Study on Spatial Pattern Changes and Driving Factors of Land Use/Cover in Coastal Areas of Eastern China from 2000 to 2022: A Case Study of Jiangsu Province
Abstract
1. Introduction
2. Methodology
2.1. Study Area
2.2. Research Data and Methods
2.2.1. Data Sources
2.2.2. Land Use Dynamic Degree
2.2.3. Geodetector
3. Results
3.1. Characterization of Spatiotemporal Land Use/Cover Changes in Jiangsu Province
3.2. Characterization of the Land Use Dynamic Degree in Jiangsu Province
3.3. Characterization of Land Use Type Shifts
3.4. Analysis of the Driving Factors of Land Use/Cover Change in Jiangsu Province, 2000–2020
3.4.1. Factor Detection Analysis
3.4.2. Interactive Detection Analysis
4. Discussion
4.1. Geodetector Model Reveals the Drivers of Land Use/Cover Change
4.2. The Drivers and Impacts of the Process of Non-Agriculturalization in Jiangsu Province
4.3. Land Use/Cover Change Driven by the Dual Pressures of Climate Change and Urbanization
5. Conclusions
- (1)
- Land use structure and change trends: Cropland, impervious, and water are the dominant land use types in Jiangsu Province, collectively accounting for over 97% of the total area during 2000–2020. During the study period, the changes of cropland and impervious in Jiangsu Province are drastic, with the changes amounting to −8846.29 km2 and 10,019.58 km2, reflecting a strong trend of non-agricultural land conversion driven by urbanization and economic growth. The changes in forest, grassland, water, and barren are relatively small, with the changes amounting to only −478.76 km2, −39.27 km2, −647.54 km2, and −7.72 km2. Only the impervious presents a drastic expansion of the situation, and the change is mainly concentrated in the south of Jiangsu Province, showing a significant phenomenon of outward expansion of urban areas, while the forest and grassland shrinkage is mainly concentrated in the western region.
- (2)
- Land use dynamics: The single land use dynamic degree showed that impervious is the only land type whose dynamics degree is positive from 2000 to 2010 and 2010 to 2020, with values of 3.67% and 3.03%, respectively, whereas the dynamic degree of cropland, forest, and barren are negative from 2000 to 2010 and from 2010 to 2020, with values of −0.59% and −0.39%, −0.75% and −1.35%, and −6.50% and −5.67%, with barren showing the most drastic changes in comparison. Unlike the single trend of change in cropland, forest, and barren, grassland and watershed showed an increasing and then decreasing trend of change, with 0.29% and −9.00%, and 0.66% and −1.03% of motivation in the period 2000–2010 and 2010–2020, respectively. According to the classification of comprehensive motivation, the comprehensive land use motivation in Jiangsu Province in each time period from 2000 to 2010 and 2010 to 2020 is 0.46% and 0.43%, respectively, which belongs to the extremely slow change type.
- (3)
- Land use conversion pathways: The land use transfer matrix and Sankey diagram revealed that the study area is most active in the transfer of cropland and impervious from 2000 to 2020. The increase in impervious was primarily sourced from cropland and water. From 2000 to 2010, cropland contributed 91.69% of the newly added impervious area, highlighting a significant non-agricultural transition and a continuous encroachment on ecological land. This transformation pattern highlights the trend of farmland de-agriculturalization in Jiangsu Province, and also reveals that the shrinkage of ecological land area is mainly due to the continuous expansion of impervious surfaces.
- (4)
- Driving factors: Population density (q = 0.154) and night light brightness (q = 0.156) have always been important drivers of land use/cover change in Jiangsu Province. Meanwhile, the q-values of climatic factors such as temperature (X5) and precipitation (X6) showed an increasing trend from 2000 to 2020, which suggests that climate change may be gradually becoming a potential factor of land use/cover change under the macro-backdrop of global climate change and regional urbanization. In addition, the interaction detection indicates that the land use/cover change in Jiangsu Province is driven by both socio-economic factors and natural geographic factors, but in general, the former has a stronger explanation of the land use/cover change, and the interaction among the factors shows two-factor enhancement or a non-linear enhancement effect, and the two-factor interaction has a stronger explanation for the land use/cover change than the single-factor explanation.
