Assessing Stream Bank Erosion with a Visual Assessment Protocol in Streams Around Drama City, Greece
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Utilizing Geographic Information Systems (GIS)
2.2.1. Primary Data
- Corine 2018 (Land-Uses);
- EU-Hydro River Network Database 2006–2012;
- Greek Regional Units (former Prefectures).
2.2.2. Digitization and Data Export
2.3. Τhe Bank Erosion Hazard Index (BEHI)
- The percentage of the bank toe that is protected.
- The existence of undercuts.
- The existence of stratification and if a layer has erodible material.
- If the banks exceed 3 m in height and the percentage of bank soil exposed.
- The percentage of roots lacking soil material.
- The percentage of the bank lacking rooted vegetation.
- Date, weather condition, and the personnel recording the information.
- The bank number (#) being assessed.
- The GPS coordinates.
- The pictures along both banks.
- The side of the stream being assessed (left or right).
- The bank height (m) from the toe to the top of the bank.
- The bank length (m).
- The number of questions answered with a “yes” (#) in the pre-screening sheet.
- The distance to infrastructure (m) and its type.
- The unvegetated mid-channel bar/braided channel, exposed tree roots, etc.
- The composition of the bank material.
- The visually estimated root depth (m) and density (%), vertically.
- The slope of the lower (undercutting) and the entire bank.
- The visually estimated stream bank vegetative protective layer (%).
- The visually determined number (#) of stratified layers.
- Without erosion.
- Very low.
- Low.
- Moderate.
- High.
- Very high.
- Extreme.
2.4. Statistical Analysis—Linear Regression
2.5. Statitiscal Analysis—Categorical Principal Component Analysis (CatPCA)
3. Results
3.1. Riparian Land-Uses
3.2. Stream Reaches—Stream Bank Erosion Categories
3.3. Linear Regression Analysis
- Μodel 1 (all variables): BEHI erosion level categories (Dependent Variable = Y), stream flow (St.Fl.), riparian land-uses (Ri.La.Us.), meander or straight channels (Me.St.Ch.), existence or not of anthropogenic interventions (Ex.An.In.), and soil factor (So.Fa.) and stream channel slope (St.Ch.Sl.) (Independent Variables).
- Μodel 2 (anthropogenic variables): BEHI erosion level categories (Dependent Variable = Y), riparian land-uses (Ri.La.Us.), meander or straight channels (Me.St.Ch.), and existence or not of anthropogenic interventions (Ex.An.In.) (Independent Variables).
- Μodel 3 (fluvio-geomorphologic variables): BEHI erosion level categories (Dependent Variable = Y), stream flow (St.Fl.), meander or straight channels (Me.St.Ch.), and soil factor (So.Fa.) and stream channel slope (St.Ch.Sl.) (Independent Variables).
- Model 1 is the best overall, having the lowest AIC, SBC, APC, and PRESS. It also has the highest R2, and the F was very significant (<0.001). Cp = 6 indicates that it has the right number of variables (probably ~5). The Durbin–Watson value = 1.364 indicates some positive autocorrelation, but much less than the others. It is the most balanced model: good fit, correct complexity, and decent predictive ability.
- Model 2 is poor in all indices: AIC, BIC, APC, PRESS, and DW. It also has the highest R2, and the F was very significant (<0.001). p = 4 indicates that it probably has too few variables. DW = 0.825 is very low, indicating strong positive autocorrelation—a serious violation of the assumption. The model is underspecified and poor at predicting.
- Model 3 is fair and superior to Model 2, but inferior to Model 1 with a marginally acceptable Cp and APC. Model 3 is fair and superior to Model 2 and inferior to Model 1. It has a marginally acceptable Cp and APC. Still, PRESS is higher than Model 1. DW = 1.214 shows enough autocorrelation, but less than Model 2. Its R2 was slightly lower, and the Model 1 and the F were very significant (<0.001). It can be considered a “second choice.”
