How to Achieve Integrated High Supply and a Balanced State of Ecosystem Service Bundles: A Case Study of Fujian Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. The Assessment of Ecosystem Services
2.3.2. Partitioning of Ecosystem Service Bundles
2.3.3. Construction of the “Natural-Social-Economic” Latent Driver Factor System
2.3.4. Analysis of the Impact of “Natural-Social-Economic” Factors on Ecosystem Service Bundles
- (i)
- Construction of Training Dataset
- (ii)
- Capturing Relationships between ESBs and “natural-social-economic” factors
- (iii)
- Visualization and Threshold Analysis of Factor Impacts on ESBs
3. Results
3.1. Spatial Patterns of Ecosystem Services
3.2. Spatial Patterns of Ecosystem Service Bundles
3.3. Dominant Driving Factors of Ecosystem Service Bundles
3.4. Impact of Dominant Factors on Ecosystem Service Bundles and Optimal Thresholds for Maximum Ideal Bundle Likelihood
4. Discussion
4.1. Implications for Land Management
4.2. Comparison with Results from Other Regions
4.3. Model Validation
5. Conclusions
- (i)
- Water resources, climate, and human activities significantly influence ESB formation. Of the 17 “natural-socioeconomic” factors analyzed, the proportion of water bodies, distance from construction land, annual solar radiation, total annual precipitation, population density, and GDP density are the primary determinants affecting ES cluster formation in Fujian Province.
- (ii)
- An increased proportion of water bodies enhances and balances the supply levels of multiple ESs, while higher human activity intensity markedly reduces the supply levels of various ESs. Additionally, all ES clusters exhibit high sensitivity to climate change.
- (iii)
- At the 1 km × 1 km grid scale, each driving factor has an optimal threshold range that increases the likelihood of forming ideal ESBs: cultivated land should be maintained between 16.5% and 36% (and not exceed 59%), while woodland should account for more than 54.3%, water bodies for 3.7–11.4%, grassland for 23.5–50%, and built-up land should not exceed 10.1%. Regulating land use type areas within these ranges can foster the formation of ESBs with high and balanced supply levels, while preventing the emergence of low-supply ESBs.
- (iv)
- In exploring ESB formation mechanisms, MCEBM-API significantly outperforms multinomial logistic regression and demonstrates strong generalizability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Hyperparameter | Description | Search Range | Optimal Value |
---|---|---|---|
n_estimators | Number of weak learners. A larger value generally improves performance but increases computation cost and may lead to overfitting. | 50–1000 | 50 |
max_bins | Maximum number of bins for feature discretization, affecting model complexity and fitting ability. | 32–256 | 256 |
learning_rate | Learning rate controlling the contribution of each tree to the final prediction. Too high may cause overfitting, too low may slow convergence. | 0.01–0.3 | 0.1 |
min_samples_leaf | Minimum number of samples per leaf. Larger values help reduce overfitting risk. | 1–20 | 2 |
max_leaves | Maximum number of leaves per weak learner, controlling tree complexity. | 3–20 | 3 |
outer_bags | Number of outer bagging iterations, used to reduce variance and improve model stability. | 4–20 | 8 |
validation_size | Proportion of validation set used to evaluate model performance during training and prevent overfitting. | 0.1–0.3 | 0.15 |
early_stopping_rounds | Number of rounds for early stopping. Training stops when validation performance does not improve for consecutive rounds, preventing overfitting. | 10–100 | 50 |
References
- Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Zhang, Y.; Zhang, Y. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective? J. Clean. Prod. 2020, 257, 120454. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Granek, E.F.; Polasky, S.; Aswani, S.; Cramer, L.A.; et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 2008, 319, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tong, Z.; Zhang, L.; Liu, Y. What are the dominant factors and optimal driving threshold for the synergy and tradeoff between ecosystem services, from a nonlinear coupling perspective? J. Clean. Prod. 2023, 422, 138609. [Google Scholar] [CrossRef]