- (5)
- Coping strategies: In response to the dual pressures of climate change and rapid urbanization, coordinating the multiple objectives of socio-economic development, food security, and ecological protection is the fundamental path to achieving sustainable land use in Jiangsu Province and similar developed coastal areas.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akmal, F.A.; Mohammadi, Y. The nexus of agricultural land use change and food security: A comprehensive systematic review. Land Use Policy 2025, 158, 107717. [Google Scholar] [CrossRef]
- Mupepi, O.; Marambanyika, T.; Matsa, M.M.; Dube, T. Land use and land cover changes in sub-catchments of Zimbabwe and their implications on wetland and catchment soil water conditions. Phys. Chem. Earth Parts A/B/C 2025, 141, 104081. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Li, T.; Wu, J. Regional ecosystem health response to rural land use change: A case study in Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Qu, Y.; Long, H. The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat Int. 2018, 82, 113–121. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, J.; Yang, H.; Yang, J.; Zhang, J. Unraveling the effects of land use change on carbon balance: A systematic study in the Beijing-Tianjin-Hebei region, China. Ecol. Indic. 2025, 179, 114109. [Google Scholar] [CrossRef]
- Duan, X.; Chen, Y.; Wang, L.; Zheng, G.; Liang, T. The impact of land use and land cover changes on the landscape pattern and ecosystem service value in Sanjiangyuan region of the Qinghai-Tibet Plateau. J. Environ. Manag. 2023, 325, 116539. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Y.; Wu, H.; Mohamed Shariff, A.R.B.; Zhou, H.; Fan, K. Unveiling the impacts of climate change and human activities on land-use evolution in ecologically fragile urbanizing areas: A case study of China’s Central Plains urban agglomeration. Ecol. Indic. 2024, 169, 112936. [Google Scholar] [CrossRef]
- Niu, H.; Chen, S.; Xiao, D. Multi-Scenario land cover changes and carbon emissions prediction for peak carbon emissions in the Yellow River Basin, China. Ecol. Indic. 2024, 168, 112794. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Chang, Y.; Hou, K.; Li, X.X.; Zhang, Y.W.; Chen, P. Review of Land Use and Land Cover Change research progress. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012087. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land Use Transitions: Progress, Challenges and Prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- Narisu, N.R.; Yinshan, Y.S.; Yushan, Y.S.; Bao, Y.H.; Lina, L.N.; Wei, B.C. Spatial-temporal Evolution of Desertification and Landscape Pattern Change in Hulunbeier Sandy Land. In Proceedings of the 7th Annual Meeting of the Risk Analysis Council of China Association for Disaster Prevention, Changsha, China, 4–6 November 2016; Volume 128, pp. 849–855. [Google Scholar] [CrossRef]
- Chu, H.J.; Lin, Y.P.; Huang, C.W.; Hsu, C.Y.; Chen, H.Y. Modelling the hydrologic effects of dynamic land-use change using a distributed hydrologic model and a spatial land-use allocation model. Hydrol. Process. 2010, 24, 2538–2554. [Google Scholar] [CrossRef]
- Fan, X.C.; Zhao, L.L. Land Use Changes and Its Driving Factors: A Case Study in Nanping City, China. Appl. Ecol. Environ. Res. 2019, 17, 3709–3721. [Google Scholar] [CrossRef]
- Zhao, L.; Shao, X.Y. The Research on Land Use Changes and the Driving Factor of Rapidly City Area—A Case of Chongqing Beibei District. Chin. Agric. Sci. Bull. 2012, 28, 35. (In Chinese) [Google Scholar]