3.4. Categorical Principal Component Analysis (CatPCA)
4. Discussion
4.1. The Kallifytos Stream
4.2. The Monastiraki-Ag. Varvara Stream
4.3. The Adriani-Doxato Stream
4.4. The Zoodochos Pigi Stream
4.5. The Nea Amisos Stream
4.6. The Bank Erosion Hazard Assessment (BEHI) Overall Outcomes
4.7. The Linear Regression Outcomes
4.8. The CatPCA Outcomes
4.9. Practices/Policy Reccommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BEHI | Bank Erosion Hazard Index |
CatPCA | Categorical Principal Component Analysis (CatPCA) |
GDP | Gross Domestic Product |
GIS | Geographic Information System |
NbS | Nature-bases Solutions |
QBR | Qualitat del Bosc de Ribera |
SVAP | Stream Visual Assessment Protocol |
References
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. J. Soil Water Conserv. 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Barberena, I.; Luquin, E.; Campo-Bescós, M.A.; Eslava, J.; Giménez, R.; Casalí, J. Challenges and Progresses in the detailed estimation of sediment export in agricultural watersheds in Navarra (Spain) after two decades of experience. Environ. Res. 2023, 234, 116581. [Google Scholar] [CrossRef]
- Sartori, M.; Philippidis, G.; Ferrari, E.; Borrelli, P.; Lugato, E.; Montanarella, L.; Panagos, P. A linkage between the bio-physical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy 2019, 86, 299–312. [Google Scholar] [CrossRef]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf. 2018, 84, 64–84. [Google Scholar] [CrossRef]
- Li, K.; Yang, J.; Wang, J.; Wang, Z.; Zeng, Y.; Borrelli, P.; Hubacek, K.; Hu, Y.; Xu, B.; Fang, N.; et al. Human-altered soil loss dominates nearly half of water erosion in China but surges in agriculture-intensive areas. One Earth 2024, 7, 2008–2018. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, C.; Cao, S. Cost–Benefit Analysis of China’s Natural Forest Conservation Program. J. Nat. Conserv. 2020, 55, 125818. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tamparopoulos, A.E.; Tufekcioglu, M.; Schultz, R.C. Understanding stream bank erosion and deposition in Iowa, USA: A seven-year study along streams in different regions with different riparian land uses. J. Environ. Manag. 2021, 287, 112352. [Google Scholar] [CrossRef]
- Margenot, A.J.; Zhou, S.; McDowell, R.; Hebert, T.; Fox, G.; Schilling, K.; Richmond, S.; John, L.; Kovar, J.L.; Wickramarathne, N.; et al. Streambank erosion and phosphorus loading to surface waters: Knowns, unknowns, and implications for nutrient loss reduction research and policy. J. Environ. Qual. 2023, 52, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- Thorne, C.R. Processes and Mechanics of Bank Erosion. In Gravel-Bed Rivers: Fluvial Processes, Engineering and Management; Hey, R.D., Bathurst, J.C., Thorne, C.R., Eds.; John Wiley & Sons: Chichester, UK, 1982; pp. 227–271. [Google Scholar]
- Lawler, D.M.; Thorne, C.R.; Hooke, J.M. Bank Erosion and Instability. In Applied Fluvial Geomorphology for River Engineering and Management; Thorne, C., Hey, R., Newson, M., Eds.; Wiley: Chichester, UK, 1997; pp. 137–172. [Google Scholar]
- Lawler, D.M. Process Dominance in Bank Erosion Systems. In Lowland Floodplain Rivers: Geomorphological Perspectives; Carling, P., Petts, G., Eds.; John Wiley & Sons: Chichester, UK, 1992; Chapter 5. [Google Scholar]
