Remote Sensing Evaluation of Cultivated Land Soil Quality in Soda–Saline Soil Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Acquisition and Processing
2.2.1. Soil Collection and Processing
2.2.2. Field Hyperspectral Data Measurement
2.2.3. Acquisition and Preprocessing of Sentinel-2 MSI
2.2.4. Acquisition and Preprocessing of GF-5 Hyperspectral Data
2.3. The Evaluation Framework for Cultivated Land Soil Quality Based on Remote Sensing in Soda–Saline Soil Areas
2.4. Classification of Soil Attribute Grades
2.5. Soil Attribute Grade Prediction
2.6. Comprehensive Evaluation Model of Cultivated Land Soil Quality Based on Remote Sensing
2.7. Prediction Model Accuracy Verification
3. Results
3.1. Preparation of Remote Sensing Dataset of Bare Soil in Cultivated Land
3.2. Prediction of Soil Attribute Grades Based on Cloud Model
3.3. Comprehensive Evaluation of Cultivated Land Soil Quality Based on Remote Sensing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lv, Y.H.; Zhang, C.; Ma, J.N.; Yun, W.J.; Gao, L.L.; Li, P.S. Sustainability assessment of smallholder farmland systems: Healthy farmland system assessment framework. Sustainability 2019, 11, 4525. [Google Scholar] [CrossRef]
- Gong, H.Y.; Zhao, Z.B.; Chang, L.; Li, G.H.; Li, Y.; Li, Y.F. Spatiotemporal patterns in and key influences on cultivated-land multi-functionality in Northeast China’s Black-Soil Region. Land 2022, 11, 1101. [Google Scholar] [CrossRef]
- Rapport, D.J. What Constitutes Ecosystem Health? Perspect. Biol. Med. 1989, 33, 120–132. [Google Scholar] [CrossRef]
- Toor, G.S.; Yang, Y.Y.; Das, S.; Dorsey, S.; Felton, G. Soil health in agricultural ecosystems: Current status and future perspectives. Adv. Agron. 2021, 168, 157–201. [Google Scholar]
- Liang, J.; Zheng, H.H.; Cai, Z.Y.; Zhou, Y.M.; Xu, Y. Evaluation of cultivated land quality in semiarid sandy areas: A case study of the Horqin Zuoyihou Banner. Land 2022, 11, 1457. [Google Scholar] [CrossRef]
- Sun, X.B.; Li, Q.F.; Kong, X.B.; Cai, W.M.; Zhang, B.L.; Lei, M. Spatial characteristics and obstacle factors of cultivated land quality in an intensive agricultural region of the North China Plain. Land 2023, 12, 1552. [Google Scholar] [CrossRef]
- Li, Q.; Yan, J.M. Assessing the health of agricultural land with emergy analysis and fuzzy logic in the major grain-producing region. Catena 2012, 99, 9–17. [Google Scholar] [CrossRef]
- Yan, S.H.; Gao, Y.M.; Tian, M.J.; Tian, Y.Q.; Li, J.S. Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agric. Water Manag. 2021, 255, 106995. [Google Scholar] [CrossRef]
- Leopold, A. Wilderness as a land laboratory. Living Wilderness 1941, 6, 2–3. [Google Scholar]
- Soil Health. What is Soil Health? Natural Resources Conservation Service (NRCS). Available online: https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soil/soil-health (accessed on 5 August 2025).
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Gao, L.L.; Zhu, X.C.; Han, Z.Y.; Wang, L.; Zhao, G.X.; Jiang, Y.M. Spectroscopy-based soil organic matter estimation in brown forest soil areas of the Shandong Peninsula, China. Pedosphere 2019, 29, 810–818. [Google Scholar] [CrossRef]
- Moebius-Clune, B.N.; Moebius-Clune, D.J.; Gugino, B.K.; Schindelbeck, R.R.; Ristow, A.J.; van Es, H.M.; Thies, J.E.; Shayler, H.A.; McBride, M.B.; Wolfe, D.W.; et al. Comprehensive Assessment of Soil Health—The Cornell Framework; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Zhao, R.; Gabriel, J.L.; Martín, J.A.R.; Feng, Z.; Wu, K.N. Understanding trade-offs and synergies among soil functions to support decision-making for sustainable cultivated land use. Front. Environ. Sci. 2022, 10, 1063907. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Song, X.D.; Wu, H.Y.; Ju, B.; Liu, F.; Yang, F.; Li, D.C.; Zhao, Y.G.; Yang, J.L.; Zhang, G.L. Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma 2020, 363, 114145. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Chen, S.C.; Yang, Y.Y.; Zhou, Y.; Shi, Z. High-resolution three-dimensional mapping of soil organic carbon in China: Effects of SoilGrids products on national modeling. Sci. Total Environ. 2019, 685, 480–489. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Chen, S.C.; Yang, Y.Y.; Zhao, R.Y.; Shi, Z.; Rossel, R.A.V. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980’s China. Geoderma 2019, 335, 47–56. [Google Scholar] [CrossRef]
- Sun, Q.Q.; Zhang, P.; Wei, H.; Liu, A.X.; You, S.C.; Sun, D.F. Improved mapping and understanding of desert vegetation-habitat complexes from intraannual series of spectral endmember space using cross-wavelet transform and logistic regression. Remote Sens. Environ. 2020, 236, 111516. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, C.; Zhang, Y.H.; Gao, L.R.; Wang, Y.H.; Wu, Z.X.; Zhang, W.Q.; Liu, H.J. Integration of bare soil and crop growth remote sensing data to improve the accuracy of soil organic matter mapping in black soil areas. Soil Till. Res. 2024, 244, 106269. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.F.; Peng, Z.Q.; Xu, X.X.; Liu, J.J.; Song, Y.H.; Di, H.G.; Hua, D.X. Monitoring soil nutrients using machine learning based on UAV hyperspectral remote sensing. Int. J. Remote Sens. 2024, 45, 4897–4921. [Google Scholar] [CrossRef]
- Seifi, M.; Ahmadi, A.; Neyshabouri, M.R.; Taghizadeh-Mehrjardi, R.; Bahrami, H. Remote and Vis-NIR spectra sensing potential for soil salinization estimation in the eastern coast of Urmia hyper saline Lake, Iran. Remote Sens. Appl. Soc. Environ. 2020, 20, 100398. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Zhang, X.L.; Chan, N.W.; Kung, H.; Ariken, M.; Zhou, X.H.; Wang, Y.S. Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index. Sci. Total Environ. 2021, 775, 145807. [Google Scholar] [CrossRef]
- Qiu, Z.C.; Liu, H.J.; Zhang, X.L.; Meng, L.H.; Xu, M.Y.; Pan, Y.; Bao, Y.L.; Yu, S.N. Analysis of spatiotemporal variation of site-specific management zones in a topographic relief area over a period of six years using image segmentation and satellite data. Can. J. Remote Sens. 2019, 45, 746–758. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Wang, Z.M. Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing. Comput. Electron. Agric. 2018, 154, 204–212. [Google Scholar] [CrossRef]
- Ma, J.N.; Zhang, C.; Guo, H.; Chen, W.L.; Yun, W.J.; Gao, L.L.; Wang, H. Analyzing ecological vulnerability and vegetation phenology response using NDVI time series data and the BFAST algorithm. Remote Sens. 2020, 12, 3371. [Google Scholar] [CrossRef]
- Shao, T.Y.; Qian, F.K.; Liu, H.B.; Wang, S.; Pang, R.R.; Xu, H. Multi-scale cultivated land quality assessment and its scale effect based on multi-source data fusion. Catena 2025, 259, 109350. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef]
- Peng, W.; Zhu, X.M.; Zheng, W.J.; Xie, Q.Y.; Wang, M.M.; Ran, E.H. Rice cultivation can mitigate soil salinization and alkalization by modifying the macropore structure in saline–sodic paddy fields. Agric. Water Manag. 2025, 313, 109473. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.Y.; Zhao, Y.G.; Li, D.C.; Yang, J.L.; Song, X.D.; Shi, Z.; Zhu, A.X.; Zhang, G.L. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- GB/T 28407-2012; Regulation for Gradation on Agriculture Land Quality. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China: Beijing, China, 2012; (in Chinese with English abstract).
- GB/T 33469-2016; Cultivated Land Quality Grades. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of China: Beijing, China, 2016; (in Chinese with English abstract).