- Jia, W.C.; Wang, J.L.; Du, J. Analysis on Relationship between Main Land Use Conversion Types and Influencing Factors in Jiaodong Region, China. Prog. Geogr. 2009, 28, 591–596. (In Chinese) [Google Scholar]
- Deng, X.C.; Chen, Y.B. Land Use Change and its Driving Mechanism in Dongjiang River Basin from 1990 to 2018. Bull. Soil Water Conserv. 2020, 40, 236–242+258+331. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 10.1016. [Google Scholar] [CrossRef]
- Van Vliet, J.; de Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef]
- Zhu, Z.; Qiu, S.; Ye, S. Remote sensing of land change: A multifaceted perspective. Remote Sens. Environ. 2022, 282, 113266. [Google Scholar] [CrossRef]
- Mashala, M.J.; Dube, T.; Mudereri, B.T.; Ayisi, K.K.; Ramudzuli, M.R. A Systematic Review on Advancements in Remote Sensing for Assessing and Monitoring Land Use and Land Cover Changes Impacts on Surface Water Resources in Semi-Arid Tropical Environments. Remote Sens. 2023, 15, 3926. [Google Scholar] [CrossRef]
- Pu, J.; Shen, A.; Liu, C.; Wen, B. Impacts of ecological land fragmentation on habitat quality in the Taihu Lake basin in Jiangsu Province, China. Ecol. Indic. 2024, 158, 111611. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National Land Use/Cover Database of China at 1:100000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Reed, B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94, 123–132. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L. GlobCover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415. [Google Scholar]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Wu, D.; Yang, H. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China. Appl. Geogr. 2023, 154, 102946. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, M.; Guo, X.; Pan, Y.; Liu, Y. Spatial-temporal dynamics and associated driving forces of urban ecological land: A case study in Shenzhen City, China. Habitat Int. 2017, 60, 81–90. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, X.; Zhu, H.; Li, R. Spatiotemporal Evolution and Mechanisms of Habitat Quality in Nature Reserve Land: A Case Study of 18 Nature Reserves in Hubei Province. Land 2024, 13, 363. [Google Scholar] [CrossRef]
- Guo, B.; Yang, F.; Fan, Y.; Zang, W. The dominant driving factors of rocky desertification and their variations in typical mountainous karst areas of southwest China in the context of global change. Catena 2023, 220, 106674. [Google Scholar] [CrossRef]
- Li, H.Q.; Cheng, F.F.; Song, H.Y.; Chen, M.H. Landscape Ecological Risk Assessment of Coastal Cities in Eastern China based on Land Use Change. J. Econ. Water Resour. 2023, 41, 29–37+98. (In Chinese) [Google Scholar]
- Hao, L.N.; He, S.; Zhou, J.L.; Zhao, Q.; Lu, X. Prediction of the landscape pattern of the Yan-cheng Coastal Wetland, China, based on XGBoost and the MCE-CA-Markov model. Ecol. Indic. 2022, 145, 109735. [Google Scholar] [CrossRef]
- Dong, J.H.; Dong, C.M.; Yu, K. Impacts of Climate Change on a Coastal Wetland from Model Simulation Combining Satellite and Gauge Observations: A Case Study of Jiangsu, China. Remote Sens. 2022, 14, 2473. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, T.; Yao, Y.; Qiu, A.; Wei, F.; Liu, J.; Liu, T. Evaluating efficiency and order of urban land use structure: An empirical study of cities in Jiangsu, China. J. Clean. Prod. 2021, 283, 124638. [Google Scholar] [CrossRef]