- Florsheim, J.L.; Mount, J.F.; Chin, A. Bank erosion as a desirable attribute of rivers. BioScience 2008, 58, 519–529. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H.; Pollock, M. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 1993, 3, 209–212. [Google Scholar] [CrossRef]
- Engel, F.L.; Rhoads, B.L. Interaction among mean flow, turbulence, bed morphology, bank failures and channel planform in an evolving compound meander loop. Geomorphology 2012, 163, 70–83. [Google Scholar] [CrossRef]
- Zaimes, G.N. Mediterranean riparian areas—Climate change implications and recommendations. J. Environ. Biol. 2020, 41, 957–965. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Tang, Q.H. Meandering characteristics of the Yimin River in Hulun Buir Grassland, Inner Mongolia, China. Remote Sens. 2022, 14, 2696. [Google Scholar] [CrossRef]
- Davis, S.; Grainger, M.; Pfeifer, M.; Pattison, Z.; Stephens, P.; Sanderson, R. Restoring riparian habitats for benefits to biodiversity and human livelihoods: A systematic map protocol for riparian restoration approaches in the tropics. Environ. Evid. 2025, 14, 2. [Google Scholar] [CrossRef]
- Lane, S.N.; Tayefi, V.; Reid, S.C.; Yu, D.; Hardy, R.J. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surf. Process. Landf. 2006, 32, 429–446. [Google Scholar] [CrossRef]
- Hawley, R.J.; MacMannis, K.R.; Wooten, M.S.; Fet, E.V.; Korth, N.L. Suburban stream erosion rates in northern Kentucky exceed reference channels by an order of magnitude and follow predictable trajectories of channel evolution. Geomorphology 2020, 352, 106998. [Google Scholar] [CrossRef]
- Li, Y.; Tang, C.; Huang, Z.; Hussain, Z.K.S.; Are, T.P.; Abegunrin, T.P.; Qin, Z.; Guo, H. Increase in farm size significantly accelerated stream channel erosion and associated nutrient losses from an intensive agricultural watershed. Agric. Ecosyst. Environ. 2020, 295, 106900. [Google Scholar] [CrossRef]
- Iakovoglou, V.; Zaimes, G.N.; Gounaridis, D. Riparian areas in urban settings: Two case studies from Greece. Int. J. Innov. Sustain. Dev. 2013, 7, 271–288. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Yin, C.; Bai, C.; Zhu, Y.; Shao, M.; Han, X.; Qiao, J. Future soil erosion risk in China: Differences in Erosion driven by general and extreme precipitation under climate change. Earth’s Future 2025, 13, e2024EF005390. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Simon, A.; Klimetz, L. Relative magnitudes and sources of sediment in benchmark watersheds of the Conservation Effects Assessment Project. J. Soil Water Conserv. 2008, 63, 504–522. [Google Scholar] [CrossRef]
- Wilson, C.G.; Kuhnle, R.A.; Bosch, D.D.; Steiner, J.L.; Starks, P.J.; Tomer, M.D.; Wilson, G.V. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 2008, 63, 523–532. [Google Scholar] [CrossRef]
- Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; et al. Large shift in source of fine sediment in the upper Mississippi River. Environ. Sci. Technol. 2011, 45, 8804–8810. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian land-use impacts on stream bank and gully erosion in agricultural watersheds: What we have learned. Water 2019, 11, 1343. [Google Scholar] [CrossRef]
- Kronvang, B.; Andersen, H.E.; Larsen, S.E.; Audet, J. Importance of bank erosion for sediment input, storage and export at the catchment scale. J. Soils Sediments 2013, 13, 230–241. [Google Scholar] [CrossRef]