- Lucia, M.R.F.; Soliveres, S.; Penone, C.; Fischer, M.; Allan, E. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. USA 2020, 117, 28140–28149. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, H.; Yi, Q.T.; Li, R.N. The change and driving factors of ecosystem service bundles:A case study of Daqing River Basin. Acta Ecol. Sin. 2021, 41, 5204–5213. [Google Scholar]
- Zhang, T.; Zhang, S.; Cao, Q.; Wang, H.; Li, Y. The spatiotemporal dynamics of ecosystem services bundles and the social-economic-ecological drivers in the Yellow River Delta region. Ecol. Indic. 2022, 135, 108573. [Google Scholar] [CrossRef]
- Renard, D.; Rhemtulla, J.M.; Bennett, E.M. Historical dynamics in ecosystem service bundles. Proc. Natl. Acad. Sci. USA 2015, 112, 13411–13416. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, Z.; Han, H.; Li, Z.; Cheng, X.; Kang, F.; Wu, H. The Grain for Green Program intensifies trade-offs between ecosystem services in midwestern Shanxi, China. Remote Sens. 2021, 13, 3966. [Google Scholar] [CrossRef]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing–Tianjin–Hebei region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef]
- Turner, K.G.; Odgaard, M.V.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Wen, Y.; Li, H.; Zhang, X.; Li, T. Ecosystem services in Jiangsu province: Changes in the supply and demand patterns and its influencing factors. Front. Environ. Sci. 2022, 10, 931735. [Google Scholar] [CrossRef]
- Lamarque, P.; Lavorel, S.; Mouchet, M.; Quetier, F. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proc. Natl. Acad. Sci. USA 2014, 111, 13751–13756. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, Y.Z.; Han, L.J.; Cheng, L.H.; Lv, Y.H.; Fu, B.J.; Feng, X.M.; Wu, X. Shortened duration and reduced area of frozen soil in the Northern Hemisphere. The Innovation 2021, 2, 100146. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Wu, S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Chen, H.; Fleskens, L.; Schild, J.; Moolenaar, S.; Wang, F.; Ritsema, C. Impacts of large-scale landscape restoration on spatio-temporal dynamics of ecosystem services in the Chinese Loess Plateau. Landsc. Ecol. 2021, 37, 329–346. [Google Scholar] [CrossRef]
- Cao, Y.; Tian, G.; Fang, Y.; Li, X.; Tan, Y.; Tan, Y. Linking ecosystem services trade-offs, bundles and hotspot identification with cropland management in the coastal Hangzhou Bay area of China. Land Use Policy 2020, 97, 104689. [Google Scholar] [CrossRef]
- Dong, W.; Wu, X.; Zhang, J.; Zhang, Y.; Dang, H.; Lü, Y.; Wang, C.; Guo, J. Spatiotemporal heterogeneity and driving factors of ecosystem service relationships and bundles in a typical agropastoral ecotone. Ecol. Indic. 2023, 156, 111074. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Fu, B.; Ma, R.; Yang, Y.; Lü, Y.; Wu, X. Identifying ecological security patterns based on the supply, demand and sensitivity of ecosystem service: A case study in the Yellow River Basin China. J. Environ. Manag. 2022, 315, 115158. [Google Scholar] [CrossRef]
- Maike, H.; Reinette, B.; Belinda, R. Mapping social–ecological systems: Identifying ‘green-loop’ and ‘red-loop’ dynamics based on characteristic bundles of ecosystem service use. Glob. Environ. Change 2015, 34, 218–226. [Google Scholar]
- Tong, Z.; An, R.; Zhang, Z.; Liu, Y.; Luo, M. Exploring non-linear and spatially non-stationary relationships between commuting burden and built environment correlates. J. Transp. Geogr. 2022, 104, 103413. [Google Scholar] [CrossRef]
- Tao, T.; Wang, J.Y.; Cao, X.Y. Exploring the non-linear associations between spatial attributes and walking distance to transit. J. Transp. Geogr. 2020, 82, 102560. [Google Scholar] [CrossRef]
- Tong, Z.; Zhu, Y.; Zhang, Z.; An, R.; Liu, Y.; Zheng, M. Unravel the spatio-temporal patterns and their nonlinear relationship with correlates of dockless shared bikes near metro stations. Geo-Spat. Inf. Sci. 2022, 26, 577–598. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, S.; Koch, P.; Lou, Y.; Chajewska, U.; Caruana, R. Axiomatic interpretability for multiclass additive models. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 226–234. [Google Scholar]
- Xu, X. China Monthly Vegetation Index (NDVI) Spatial Distribution Data Set. Resource and Environmental Science Data Registration and Publishing System. 2018. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=50 (accessed on 3 September 2025).