- Xu, W.; Jin, J.; Jin, X.; Xiao, Y.; Ren, J.; Liu, J.; Sun, R.; Zhou, Y. Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China. Remote Sens. 2019, 11, 2041. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, H.; Zhang, S.; Jin, Z.; Zhang, Y.; Wang, Y.; Shi, Y.; Jiang, J.; Chen, X.; Liu, M. Long-term trends in surface thermal environment and its potential drivers along the urban development gradients in rapidly urbanizing regions of China. Sustain. Cities Soc. 2024, 105, 105324. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m annual land cover datasets and its dynamics in China from 1985 to 2023. Earth Syst. Sci. Data 2024, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wang, H.; Qi, Z.; Yan, H.; Yang, H. Variation Characteristics of Land Use Change Within the Beijing–Tianjin–Hebei Region During 1985–2022. Land 2024, 13, 1997. [Google Scholar] [CrossRef]
- Jia, T.C.; Hu, X.W. Spatiotemporal Dynamic Evolution Characteristics of Land Use in China’s ‘Two Screens and Three Belts’ Ecological Barrier Areas from 1985 to 2020. Res. Soil Water Conserv. 2024, 31, 348–363. [Google Scholar] [CrossRef]
- Sun, T.Y.; Ni, M.X.; Yang, Y.; Fang, Y.; Xia, J. Spatiotemporal Changes and Driving Factors of Land Use/Land Cover (LULC) in the Wuding River Basin, China: Impacts of Ecological Restoration. Sustainability 2024, 16, 10453. [Google Scholar] [CrossRef]
- Wu, Z.; Fan, Q.; Li, W.; Zhou, Y. The Spatial–Temporal Evolution and Impact Mechanism of Cultivated Land Use in the Mountainous Areas of Southwest Hubei Province, China. Land 2024, 13, 1946. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, F.; Jim, C.Y.; Bahtebay, J. Spatio-temporal evolution of landscape patterns in an oasis city. Environ. Sci. Pollut. Res. 2022, 30, 3872–3886. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Li, M.; Abuduwaili, J.; Liu, W.; Feng, S.; Saparov, G.; Ma, L. Application of geographical detector and geographically weighted regression for assessing landscape ecological risk in the Irtysh River Basin, Central Asia. Ecol. Indic. 2024, 158, 111540. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qiao, W.; Gao, B.; Chen, Y. Unveiling spatial heterogeneity of ecosystem services and their drivers in varied landform types: Insights from the Sichuan-Yunnan ecological barrier area. J. Clean. Prod. 2024, 442, 141158. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Zhang, M.; Cui, J. Land-use transition and its driving forces in a minority mountainous area: A case study from Mao County, Sichuan Province, China. Environ. Monit. Assess. 2022, 194, 688. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Jiang, R.G.; Yang, M.X.; Xie, J.C.; Zhao, Y.; Li, F.W.; Lu, X.X. Spatiotemporal characteristics and driving mechanisms of land use/land cover (LULC) changes in the Jinghe River Basin, China. J. Arid Land 2024, 16, 91–109. [Google Scholar] [CrossRef]
- Dua, Z.R.; Yua, L.; Chen, X.; Gao, B.B.; Yang, J.Y.; Fu, H.H.; Gong, P. Land use/cover and land degradation across the Eurasian steppe: Dynamics, patterns and driving factors. Sci. Total Environ. 2024, 909, 168593. [Google Scholar] [CrossRef]
- Liu, H.B.; Wang, H.H.; Pan, C.L. Research Progress on Cultivated Land Conversion at Home and Abroad Based on the Perspective of Bibliometrices: Context, Hot Spots, and Prospects. Chin. J. Agric. Resour. Reg. Plan. 2024, 45, 173–183. (In Chinese) [Google Scholar]
- Duolaiti, X.; Kasimu, A.; Reheman, R.; Aizizi, Y.; Wei, B. Assessment of Water Yield and Water Purification Services in the Arid Zone of Northwest China: The Case of the Ebinur Lake Basin. Land 2023, 12, 533. [Google Scholar] [CrossRef]
- Shi, G.; Chen, C.; Cao, Q.; Zhang, J.; Xu, J.; Chen, Y.; Wang, Y.; Liu, J. Spatiotemporal Dynamics and Prediction of Habitat Quality Based on Land Use and Cover Change in Jiangsu, China. Remote Sens. 2024, 16, 4158. [Google Scholar] [CrossRef]