- Caitcheon, G.G.; Olley, J.M.; Pantus, F.; Hancock, G.; Leslie, C. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers. Geomorphology 2012, 151–152, 188–195. [Google Scholar] [CrossRef]
- Olley, J.; Brooks, A.; Spencer, J.; Pietsch, T.; Borombovits, D. Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia. J. Environ. Radioact. 2013, 124, 121–129. [Google Scholar] [CrossRef]
- Moody, J.A. The effects of discharge and bank orientation on the annual riverbank erosion along Powder River in Montana, USA. Geomorphology 2022, 403, 108134. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, L.; Chen, D.; Ran, Q.; Tang, H.; Yan, J.; Liu, L. Assessing the modulation of outer bank erosion by slump blocks: A case study from Marqu Meadow, China. Geomorphology 2024, 458, 10926. [Google Scholar] [CrossRef]
- Pinter, N.; Heine, R.A. Hydrodynamic and morphodynamic response to river engineering documented by fixed-discharge analysis, Lower Missouri River, USA. J. Hydrol. 2005, 302, 70–91. [Google Scholar] [CrossRef]
- Pimentel, D. Soil erosion: A global threat to sustainable agriculture and environmental threat. Soil Water Conserv. 2012, 67, 21–25. [Google Scholar]
- Pierce, F.J.; Lal, R. Monitoring the impact of soil erosion on crop productivity. In Soil Erosion Research Methods; Soil Water Conservation Society: Ankeny, IA, USA, 2017; pp. 235–263. [Google Scholar]
- Li, X.; Cooper, A.J.; Plater, A.J. Quantifying erosion hazards and economic damage to critical infrastructure in river catchments: Impact of a warming climate. Clim. Risk Manag. 2021, 32, 100287. [Google Scholar] [CrossRef]
- Douglas, M.M.; Dunne, K.B.J.; Lamb, M.P. Sediment entrainment and slump blocks limit permafrost riverbank erosion. Geophys. Res. Lett. 2023, 50, L10274. [Google Scholar] [CrossRef]
- Hoang, L.; Fenner, R.A. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban Water J. 2016, 13, 739–758. [Google Scholar] [CrossRef]
- Fluixá-Sanmartín, J.; Altarejos-García, L.; Morales-Torres, A.; Escuder-Bueno, I. Climate change impacts on dam safety. Nat. Hazards Earth Syst. Sci. 2018, 18, 2471–2488. [Google Scholar] [CrossRef]
- Samadi, A.; Amiri-Tokaldany, E.; Davoudi, M.H.; Darby, S.E. Experimental and numerical investigation of the stability of overhanging riverbanks. Geomorphology 2013, 184, 1–19. [Google Scholar] [CrossRef]
- Midgley, T.L.; Fox, G.A.; Heeren, D.M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 2012, 145–146, 107–114. [Google Scholar] [CrossRef]
- Kotak, B.G.; Prepas, E.E.; Hrudey, S.E. Blue green algal toxins in drinking water supplies: Research in Alberta. Lake Line 1994, 14, 37–40. [Google Scholar]
- Martin, A.; Cooke, G.D. Health risks in eutrophic water supplies. Lake Line 1994, 14, 24–26. [Google Scholar]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Assessment of economic flood damage. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697. [Google Scholar] [CrossRef]
- Welter, G.; Bieber, S.; Bonnaffon, H.; Deguida, N.; Socher, M. Cross-sector emergency planning for water providers and healthcare facilities. J. Am. Water Work. Assoc. 2010, 102, 68–78. [Google Scholar] [CrossRef]
- Ross, D.S.; Wemple, B.C.; Willson, L.J.; Balling, C.M.; Underwood, K.L.; Hamshaw, S.D. Impact of an extreme storm event on river corridor bank erosion and phosphorus mobilization in a mountainous watershed in the northeastern United States. JGR Biogeosci. 2019, 124, 18–32. [Google Scholar] [CrossRef]