- Xu, X. China’s GDP Spatial Distribution Kilometer Grid Data Set. Resource and Environmental Science Data Registration and Publishing System. 2017. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=33 (accessed on 3 September 2025).
- Xu, X. Chinese Population Spatial Distribution Kilometer Grid Data Set. Resource and Environmental Science Data Registration and Publishing System. 2017. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=32 (accessed on 3 September 2025).
- Kuri, F.; Murwira, A.; Murwira, K.S.; Masocha, M. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 39–46. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Pennington, D.; Mendoza, G.; Aukema, J.; Foster, J.; Forrest, J.; Cameron, D. InVEST 2.0 Beta User’s Guide: Integrated Valuation of Ecosystem Services and Tradeoffs; Woods Institute for the Environment, Stanford University: California, CA, USA, 2011. [Google Scholar]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Corvallis, OR, USA, 1978. [Google Scholar]
- Zhang, L.; Dawes, W.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Fu, B.; Wang, Y.; Xu, P.; Yan, K. Mapping the flood mitigation services of ecosystems—A case study in the Upper Yangtze River Basin. Ecol. Eng. 2013, 52, 238–246. [Google Scholar] [CrossRef]
- Korzoun, V.I.; Sokolov, A.A.; Budyko, M.I.; Voskresensky, K.P. World Water Balance and Water Resources of the Earth; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Miljković, D. Brief review of self-organizing maps. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 1061–1066. [Google Scholar]
- Ros, F.; Riad, R.; Guillaume, S. PDBI: A partitioning Davies-Bouldin index for clustering evaluation. Neurocomputing 2023, 528, 178–199. [Google Scholar] [CrossRef]
- Mouchet, M.; Paracchini, M.-L.; Schulp, C.; Stürck, J.; Verkerk, P.; Verburg, P.; Lavorel, S.J.E.I. Bundles of ecosystem (dis) services and multifunctionality across European landscapes. Ecol. Indic. 2017, 73, 23–28. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Rajan, V.; Shrivastava, H. ICU mortality prediction: A classification algorithm for imbalanced datasets. Proc. AAAI Conf. Artif. Intell. 2017, 31, 1288–1294. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Tomek, I. Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, 6, 769–772. [Google Scholar]
- Maloney, K.; Buchanan, C.; Jepsen, R.; Krause, K.; Cashman, M.; Gressler, B.; Young, J.; Schmid, M. Explainable machine learning improves interpretability in the predictive modeling of biological stream conditions in the Chesapeake Bay Watershed, USA. J. Environ. Manag. 2022, 322, 116068. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Reich, P.B.; Sendall, K.M.; Stefanski, A.; Rich, R.L.; Hobbie, S.E.; Montgomery, R.A. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 2018, 562, 263. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Li, D.; Cao, W.; Dou, Y.; Wu, S.; Liu, J.; Li, S. Non-linear effects of natural and anthropogenic drivers on ecosystem services: Integrating thresholds into conservation planning. J. Environ. Manag. 2022, 321, 116047. [Google Scholar] [CrossRef]
- Thuiller, W.; Araújo, M.B.; Lavorel, S. Do we need land-cover data to model species distributions in Europe? J. Biogeogr. 2004, 31, 353–361. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Liu, Y.; Hai, X.; Shanguan, Z.; Deng, L. Driving factors of ecosystem services and their spatiotemporal change assessment based on land use types in the Loess Plateau. J. Environ. Manag. 2022, 311, 114835. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhao, W.; Liu, Y.; Wang, S.; Wang, J.; Zhai, R. Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci. Total Environ. 2018, 644, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Irwin, E.G.; Geoghegan, J. Theory, data, methods: Developing spatially explicit economic models of land use change. Agric. Ecosyst. Environ. 2001, 85, 7–24. [Google Scholar] [CrossRef]