- Guo, H.P.; Xia, Y.J.; Jin, J.S.; Pan, C.L. The impact of climate change on the efficiency of agricultural production in the world’s main agricultural regions. Environ. Impact Assess. Rev. 2022, 97, 106891. [Google Scholar] [CrossRef]
- Yuan, X.N.; Li, S.E.; Chen, J.L.; Yu, H.C.; Yang, T.Y.; Wang, C.Y.; Huang, S.Y.; Chen, H.C.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Wu, J.; Deng, G.N.; Zhou, D.M.; Zhu, X.Y.; Ma, J.; Chen, G.Z.; Jin, Y.L.; Zhang, J. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China. J. Arid Land 2021, 13, 674–687. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Dai, L.M.; Li, S.L.; Lewis, B.J.; Wu, J.; Yu, D.P.; Zhou, W.M.; Zhou, L.; Wu, S.N. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2019, 30, 2227–2236. [Google Scholar] [CrossRef]
- Tollan, A. Land-use change and floods: What do we need most, research or management? Water Sci. Technol. 2002, 45, 183–190. [Google Scholar] [CrossRef]
- Shade, C.; Kremer, P.; Rockwell, J.; Henderson, K. The effects of urban development and current green infrastructure policy on future climate change resilience. Ecol. Soc. 2020, 25, 37. [Google Scholar] [CrossRef]
- Brown, I. Assessing climate change risks to the natural environment to facilitate cross-sectoral adaptation policy. Philos. Trans. Math. Phys. Eng. Sci. 2018, 376, 20170297. [Google Scholar] [CrossRef]




| Data Type | Data Name | Data | Data Source |
|---|---|---|---|
| Natural system | X1: Altitude | SRTMSLOPE 90 M | http://www.gscloud.cn |
| X2: Elevation | SRTMDEM 90 M | http://www.gscloud.cn | |
| X3: Slope direction | - | Calculated based on DEM | |
| X4: Geomorphological type | 1:1,000,000 the Geomorphological Atlas of the People’s Republic of China | http://www.geodata.cn | |
| X5: Temperature | Annual average temperature (MODIS LST) | https://earthengine.google.com | |
| X6: Precipitation | Annual average precipitation (CHIRPS) | https://www.chc.ucsb.edu | |
| X7: Soil type | 1:4,000,000 Soil Map of China | http://soil.geodata.cn | |
| Social system | X8: Population density | LandScan Global Population Database (2000; 2010; 2020) | https://landscan.ornl.gov |
| Economic system | X9: GDP | China GDP Spatial Distribution Kilometre Grid Dataset (2000; 2010; 2020) | https://www.resdc.cn/ |
| X10: Night light brightness | Global 2000–2022 NPP-VIIRS nighttime lighting data (2000; 2010; 2020) | http://www.geodata.cn |
| Interaction Type | Basis of Judgment |
|---|---|
| Bi-factor enhancement | |
| Single-factor non-linear reduction | |
| Non-linear reduction | |
| Independent | |
| Non-linear enhancement |
| Land Use Type | 2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 | |||
|---|---|---|---|---|---|---|---|---|---|
| Area | Percentage | Area | Percentage | Area | Percentage | Change Area | Change Area | Change Area | |
| Cropland | 81,842.6606 | 76.35% | 76,960.4627 | 71.79% | 73,888.3588 | 68.93% | −4882.1980 | −3072.1039 | −7954.3018 |
| Forest | 2138.3513 | 1.99% | 1979.7217 | 1.85% | 1719.2756 | 1.60% | −158.6296 | −260.4461 | −419.0757 |
| Grassland | 38.3652 | 0.04% | 39.5346 | 0.04% | 4.3759 | 0.00% | 1.1694 | −35.1587 | −33.9893 |
| Water | 12,297.5817 | 11.47% | 13,236.1729 | 12.35% | 11,951.7461 | 11.15% | 938.5912 | −1284.4268 | −345.8356 |
| Barren | 7.5635 | 0.01% | 2.6502 | 0.002% | 1.1884 | 0.001% | −4.9133 | −1.4618 | −6.3751 |
| Impervious | 10,875.4768 | 10.15% | 14,981.4570 | 13.98% | 19,635.0552 | 18.32% | 4105.9803 | 4653.5982 | 8759.5784 |
| Land Use Type | 2000–2010 | 2010–2020 | 2000–2020 | |||