- Bashagaluke, J.B.; Logah, V.; Opoku, A.; Sarkodie-Addo, J.; Quansah, C. Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana. PLoS ONE 2018, 13, e0208250. [Google Scholar] [CrossRef]
- Grenon, G.; Singh, B.; Sena, A.D.; Madramootoo, C.A.; Sperber, C.; Goyal, M.K.; Zhang, T. Phosphorus fate, transport and management on subsurface drained agricultural organic soils: A review. Environ. Res. Lett. 2021, 16, 013004. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Lyu, H.M. Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Sci. Total Environ. 2020, 751, 2021. [Google Scholar] [CrossRef]
- Lawler, D.M. The measurement of river bank erosion and lateral channel change: A review. Earth Surf. Process. Landf. 1993, 18, 777–821. [Google Scholar] [CrossRef]
- Lawler, D.M. The importance of high-resolution monitoring in erosion and deposition dynamics studies: Examples from estuarine and fluvial systems. Geomorphology 2005, 64, 1–23. [Google Scholar] [CrossRef]
- Myers, D.T.; Rediske, R.R.; McNair, J.N. Measuring streambank erosion: A comparison of erosion pins, total station, and terrestrial laser scanner. Water 2019, 11, 1846. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Emmanouloudis, D.; Iakovoglou, V. Estimating soil erosion in Natura 2000 areas located on three semi-arid Mediterranean islands. J. Environ. Biol. 2012, 33, 277–282. [Google Scholar]
- Zaimes, G.N.; Ioannou, K.; Iakovoglou, V.; Kosmadakis, I.; Koutalakis, P.; Ranis, G.; Emmanouloudis, D.; Schultz, R.C. Improving soil erosion prevention in Greece with new tools. J. Eng. Sci. Technol. Rev. 2016, 9, 66–71. [Google Scholar] [CrossRef]
- Resop, J.P.; Hession, W.C. Terrestrial Laser Scanning for Monitoring Streambank Retreat: Comparison with Traditional Surveying Techniques. J. Hydraul. Eng. 2010, 136, 794–798. [Google Scholar] [CrossRef]
- Resop, J.P.; Hendrix, C.; Wynn-Thompson, T.; Hession, W.C. Channel Morphology Change after Restoration: Drone Laser Scanning versus Traditional Surveying Techniques. Hydrology 2024, 11, 54. [Google Scholar] [CrossRef]
- King, C.; Baghdadi, N.; Lecomte, V.; Cerdan, O. The application of remote-sensing data to monitoring and modelling of soil erosion. Catena 2005, 62, 79–93. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Gounaridis, D.; Fotakis, D. Assessing riparian land-uses/vegetation cover along the Nestos River in Greece. Fresenius Environ. Bull. 2011, 20, 3217–3225. [Google Scholar]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Ganasri, B.P.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Gkiatas, G.T.; Koutalakis, P.D.; Kasapidis, I.K.; Iakovoglou, V.; Zaimes, G.N. Monitoring and quantifying the fluvio-geomorphological changes in a torrent channel using images from unmanned aerial vehicles. Hydrology 2022, 9, 184. [Google Scholar] [CrossRef]
- Yavuz, M.; Tufekcioglu, M. Assessment of flood-induced geomorphic changes in Sidere Creek of the mountainous basin using small UAV-based imagery. Sustainability 2023, 15, 11793. [Google Scholar] [CrossRef]
- Koutalakis, P.; Gkiatas, G.; Xinogalos, M.; Iakovoglou, V.; Kasapidis, I.; Pagonis, G.; Savvopoulou, A.; Krikopoulos, K.; Klepousniotis, T.; Zaimes, G.N. Estimating stream bank and bed erosion and deposition with innovative and traditional methods. Land 2024, 13, 232. [Google Scholar] [CrossRef]