- Pfaff, A.S.P. What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data. J. Environ. Econ. Manag. 1999, 37, 26–43. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef]
- Mei, Z.; Li, C.; Zhao, J.; Li, Z.; Chen, K.; Huang, X.; Zhao, Z. The Temporal and Spatial Evolution Characteristics and Driving Factors of Ecosystem Service Bundles in Anhui Province, China. Land 2024, 13, 736. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, Z.-c.; Yang, Y.; Ren, W.; Ju, A.-q. The impact of ecological vulnerability on ecosystem service value and threshold identification: A case study of the Zhangjiakou-Chengde area, China. Front. Environ. Sci. 2025, 13, 1583841. [Google Scholar] [CrossRef]
Select Dimension | Potential Impact Factor | Unit |
---|---|---|
Human activities | GDP density | RMB ten thousand/km2 |
population density | People/km2 | |
distance from construction land | km | |
distance from highway | km | |
distance from railway | km | |
Land management | the proportion of cultivated land | % |
the proportion of woodland | % | |
the proportion of grassland | % | |
the proportion of water bodies | % | |
the proportion of construction land | % | |
Climate | annual mean temperature | °C |
annual total precipitation | mm | |
Monthly average solar radiation | MJ/m2 | |
Topography | altitude | m |
slope | ° | |
Habitat characteristics | NDVI | / |
distance from water bodies | km |
Driving Force | Specific Factors | Rank | Relative Importance | Relative Importance of Each Driving Force |
---|---|---|---|---|
Human activities | GDP density | 5 | 6.75 | 30.9 |
population density | 3 | 6.96 | ||
distance from construction land | 2 | 7.07 | ||
distance from highway | 16 | 4.84 | ||
distance from railway | 11 | 5.28 | ||
Land management | proportion of cultivated land | 13 | 5.17 | 28.77 |
proportion of woodland | 14 | 5.14 | ||
proportion of grassland | 12 | 5.26 | ||
proportion of water bodies | 1 | 7.48 | ||
proportion of construction land | 10 | 5.73 | ||
Climate | annual mean temperature | 8 | 5.95 | 19.01 |
annual total precipitation | 6 | 6.25 | ||
annual solar radiation | 4 | 6.81 | ||
Topography | altitude | 15 | 5.02 | 10.83 |
slope | 9 | 5.91 | ||
Habitat characteristics | NDVI | 17 | 4.40 | 10.39 |
distance from water bodies | 7 | 5.99 |
Model Accuracy Parameter (%) | MLR | MC-EBM |
---|---|---|
Accuracy rate for bundle 1 | 11.7 | 83.9 |
Accuracy rate for bundle 2 | 45.1 | 90.1 |
Accuracy rate for bundle 3 | 26.0 | 90.0 |
Accuracy rate for bundle 4 | 32.5 | 80.8 |
Accuracy rate for bundle 5 | 68.4 | 86.9 |
BACC metric | 37.1 | 84.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Tong, Z.; Fan, F.; Liang, K. How to Achieve Integrated High Supply and a Balanced State of Ecosystem Service Bundles: A Case Study of Fujian Province, China. Land 2025, 14, 2002. https://doi.org/10.3390/land14102002
Zhang Z, Tong Z, Fan F, Liang K. How to Achieve Integrated High Supply and a Balanced State of Ecosystem Service Bundles: A Case Study of Fujian Province, China. Land. 2025; 14(10):2002. https://doi.org/10.3390/land14102002
Chicago/Turabian StyleZhang, Ziyi, Zhaomin Tong, Feifei Fan, and Ke Liang. 2025. "How to Achieve Integrated High Supply and a Balanced State of Ecosystem Service Bundles: A Case Study of Fujian Province, China" Land 14, no. 10: 2002. https://doi.org/10.3390/land14102002
APA StyleZhang, Z., Tong, Z., Fan, F., & Liang, K. (2025). How to Achieve Integrated High Supply and a Balanced State of Ecosystem Service Bundles: A Case Study of Fujian Province, China. Land, 14(10), 2002. https://doi.org/10.3390/land14102002