Scholar]
- National Institute of Forest Science (NIFoS). Fine Particulate Matter Measurement Network. Available online: https://aican.nifos.go.kr/main.do (accessed on 16 January 2025).
- Grimm, H.; Pesch, M.; Gonzalez, M.A. Semi volatile compounds (SVC) in PM values. J. Procedia Eng. 2015, 102, 1156–1159. [Google Scholar] [CrossRef]
- Seo, J.; Oh, H.-R.; Park, D.-S.R.; Kim, J.Y.; Chang, D.Y.; Park, C.R.; Sou, H.-D.; Jeong, S. The role of urban forests in mitigation of particulate air pollution: Evidence from ground observations in South Korea. J. Urban Clim. 2025, 59, 102264. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Language Reference, v.3.12; Python Software Foundation: Wilmington, DE, USA, 2024; Available online: https://www.python.org/ (accessed on 20 March 2025).
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; p. 290. [Google Scholar]
- Environmental Geographic Information Service. Land Cover Map. Available online: https://egis.me.go.kr/req/intro.do (accessed on 10 July 2024).
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps; University of Massachusetts: Amherst, MA, USA, 2012; Volume 15, pp. 153–162. [Google Scholar]
- Tischendorf, L. Can Landscape Indices Predict Ecological Processes Consistently? Landsc. Ecol. 2001, 16, 235–254. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps (Version 3.3); Computer Software; University of Massachusetts: Amherst, MA, USA, 2002. [Google Scholar]
- McGarigal, K. FRAGSTATS Help; University of Massachusetts: Amherst, MA, USA, 2015; Volume 182. [Google Scholar]
- Geofabrik. OpenStreetMap. Available online: https://www.geofabrik.de (accessed on 25 March 2025).
- Hitchins, J.; Morawska, L.; Wolff, R.; Gilbert, D. Concentrations of Submicrometre Particles from Vehicle Emissions Near a Major Road. Atmos. Environ. 2000, 34, 51–59. [Google Scholar] [CrossRef]
- Chavez, M.; Li, W.-W. Comparison of Modeled-to-Monitored PM2.5 Exposure Concentrations Resulting from Transportation Emissions in a Near-Road Community. Transp. Res. Rec. 2020, 2674, 130–143. [Google Scholar] [CrossRef]
- Yoon, S.; Moon, Y.; Jeong, J.; Park, C.-R.; Kang, W. A Network-Based Approach for Reducing Pedestrian Exposure to PM2.5 Induced by Road Traffic in Seoul. Land 2021, 10, 1045. [Google Scholar] [CrossRef]
- Bereitschaft, B.; Debbage, K. Urban Form, Air Pollution, and CO2 Emissions in Large US Metropolitan Areas. Prof. Geogr. 2013, 65, 612–635. [Google Scholar] [CrossRef]
- El Bied, S.; Ros-McDonnell, L.; de-la-Fuente-Aragón, M.V.; Ros-McDonnell, D. Assessing the Relationship Between Particulate Matter Concentration and Property Values in Spanish Cities. Heliyon 2024, 10, e33807. [Google Scholar] [CrossRef]
- Guo, L.; Luo, J.; Yuan, M.; Huang, Y.; Shen, H.; Li, T. The Influence of Urban Planning Factors on PM2.5 Pollution Exposure and Implications: A Case Study in China Based on Remote Sensing, LBS, and GIS Data. Sci. Total Environ. 2019, 659, 1585–1596. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Hu, Y.; Bu, R.; Qi, L.; He, X.; Chen, W. How the Morphology of Urban Street Canyons Affects Suspended Particulate Matter Concentration at the Pedestrian Level: An In-Situ Investigation. Sustain. Cities Soc. 2020, 55, 102042. [Google Scholar] [CrossRef]
- National Geographic Information Institute (NGII). Geospatial Information Platform. Available online: https://www.ngii.go.kr (accessed on 25 March 2025).
- Statistics Korea. Staistical Geographic Information Service. Available online: https://sgis.kostat.go.kr (accessed on 23 March 2025).
- Eeftens, M.; Beelen, R.; De Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dedele, A.; Dons, E.; De Nazelle, A. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMCoarse in 20 European Study Areas; Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef]
- GADM. Database of Global Administrative Areas, Version 4.1; GADM: Waterloo, ON, Canada, 2024; Available online: https://gadm.org/ (accessed on 12 March 2025).
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.1.3; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Jun, M.; Gu, Y. Effects of Transboundary PM2.5 Transported from China on the Regional PM2.5 Concentrations in South Korea: A Spatial Panel-Data Analysis. PLoS ONE 2023, 18, e0281988. [Google Scholar] [CrossRef] [PubMed]
- Chrabąszcz, M.; Mróz, L. Tree bark, a Valuable Source of Information on Air Quality. Pol. J. Environ. Stud. 2017, 26, 453–466. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A Review of Land-Use Regression Models to Assess Spatial Variation of Outdoor Air Pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Fry, J.L.; Ooms, P.; Krol, M.; Kerckhoffs, J.; Vermeulen, R.; Wesseling, J.; van den Elshout, S. Effect of Street Trees on Local Air Pollutant Concentrations (NO2, BC, UFP, PM2.5) in Rotterdam, the Netherlands. Environ. Sci. Atmos. 2025, 5, 394–404. [Google Scholar] [CrossRef]
- World Bank. The Cost of Air Pollution: Strengthening the Economic Case for Action; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Shi, T.; Hu, Y.; Liu, M.; Li, C.; Zhang, C.; Liu, C. How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China. Int. J. Environ. Res. Public Health 2020, 17, 5441. [Google Scholar] [CrossRef]
- Yu, R. Correlation Analysis of Urban Building Form and PM2.5 Pollution Based on Satellite and Ground Observations. Front. Environ. Sci. 2023, 10, 1111223. [Google Scholar] [CrossRef]
- Zhou, Q. Evaluating the Effectiveness of Urban Sprawl in Reducing Air Pollution: Evidence from Chinese Cities. J. Urban Plan. Dev. 2024, 150, 04024048. [Google Scholar] [CrossRef]
- Baur, A.H.; Förster, M.; Kleinschmit, B. The Spatial Dimension of Urban Greenhouse Gas Emissions: Analyzing the Influence of Spatial Structures and LULC Patterns in European Cities. Landsc. Ecol. 2015, 30, 1195–1205. [Google Scholar] [CrossRef]
- Xu, W.; Jin, X.; Liu, M.; Ma, Z.; Zhou, Y. Analysis of Spatiotemporal Variation of PM2.5 and Its Relationship to Land Use in China. Atmos. Pollut. Res. 2021, 12, 101151. [Google Scholar] [CrossRef]
- Yoon, S.; Heo, Y.; Park, C.-R.; Kang, W. Effects of Landscape Patterns on the Concentration and Recovery Time of PM2.5 in South Korea. Land 2022, 11, 2176. [Google Scholar] [CrossRef]
- Yan, D.; Huang, S.; Chen, G.; Tong, H.; Qin, P. Heterogeneous Influences of Urban Compactness on Air Pollution: Evidence from 285 Prefecture-Level Cities in China. Humanit. Soc. Sci. Commun. 2025, 12, 77. [Google Scholar] [CrossRef]