- Bjorkland, R.; Pringle, C.M.; Newton, B. A stream visual assessment protocol (SVAP) for riparian landowners. Environ. Monit. Assess. 2001, 68, 99–125. [Google Scholar] [CrossRef]
- Rosgen, D.L. A practical method of computing streambank erosion rate. In Proceedings of the 7th Federal Inter-Agency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001; U.S. Geological Survey, U.S. Army Corps of Engineers, U.S.D.A. Forest Service: Reston, VA, USA, 2001; Volume 2, pp. 1–17. [Google Scholar]
- Munné, A.; Prat, N.; Solá, C.; Bonada, N.; Rieradevall, M. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 147–163. [Google Scholar] [CrossRef]
- Maguire, D.J. An overview and definition of GIS. In Geographical Information Systems: Principles and Applications; Wiley: Hoboken, NJ, USA, 1991; Volume 1, pp. 9–20. [Google Scholar]
- Savopoulou, A.; Giatas, G.; Pagonis, G.; Iakovoglou, V.; Zaimes, G.N. Visual protocols and GIS as preliminary investigative tools to locate potential ecoengineering in streams and riparian areas. Procedia Environ. Sci. Eng. 2017, 4, 227–234. [Google Scholar]
- Gkiatas, G.; Kasapidis, I.; Koutalakis, P.; Iakovoglou, V.; Savvopoulou, A.; Germantzidis, I.; Zaimes, G.N. Enhancing urban and sub-urban riparian areas through ecosystem services and ecotourism activities. Water Supply 2021, 21, 2974–2988. [Google Scholar] [CrossRef]
- Bariamis, G.; Paschos, G.; Baltas, E. Land Accounts in the River Basin Districts of Greece. Environ. Process. 2018, 5, S213–S237. [Google Scholar] [CrossRef]
- Copernicus Data Spece Ecosystem. Available online: https://dataspace.copernicus.eu/ (accessed on 15 April 2025).
- Vrieling, A.; de Jong, S.M.; Sterk, G.; Rodrigues, S.C. Timing of erosion and satellite data: A multi-resolution approach to soil erosion risk mapping. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 267–281. [Google Scholar] [CrossRef]
- Tullos, D.D.; Penrose, D.L.; Jennings, G.D.; Cope, W.G. Analysis of functional traits in reconfigured channels: Implications for the bioassessment and disturbance of river restoration. J. N. Am. Benthol. Soc. 2009, 28, 80–92. [Google Scholar] [CrossRef]
- Simpson, A.; Turner, I.; Brantley, E.; Helms, B. Bank erosion hazard index as an indicator of near-bank aquatic habitat and community structure in a southeastern Piedmont stream. Ecol. Indic. 2014, 43, 19–28. [Google Scholar] [CrossRef]
- Kim, T.T.; Ngoc, P.; Nga, T.N.Q.; Nguyet, N.T.T.; Truong, H.N.; Diem, P.T.M.; Phung, N.K.; Bay, N.T. Modifying BEHI (Bank Erosion Hazard Index) to map and assess the levels of potential riverbank erosion of highly human impacted rivers: A case study for Vietnamese Mekong river system. Environ. Earth Sci. 2023, 82, 554. [Google Scholar] [CrossRef]
- Nosrati, K.; Rostami, M.; Azarpar Kivi, M. Estimation of Taleghan river bank erosion risk using BEHI model. J. Nat. Environ. Hazards 2021, 9, 129–144. [Google Scholar]
- Hasanuzzaman, M.; Bera, B.; Islam, A.; Shit, P.K. Estimation and prediction of riverbank erosion and accretion rate using DSAS, BEHI, and REBVI models: Evidence from the lower Ganga River in India. Nat. Hazards 2023, 118, 1163–1190. [Google Scholar] [CrossRef]
- Newton, S.E.; Drenten, D.M. Modifying the bank erosion hazard index (BEHI) protocol for rapid assessment of streambank erosion in northeastern Ohio. JoVE 2015, 13, e52330. [Google Scholar]
