Comparative Assessment of Three Methods for Soil Organic Matter Determination in Calcareous Soils, Eastern Algeria
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Preparation
2.3. Analytical Methods
2.3.1. Determination of Soil Organic Carbon by Anne Method
2.3.2. Determination of Soil Organic Carbon by the Modified Walkley–Black Method
2.3.3. Loss on Ignition (LOI)
2.4. pH and Carbonate Determination
2.5. Statistical and Spatial Analysis
3. Results
3.1. Characterisation of the Soil Samples
3.2. Normality Test
3.3. Statistical Analysis of the Effect of Decarbonation on Soil Organic Matter Content
3.4. Inferential Tests
3.5. Overview of Spatial Distribution of Organic Matter
3.6. Comparative Analysis of Empirical Relationships Between Methods for Estimating Soil Organic Matter
3.6.1. Correlation Between the OM Contents Measured with the Anne Method and Walkley–Black Method
3.6.2. Correlation Between the OM Contents Measured with the Anne Method and LOI Method Without Decarbonation
3.6.3. Correlation Between the OM Contents Measured with the Anne Method LOI Method with Decarbonation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOM | Soil Organic Matter |
SOC | Soil Organic carbon |
SIC | Soil Inorganic Carbon |
TOC | Total Organic Carbon |
LOI | loss on ignition |
Corg | Carbon Organic |
IDW | Inverse Distance Weighting |
References
- Lal, R. Soil organic matter content and crop yield. J. Soil Water Conserv. 2020, 75, 27A–32A. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Zimmermann, M. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Zavarzina, A.G.; Danchenko, N.N.; Demin, V.V.; Artemyeva, Z.S.; Kogut, B.M. Humic substances: Hypotheses and reality (a review). Eurasian Soil Sci. 2021, 54, 1826–1854. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Amelung, W. Soil organic matter in major pedogenic soil groups. Geoderma 2021, 384, 114785. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M. Pedogenic carbonate and the global carbon cycle. In Global Climate Change and Pedogenic Carbonates; Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 1–14. [Google Scholar]
- Eswaran, H.; Reich, P.F.; Kimble, J.M.; Beinroth, F.H.; Padmanabhan, E. Global carbon stocks. In Global Climate Change and Pedogenic Carbonates; Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2000; pp. 15–27. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Chatterjee, A.; Lal, R.; Wielopolski, L.; Martin, M.Z.; Ebinger, M.H. Evaluation of different soil carbon determination methods. Crit. Rev. Plant Sci. 2009, 28, 164–178. [Google Scholar] [CrossRef]
- Allison, L.E. Organic carbon. In Methods of Soil Analysis: Part 2—Chemical and Microbiological Properties; Black, C.A., Ed.; Soil Science Society of America: Madison, WI, USA, 1965; pp. 1372–1378. [Google Scholar]
- Okolelova, A.A.; Kokorina, N.G. Calculation of the part of humus based on the results of determination of carbon of organic compounds in soils. Zemledelie 2010, 1, 14–15. [Google Scholar]
- Sleutel, S.; De Neve, S.; Singier, B.; Hofman, G. Quantification of organic carbon in soils: A comparison of methodologies and assessment of the carbon content of organic matter. Commun. Soil Sci. Plant Anal. 2007, 38, 2647–2657. [Google Scholar] [CrossRef]
- Guevara, M.; Arroyo, C.; Brunsell, N.; Cruz, C.O.; Domke, G.; Equihua, J.; Vargas, R. Soil organic carbon across Mexico and the conterminous United States (1991–2010). Glob. Biogeochem. Cycles 2020, 34, e2019GB006219. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Wadoux, M.J.-C.; Akoeb, E.N.; Sabrina, T. Precocious 19th century soil carbon science. Geoderma Reg. 2020, 22, e00306. [Google Scholar] [CrossRef]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M. Quantifying carbon for agricultural soil management: From the current status toward a global soil information system. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef]
- Vanchikova, E.V.; Kondratenok, B.M.; Lapteva, E.M.; Shamrikova, E.V.; Kostrova, S.N.; Tumanova, E.A.; Zonova, T.V. Soils, Grounds, Pedogenic Minerals, Bottom Sediments. Measuring the Mass Fraction of Carbon in Organic Compounds and Organic Matter by the Photometric Method (Tyurin and Walkley-Black Methods); Institute of Biology, Komi Science Centre: Syktyvkar, Russia, 2020. [Google Scholar]