|---|---|---|---|---|---|---|
| Single Land Use Dynamic Degree | Comprehensive Land Use Dynamic Degree | Single Land Use Dynamic Degree | Comprehensive Land Use Dynamic Degree | Single Land Use Dynamic Degree | Comprehensive Land Use Dynamic Degree | |
| Cropland | −0.60 | 0.47 | −0.40 | 0.43 | −0.49 | 0.41 |
| Forest | −0.74 | −1.32 | −0.98 | |||
| Grassland | 0.30 | −8.89 | −4.43 | |||
| Water | 0.76 | −0.97 | −0.14 | |||
| Barren | −6.50 | −5.52 | −4.21 | |||
| Impervious | 3.78 | 3.11 | 4.03 | |||
| Land Use Type | 2010 | |||||||
|---|---|---|---|---|---|---|---|---|
| Cropland | Forest | Grassland | Water | Barren | Impervious | |||
| 2000 | Cropland | 75,768.98 | 175.76 | 21.04 | 1810.56 | 0.25 | 4066.07 | 75,768.98 |
| Forest | 305.04 | 1799.28 | 1.22 | 3.49 | 0.00 | 29.32 | 305.04 | |
| Grassland | 13.67 | 1.41 | 16.49 | 0.54 | 0.49 | 5.77 | 13.67 | |
| Water | 835.79 | 3.22 | 0.77 | 11,125.51 | 0.43 | 331.87 | 835.79 | |
| Barren | 1.26 | 0.00 | 0.02 | 3.43 | 1.46 | 1.38 | 1.26 | |
| Impervious | 35.72 | 0.06 | 0.00 | 292.63 | 0.01 | 10,547.06 | 35.72 | |
| 75,768.98 | 175.76 | 21.04 | 1810.56 | 0.25 | 4066.07 | 75,768.98 | ||
| Land Use Type | 2020 | |||||||
|---|---|---|---|---|---|---|---|---|
| Cropland | Forest | Grassland | Water | Barren | Impervious | |||
| 2010 | Cropland | 71,664.39 | 134.53 | 0.75 | 955.90 | 0.03 | 4204.86 | 71,664.39 |
| Forest | 383.21 | 1581.48 | 0.79 | 2.34 | 0.00 | 11.89 | 383.21 | |
| Grassland | 13.47 | 2.84 | 2.76 | 0.05 | 0.14 | 20.27 | 13.47 | |
| Water | 1815.33 | 0.42 | 0.02 | 10,906.13 | 0.55 | 513.73 | 1815.33 | |
| Barren | 0.56 | 0.00 | 0.05 | 0.12 | 0.47 | 1.45 | 0.56 | |
| Impervious | 11.40 | 0.01 | 0.00 | 87.20 | 0.00 | 14,882.85 | 11.40 | |
| 71,664.39 | 134.53 | 0.75 | 955.90 | 0.03 | 4204.86 | 71,664.39 | ||
| Driving Factors | 2000 | 2010 | 2020 | |||
|---|---|---|---|---|---|---|
| q | Rank | q | Rank | q | Rank | |
| X3: Slope direction | 0.001 | 10 | 0.002 | 10 | 0.002 | 10 |
| X1: Altitude | 0.008 | 6 | 0.009 | 8 | 0.009 | 9 |
| X9: GDP | 0.029 | 3 | 0.071 | 3 | 0.093 | 3 |
| X6: Rainfall | 0.004 | 9 | 0.006 | 9 | 0.010 | 7 |
| X2: Elevation | 0.020 | 4 | 0.019 | 6 | 0.015 | 6 |
| X5: Temperature | 0.007 | 8 | 0.022 | 4 | 0.023 | 4 |
| X7: Soil type | 0.008 | 7 | 0.021 | 5 | 0.023 | 5 |
| X4: Geomorphological type | 0.011 | 5 | 0.012 | 7 | 0.009 | 8 |
| X10: Night light brightness | 0.072 | 1 | 0.131 | 2 | 0.156 | 1 |
| X8: Population density | 0.069 | 2 | 0.131 | 1 | 0.154 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ning, L.; Li, J.; Wang, Y. Study on Spatial Pattern Changes and Driving Factors of Land Use/Cover in Coastal Areas of Eastern China from 2000 to 2022: A Case Study of Jiangsu Province. Land 2025, 14, 2031. https://doi.org/10.3390/land14102031
Zhang M, Ning L, Li J, Wang Y. Study on Spatial Pattern Changes and Driving Factors of Land Use/Cover in Coastal Areas of Eastern China from 2000 to 2022: A Case Study of Jiangsu Province. Land. 2025; 14(10):2031. https://doi.org/10.3390/land14102031
Chicago/Turabian StyleZhang, Mingli, Letian Ning, Juanling Li, and Yanhua Wang. 2025. "Study on Spatial Pattern Changes and Driving Factors of Land Use/Cover in Coastal Areas of Eastern China from 2000 to 2022: A Case Study of Jiangsu Province" Land 14, no. 10: 2031. https://doi.org/10.3390/land14102031
APA StyleZhang, M., Ning, L., Li, J., & Wang, Y. (2025). Study on Spatial Pattern Changes and Driving Factors of Land Use/Cover in Coastal Areas of Eastern China from 2000 to 2022: A Case Study of Jiangsu Province. Land, 14(10), 2031. https://doi.org/10.3390/land14102031