- Tsioras, P.A. Status and job satisfaction of Greek forest workers. Small-Scale For. 2012, 11, 1–14. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Kiosses, C. Experts views on water scarcity and flooding from six countries around the Black Sea region. Desal. Water Treat. 2021, 216, 118–128. [Google Scholar] [CrossRef]
- Singh, S.; Kansal, M.L. A comparative study of morphometric, hydrologic, and semi-empirical methods for the prioritization of sub-watersheds against flash flood-induced landslides in a part of the Indian Himalayan Region. Environ. Sci. Pollut. Res. Int. 2023, 31, 53796–53822. [Google Scholar] [CrossRef]
- Płaczkowska, E.; Kijowska-Strugała, M.; Prokop, P.; Wiejaczka, Ł.; Lekah, J. Channel head morphometry in the precipitation gradient from semi-arid to arid climates. CATENA 2025, 254, 109007. [Google Scholar] [CrossRef]
- Young, F.W.; Takane, Y.; De Leeuw, J. The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features. Psychometrika 1978, 43, 279–281. [Google Scholar] [CrossRef]
- Nikiforov, V. Bounds on graph eigenvalues II. Linear Algebra Appl. 2007, 427, 183–189. [Google Scholar] [CrossRef]
- Stavropoulos, S.; Zaimes, G.N.; Filippidis, E.; Diaconu, D.C.; Emmanouloudis, D. Mitigating flash floods with the use of new technologies: A Μulti-criteria decision analysis to map flood susceptibility for Zakynthos Island, Greece. J. Urban Reg. Anal. 2020, 12, 233–248. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Gounaridis, D.; Iakovoglou, V.; Emmanouloudis, D. Riparian area studies in Greece: A literature review. Fresenius Environ. Bull. 2011, 20, 1470–1477. [Google Scholar]
- Heritage, G.; Entwistle, N. Impacts of river engineering on river channel behaviour: Implications for managing downstream flood risk. Water 2020, 12, 1355. [Google Scholar] [CrossRef]
- Masoodi, A.; Majdzadeh Tabatabai, M.R.; Noorzad, A.; Samadi, A. Effects of soil physico-chemical properties on stream bank erosion induced by seepage in northeastern Iran. Hydrol. Sci. J. 2017, 62, 2597–2613. [Google Scholar] [CrossRef]
- Church, M. Channel stability: Morphodynamics and the morphology of rivers. In Rivers–Physical, Fluvial and Environmental Processes; Rowiński, P., Radecki-Pawlik, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 281–321. [Google Scholar]
- Corenblit, D.; Tabacchi, E.; Steiger, J.; Gurnell, A.M. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth Sci. Rev. 2007, 84, 56–86. [Google Scholar] [CrossRef]
- Gurnell, A. Plants as river system engineers. Earth Surf. Process. Landf. 2014, 39, 4–25. [Google Scholar] [CrossRef]
- Cesarini, G.; Scalici, M. Riparian vegetation as a trap for plastic litter. Environ. Pollut. 2022, 292, 118410. [Google Scholar] [CrossRef]
- Koutalakis, P.; Gkiatas, G.; Iakovoglou, V.; Zaimes, G.N. New technologies to assess and map an urban riparian area in Drama, Greece, and determine opportunity sites for litter traps. Sustainability 2023, 15, 15620. [Google Scholar] [CrossRef]
- Schismenos, S.; Zaimes, G.N.; Iakovoglou, V.; Emmanouloudis, D. Environmental sustainability and ecotourism of riparian and deltaic ecosystems: Opportunities for rural Eastern Macedonia and Thrace, Greece. Int. J. Environ. Stud. 2019, 76, 675–684. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; p. 1148. [CrossRef]