- Li, D.Y.; Liu, C.Y.; Gan, W.Y. A new cognitive model: Cloud model. Int. J. Intell. Syst. 2009, 24, 357–375. [Google Scholar] [CrossRef]
- Wang, G.Y.; Xu, C.L.; Li, D.Y. Generic normal cloud model. Inform. Sci. 2014, 280, 1–15. [Google Scholar] [CrossRef]
- Vogelmann, J.; Moss, B.; Rock, D. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Gao, L.L.; Zhang, C.; Yun, W.J.; Ji, W.J.; Ma, J.N.; Wang, H.; Li, C.; Zhu, D.H. Mapping crop residue cover using Adjust Normalized Difference Residue Index based on Sentinel-2 MSI data. Soil Till. Res. 2022, 220, 105374. [Google Scholar] [CrossRef]
- Bowers, S.A.; Hanks, R.J. Reflectance of radiant energy from soils. Soil Sci. 1965, 100, 130–138. [Google Scholar] [CrossRef]
- Baumgardner, M.F.; Kristof, S.J.; Johannsen, C.J.; Zachary, A. Effects of organic matter on the multispectral properties of soils. Proc. Indiana Acad. Sci. 1970, 79, 413–422. [Google Scholar]
- Dalal, R.C.; Henry, R.J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
Minimum | Mean | Maximum | Standard Deviation | |
---|---|---|---|---|
Soil organic matter content/g/kg | 2.01 | 16.03 | 36.46 | 8.98 |
pH | 6.99 | 8.49 | 10.02 | 0.70 |
Salinity content/g/kg | 0.00 | 5.30 | 55.00 | 8.60 |
Image | Spatial Resolution | Time | Purpose |
---|---|---|---|
GF-5 AHSI | 30 m | 21 April 2019, 4 November 2019, 11 November 2019 | Extracting bare soil |
Sentinel-2 MSI | 10/20 m | 27 August 2019 | Monitoring crop growth |
UAV | 2.5 cm | 4–5 November 2019 | Extracting bare soil |
Field survey | -- | 11–18 May 2018, 19–26 August 2018, 25–28 August 2019, 16–25 May 2021 | Constructing the soil attribute prediction model |
Index | Grade | Score Value | Describe |
---|---|---|---|
Organic matter content | Grade 1 | 100 | ≥40 g/kg |
Grade 2 | 90 | 30 g/kg~40 g/kg | |
Grade 3 | 80 | 20 g/kg~30 g/kg | |
Grade 4 | 70 | 10 g/kg~20 g/kg | |
Grade 5 | 60 | 6 g/kg~10 g/kg | |
Grade 6 | 50 | <6 g/kg | |
pH value | Grade 1 | 100 | 6.0~7.9 |
Grade 2 | 90 | 7.9~8.5 | |
Grade 3 | 80 | 8.5~9.0 | |
Grade 4 | 30 | 9.0~9.5 | |
Grade 5 | 10 | ≥9.5 | |
Salt content | Grade 1 | 100 | Desalination, soil desalination, crops are free from seedling loss and ridge breakage caused by salinization, and the salt content in the topsoil is less than 0.1% (soluble salts are mainly sodium carbonate) |
Grade 2 | 90 | Mild salinization, resulting in a 20% to 30% crop seedling loss due to salinization, with a surface soil salt content of 0.1% to 0.3% (soluble salts are mainly sodium carbonate) | |
Grade 3 | 70 | Moderate salinization, resulting in a 30% to 50% crop seedling loss due to salinization, with a surface soil salt content of 0.3% to 0.5% (mainly soluble salts, primarily sodium carbonate) | |
Grade 4 | 40 | Severe salinization, resulting in crop seedling loss of ≥50% due to salinization, with surface soil salt content ≥ 0.5% (mainly composed of soluble salts such as sodium carbonate) |
Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|
SOM1, SAC1 | SOM2, SAC2 | SOM1, SAC4 | SOM5, SAC4 |
SOM1, SAC2 | SOM3, SAC1 | SOM2, SAC4 | SOM6, SAC3 |
SOM2, SAC1 | SOM3, SAC2 | SOM3, SAC4 | SOM6, SAC4 |
SOM3, SAC3 | SOM4, SAC3 | ||
SOM4, SAC1 | SOM4, SAC4 | ||
SOM4, SAC2 | SOM5, SAC2 | ||
SOM5, SAC1 | SOM5, SAC3 |
Spectral Index | Cloud Digital Features | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|---|---|
SI1 | Ex | 0.17 | 0.21 | 0.25 | 0.27 |
En | 0.06 | 0.05 | 0.05 | 0.10 | |
He | 0.02 | 0.01 | 0.01 | 0.10 | |
SI2 | Ex | 0.21 | 0.24 | 0.28 | 0.29 |
En | 0.04 | 0.05 | 0.06 | 0.11 | |
He | 0.01 | 0.02 | 0.02 | 0.10 | |
RVIre | Ex | 6.82 | 5.78 | 4.35 | 2.21 |
En | 4.97 | 4.25 | 3.42 | 0.96 | |
He | 2.10 | 1.25 | 0.88 | 0.84 |
Spectral Index | /% | /% | ||
---|---|---|---|---|
Soil organic matter + salinity | 0.74 | 27.69 | 0.68 | 22.87 |
pH value | 0.95 | 33.36 | 0.98 | 36.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Zhang, C.; Li, C. Remote Sensing Evaluation of Cultivated Land Soil Quality in Soda–Saline Soil Areas. Land 2025, 14, 1986. https://doi.org/10.3390/land14101986
Gao L, Zhang C, Li C. Remote Sensing Evaluation of Cultivated Land Soil Quality in Soda–Saline Soil Areas. Land. 2025; 14(10):1986. https://doi.org/10.3390/land14101986
Chicago/Turabian StyleGao, Lulu, Chao Zhang, and Cheng Li. 2025. "Remote Sensing Evaluation of Cultivated Land Soil Quality in Soda–Saline Soil Areas" Land 14, no. 10: 1986. https://doi.org/10.3390/land14101986
APA StyleGao, L., Zhang, C., & Li, C. (2025). Remote Sensing Evaluation of Cultivated Land Soil Quality in Soda–Saline Soil Areas. Land, 14(10), 1986. https://doi.org/10.3390/land14101986