- Jha, P.; Biswas, A.K.; Lakaria, B.; Saha, R.; Singh, M.; Rao, S. Predicting total organic carbon content of soils from Walkley and Black analysis. Commun. Soil Sci. Plant Anal. 2014, 45, 713–725. [Google Scholar] [CrossRef]
- Lettens, S.; van Orshoven, J.; van Wesemael, B.; De Vos, B.; Muys, B. Stocks and fluxes of soil organic carbon for landscape units in Belgium derived from heterogeneous data sets for 1990 and 2000. Geoderma 2005, 127, 11–21. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Rovira, P.; Vallejo, V.R. Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol. Biochem. 2007, 39, 202–215. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Zhang, J. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PLoS ONE 2012, 7, e44334. [Google Scholar] [CrossRef]
- Anne, P. Sur le dosage rapide du carbone organique des sols. Ann. Agron. 1945, 15, 161–172. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Change Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Wang, Q.R.; Li, Y.C.; Wang, Y. Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources. Environ. Monit. Assess. 2011, 174, 241–257. [Google Scholar] [CrossRef]
- De Vos, B.; Vandecasteele, B.; Deckers, J.; Muys, B. Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils. Commun. Soil Sci. Plant Anal. 2005, 36, 2899–2921. [Google Scholar] [CrossRef]
- Konen, M.E.; Jacobs, P.M.; Burras, C.L.; Talaga, B.J.; Mason, J.A. Equations for predicting soil organic carbon using loss-on-ignition for north central US soils. Soil Sci. Soc. Am. J. 2002, 66, 1878–1881. [Google Scholar] [CrossRef]
- Wright, A.L.; Wang, Y.; Reddy, K.R. Loss-on-ignition method to assess soil organic carbon in calcareous Everglades wetlands. Commun. Soil Sci. Plant Anal. 2008, 39, 3074–3083. [Google Scholar] [CrossRef]
- Rovira, P.; Kurz-Besson, C.; Coûteaux, M.M.; Vallejo, V.R. Changes in litter properties during decomposition: A study by differential thermogravimetry and scanning calorimetry. Soil Biol. Biochem. 2007, 40, 172–185. [Google Scholar] [CrossRef]
- Bachir, H.; Etsouri, S.; Smadhi, D.; Semar, A.S. Representation of rainfall in regions with a low distribution of rain gauging stations. In Proceedings of the International Conference on Natural Resources Management, Cham, Switzerland, 15–17 March 2022; Springer: Cham, Switzerland, 2022; pp. 262–271. [Google Scholar]
- Bachir, H.; Semar, A.; Mazari, A. Statistical and geostatistical analysis related to geographical parameters for spatial and temporal representation of rainfall in semi-arid environments: The case of Algeria. Arab. J. Geosci. 2016, 9, 7. [Google Scholar] [CrossRef]
- Abella, S.; Zimmer, B. Estimating organic carbon from loss-on-ignition in northern Arizona forest soils. Soil Sci. Soc. Am. J. 2007, 71, 545–550. [Google Scholar] [CrossRef]
- Baize, D. Guide des Analyses en Pédologie; INRA Éditions: Versailles, France, 2000. [Google Scholar]
- Szava-Kovats, R. Re-analysis of the relationship between organic carbon and loss-on-ignition in soil. Commun. Soil Sci. Plant Anal. 2009, 40, 2712–2724. [Google Scholar] [CrossRef]
- Lefevre, C.; Rekik, F.; Alcantara, V.; Wiese, L. Carbone Organique du Sol: Une Richesse Invisible; FAO: Rome, Italy, 2017. [Google Scholar]
- Wang, X.J.; Smethurst, P.J.; Herbert, A.M. Relationships between three measures of organic matter or carbon in soils of eucalypt plantations in Tasmania. Aust. J. Soil Res. 1996, 34, 545–553. [Google Scholar] [CrossRef]
- Conyers, M.K.; Poile, G.J.; Oates, A.A.; Waters, D.; Chan, K.Y. Comparison of three carbon determination methods on naturally occurring substrates and the implication for the quantification of soil carbon. Soil Res. 2011, 49, 27–33. [Google Scholar] [CrossRef]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Vanchikova, E.V.; Kondratenok, B.M.; Lapteva, E.M.; Zonova, T.V. Problems and limitations of the dichromatometric method for measuring soil organic matter content: A review. Eurasian Soil Sci. 2022, 55, 861–867. [Google Scholar] [CrossRef]