- Shmelev, S.E.; Agbleze, L.; Spangenberg, J.H. Multidimensional Ecosystem Mapping: Towards a More Comprehensive Spatial Assessment of Nature’s Contributions to People in France. Sustainability 2023, 15, 7557. [Google Scholar] [CrossRef]
- Shmelev, S.E. Biodiversity Offset Schemes for Indonesia: Pro et Contra. Sustainability 2025, 17, 6283. [Google Scholar] [CrossRef]
a/a | Stream Name | Stream Reach Length BEHI Applied (km) | Date of Measurements | Sampling Plots (#) | Distance Between Plots (m) |
---|---|---|---|---|---|
1 | Kallifytos Stream | 4.16 | 23 June 2022 | 35 | 100 |
2 | Monastiraki-Agia Varvara Stream | 2.53 | 12 November 2022 | 16 | 100 |
3 | Adriani-Doxato Stream | 6.92 | 12 June 2023 | 71 | 100 |
4 | Zoodohos Pigi Stream | 1.71 | 14 February 2024 | 11 | 150 |
5 | Nea Amisos Stream | 3.58 | 16 February 2024 | 25 | 200 |
Partial Analysis | ||||||||
---|---|---|---|---|---|---|---|---|
R | R2 | Std. Error of the Estimate | R2 Change | F Change | df1 | df2 | Sig. F Change | |
Model 1 | 0.574 | 0.330 | 1.734 | 0.330 | 14.976 | 5 | 152 | <0.001 |
Model 2 | 0.226 | 0.051 | 2.051 | 0.051 | 2.756 | 3 | 154 | 0.044 |
Model 3 | 0.546 | 0.229 | 1.769 | 0.299 | 16.288 | 4 | 153 | <0.001 |
Akaike Information Criterion (AIC) | Amemiya Prediction Criterion (APC) | Mallow’s Prediction Criterion (MPC) | Schwarz Bayesian Criterion (SBC) | PRESS | Durbin–Watson | |
---|---|---|---|---|---|---|
Model 1 | 179.857 | 0.723 | 6.000 | 198.232 | 498.089 | 1.364 |
Model 2 | 230.087 | 0.998 | 4.000 | 243.129 | 679.469 | 0.825 |
Model 3 | 185.091 | 0.747 | 5.000 | 200.404 | 512.340 | 1.214 |
Variables | Coefficients | |||
---|---|---|---|---|
B | Std. Error | t | p-Value | |
Stream flow | −0.935 | 0.441 | −2.121 | 0.036 |
Riparian land-uses | 0.353 | 0.143 | 2.476 | 0.014 |
Meander or straight channels | 0.923 | 0.923 | 1.000 | 0.319 |
Existence or not of anthropogenic interventions | 0.632 | 0.398 | 1.587 | 0.115 |
Soil factor | 0.927 | 0.231 | 4.007 | <0.001 |
Stream channel slope | 0.574 | 0.204 | 2.813 | 0.006 |
Component Loadings | ||
---|---|---|
Variables | Dimension | |
1 | 2 | |
Stream Flow | −0.733 | 0.128 |
BEHI erosion level categories | −0.520 | −0.043 |
Riparian land-uses | −0.111 | −0.041 |
Meander or straight channels | 0.201 | 0.108 |
Existence or not of anthropogenic interventions | 0.325 | 0.105 |
Soil coefficient factor | 0.450 | 0.025 |
Stream channel slope | 0.674 | −0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagonis, G.; Gkiatas, G.; Koutalakis, P.; Iakovoglou, V.; Zaimes, G.N. Assessing Stream Bank Erosion with a Visual Assessment Protocol in Streams Around Drama City, Greece. Land 2025, 14, 1963. https://doi.org/10.3390/land14101963
Pagonis G, Gkiatas G, Koutalakis P, Iakovoglou V, Zaimes GN. Assessing Stream Bank Erosion with a Visual Assessment Protocol in Streams Around Drama City, Greece. Land. 2025; 14(10):1963. https://doi.org/10.3390/land14101963
Chicago/Turabian StylePagonis, Georgios, Georgios Gkiatas, Paschalis Koutalakis, Valasia Iakovoglou, and George N. Zaimes. 2025. "Assessing Stream Bank Erosion with a Visual Assessment Protocol in Streams Around Drama City, Greece" Land 14, no. 10: 1963. https://doi.org/10.3390/land14101963
APA StylePagonis, G., Gkiatas, G., Koutalakis, P., Iakovoglou, V., & Zaimes, G. N. (2025). Assessing Stream Bank Erosion with a Visual Assessment Protocol in Streams Around Drama City, Greece. Land, 14(10), 1963. https://doi.org/10.3390/land14101963