| Forest Type/Land Use | Variables | Correlation Coefficients | 
|---|---|---|
| Mixed forest | Mix_PLAND_5000m | −0.673 | 
| Mixed forest | Mix_PLAND_3000m | −0.668 | 
| Mixed forest | Mix_PLAND_2000m | −0.649 | 
| Total forest | Forest_PLAND_5000m | −0.639 | 
| Total forest | Forest_PLAND_3000m | −0.635 | 
| Total forest | Forest_PLAND_2000m | −0.601 | 
| Built-up area | Bu_PLAND_5000m | 0.623 | 
| Variables | Parameter of Model | Model Performance | |||
|---|---|---|---|---|---|
| B | Standardized B | t | p-Value | ||
| Constant | 27.591 | 10.806 | 0.000 | R2 = 0.729 (R2 adjusted= 0.689), F = 18.25 (p < 0.001), AICc = 193.3 | |
| Forest_PLAND_5000m | −0.061 | −0.331 | −3.187 | 0.003 | |
| POP_5000m | 0.543 × 10−5 | 0.469 | 3.848 | 0.000 | |
| Bu_PD_5000m | 0.058 | 0.282 | 2.592 | 0.014 | |
| Near_DIST | −0.009 | −0.211 | −2.066 | 0.047 | |
| Bu_PLAND_100m | 0.032 | 0.207 | 2.020 | 0.051 | |
| Variables | Parameter of Model | Model Performance | |||
|---|---|---|---|---|---|
| B | Standardi-zed B | t | p-Value | ||
| Constant | 24.558 | 22.292 | 0.000 | R2 = 0.834 (R2 adjusted = 0.809), F = 34.1 (p < 0.001), AICc = 176.7 | |
| Mix_PLAND_5000m | −0.298 | −0.245 | −2.291 | 0.028 | |
| Mix_PD_3000m | −0.597 | −0.306 | −3.195 | 0.003 | |
| Bro_PLAND_1000m | −0.052 | −0.222 | −2.472 | 0.019 | |
| POP_5000m | 0.787 × 10−5 | 0.681 | 8.269 | 0.000 | |
| Bu_PD_5000m | 0.090 | 0.435 | 4.923 | 0.000 | |
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, H.; Jeong, J.; Kang, W.; Park, C.-R. Effects of Forest Types and Landscape Factors on PM2.5 Concentrations. Land 2025, 14, 2165. https://doi.org/10.3390/land14112165
Nam H, Jeong J, Kang W, Park C-R. Effects of Forest Types and Landscape Factors on PM2.5 Concentrations. Land. 2025; 14(11):2165. https://doi.org/10.3390/land14112165
Chicago/Turabian StyleNam, Heejung, Jina Jeong, Wanmo Kang, and Chan-Ryul Park. 2025. "Effects of Forest Types and Landscape Factors on PM2.5 Concentrations" Land 14, no. 11: 2165. https://doi.org/10.3390/land14112165
APA StyleNam, H., Jeong, J., Kang, W., & Park, C.-R. (2025). Effects of Forest Types and Landscape Factors on PM2.5 Concentrations. Land, 14(11), 2165. https://doi.org/10.3390/land14112165
 
        




 
       