- Nelson, N.; Baldock, A. Soil organic matter. In Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. B25–B84. [Google Scholar]
- Roper, W.R.; Robarge, W.P.; Osmond, D.L.; Heitman, J.L. Comparing four methods of measuring soil organic matter in North Carolina soils. Soil Sci. Soc. Am. J. 2019, 83, 466–474. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Loss on ignition (LOI) method | - Previously widely used - Easy to apply - Low cost [37] | - Unreliable due to reactions unrelated to organic matter (e.g., interference from carbonates or bound water) - Overestimates OM content (may include oxides and carbonates decomposed at high temperatures) Corg is derived from OM using a fixed conversion factor (0.58), which proves inaccurate for organic horizons [37] |
Anne method | - Oxidation is performed at boiling temperature, ensuring more complete oxidation if maintained for 5 min - More thorough attack of organic matter - Residual dichromate solution is clearer | - Requires heating - More costly - Use of chemical reagents |
Modified Walkley–Black method | - Previously widely used - Inexpensive - Allows for rapid approximate evaluation Targets specific OM pools - Slight interference from [37] | - Destructive - Incomplete oxidation: requires correction factor - Tends to underestimate Corg - Interference from chlorides, Mn2+ and Fe2+ oxides - Uses hazardous chemical compounds [37] |
Parameter | Min | Max | Mean | SD | CV (%) |
---|---|---|---|---|---|
Total Limestone (%) | 27.16 | 60.32 | 39.04 | 9.43 | 24.16 |
pH | 7.17 | 7.9 | 7.51 | 0.23 | 3.11 |
OM (Anne Method) (%) | 2.43 | 5.13 | 3.61 | 0.73 | 20.31 |
OM (Walkley–Black Method) (%) | 1.66 | 4.23 | 2.96 | 0.72 | 24.33 |
OM (LOI with decarbonation) (%) | 1.54 | 3.97 | 2.55 | 0.59 | 22.81 |
OM (LOI without decarbonation) (%) | 2.26 | 5.01 | 3.41 | 0.73 | 21.67 |
Kolmogorov–Smirnov | Shapiro–Wilk | |||||
---|---|---|---|---|---|---|
Statistics | df | Sig. | Statistics | df | Sig. | |
OM (Anne Method) (%) | 0.097 | 25 | 0.200 | 0.958 | 25 | 0.384 |
OM (Walkley–Black Method) (%) | 0.120 | 25 | 0.200 | 0.964 | 25 | 0.511 |
OM (LOI with decarbonation) (%) | 0.092 | 25 | 0.200 | 0.952 | 25 | 0.277 |
OM (LOI without decarbonation) (%) | 0.125 | 25 | 0.200 | 0.949 | 25 | 0.234 |
Group | Mean ± SD | Median | Range (Min–Max) |
---|---|---|---|
With decarbonation | 2.59 ± 0.59 | 2.54 | 1.54–3.97 |
Without decarbonation | 3.41 ± 0.74 | 3.34 | 2.26–5.01 |
Statistical Test | Statistic | p-Value |
---|---|---|
Paired Student’s t-test | t(24) = 14.75 | p = 0.000 |
Paired Wilcoxon test | W = 0.0 | p = 0.000 |
One-tailed test (hypothesis of decrease) | — | p = 1.000 |
Effect size (Cohen’s d) | d = 2.95 | — |
Comparison | Slope | Intercept | R2 | p-Value | Standard Error | Regression Quation |
---|---|---|---|---|---|---|
Walkley–Black vs. Anne | 0.8385 | −0.0539 | 0.7232 | <0.0001 | ±0.1082 | y = 0.8385x − 0.0539 |
LOI (with decarb.) vs. Anne | 0.7691 | −0.1808 | 0.9089 | <0.0001 | ±0.0508 | y = 0.7691x − 0.1808 |
LOI (without decarb.) vs. Anne | 0.9487 | −0.0138 | 0.8848 | <0.0001 | ±0.0714 | y = 0.9487x − 0.0138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laoufi, H.; Bachir, H.; Hadj-Miloud, S.; Clark, K. Comparative Assessment of Three Methods for Soil Organic Matter Determination in Calcareous Soils, Eastern Algeria. Land 2025, 14, 2030. https://doi.org/10.3390/land14102030
Laoufi H, Bachir H, Hadj-Miloud S, Clark K. Comparative Assessment of Three Methods for Soil Organic Matter Determination in Calcareous Soils, Eastern Algeria. Land. 2025; 14(10):2030. https://doi.org/10.3390/land14102030
Chicago/Turabian StyleLaoufi, Hadjer, Hakim Bachir, Samir Hadj-Miloud, and Kerry Clark. 2025. "Comparative Assessment of Three Methods for Soil Organic Matter Determination in Calcareous Soils, Eastern Algeria" Land 14, no. 10: 2030. https://doi.org/10.3390/land14102030
APA StyleLaoufi, H., Bachir, H., Hadj-Miloud, S., & Clark, K. (2025). Comparative Assessment of Three Methods for Soil Organic Matter Determination in Calcareous Soils, Eastern Algeria. Land, 14(10), 2030. https://doi.org/10.3390/land14102030