Analyzing Spatial–Temporal Changes and Driving Mechanism of Landscape Character Using Multi-Model Interpreters: A Case Study in Yanqing District, Beijing
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data and Pre-Precession
2.3. Multi-Period LCTs Identification
2.4. Spatiotemporal Changes Analysis
2.5. Optimal Parameter-Based Geographical Detector (OPGD)
2.6. SHapley Additive exPlanations (SHAP)
3. Results
3.1. Results of Landscape Character Identification
3.2. Results of LCT Dynamic Degree and Type Transition
3.3. Driving Mechanism of LCTs Dynamic Degree by OPGD
3.3.1. Impact of Spatial Scale
3.3.2. Impact of Single Factors
3.3.3. Impact of Factor Interactions
3.4. Driving Mechanism of Landscape Character Type Transition by SHAP
3.4.1. Overall Importance of Driving Factors
3.4.2. Influence Direction on Character Type Transition
4. Discussion
4.1. The Advantages of Landscape Characters Relative to Traditional Land Use
4.2. The Relationship Between Changes in Landscape Character and Multidimensional Factors
4.3. Implications of Landscape Character Changes for Urban Management Policies
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Results of Principal Component Analysis
Principal Component | Total Variance Explained | Factor Loading | |||
---|---|---|---|---|---|
Eigen Value | Cumulative Var | Elevation | Roughness | Slope | |
1 | 2.468 | 82.273 | 0.831 | 0.924 | 0.962 |
2 | 0.444 | 97.079 | 0.555 | −0.334 | −0.158 |
3 | 0.088 | 100 | 0.05 | 0.188 | −0.223 |
Appendix A.2. Optimal Discretization Method and Number
Factor | 2005–2010 | 2010–2015 | 2015–2020 | 2005–2020 | ||||
---|---|---|---|---|---|---|---|---|
X1 | Quantile | 8 | Quantile | 8 | Quantile | 7 | Quantile | 8 |
X2 | Natural | 6 | Equal | 8 | Quantile | 9 | Equal | 8 |
X3 | Equal | 8 | Natural | 9 | SD | 8 | Natural | 9 |
X4 | Quantile | 6 | Quantile | 7 | SD | 8 | Geometric | 8 |
X5 | — | — | — | — | — | — | — | — |
X6 | Geometric | 7 | Quantile | 9 | Geometric | 9 | Geometric | 9 |
X7 | Natural | 8 | Geometric | 9 | Quantile | 9 | Natural | 9 |
X8 | Quantile | 6 | Quantile | 6 | Quantile | 9 | Quantile | 6 |
X9 | Natural | 8 | Quantile | 8 | Quantile | 9 | Quantile | 9 |
References
- Bastian, O.; Grunewald, K.; Syrbe, R.-U.; Walz, U.; Wende, W. Landscape Services: The Concept and Its Practical Relevance. Landsc. Ecol. 2014, 29, 1463–1479. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Grădinaru, S.R.; Pierri Daunt, A.B.; Imhof, C.S.; Fan, P. Landscape Ecological Concepts in Planning: Review of Recent Developments. Landsc. Ecol. 2021, 36, 2329–2345. [Google Scholar] [CrossRef] [PubMed]
- Bürgi, M.; Hersperger, A.M.; Schneeberger, N. Driving Forces of Landscape Change—Current and New Directions. Landsc. Ecol. 2005, 19, 857–868. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M. Quantifying Spatiotemporal Patterns of Urban Land-Use Change in Four Cities of China with Time Series Landscape Metrics. Landsc. Ecol. 2005, 20, 871–888. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-Temporal Dynamics and Evolution of Land Use Change and Landscape Pattern in Response to Rapid Urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Huang, B.; Huang, J.; Gilmore Pontius, R.; Tu, Z. Comparison of Intensity Analysis and the Land Use Dynamic Degrees to Measure Land Changes Outside versus inside the Coastal Zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Liu, X.; An, Y.; Dong, G.; Jiang, M. Land Use and Landscape Pattern Changes in the Sanjiang Plain, Northeast China. Forests 2018, 9, 637. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Coutinho Cerqueira, G.; Lopes Pennachin, C. Dinamica—A Stochastic Cellular Automata Model Designed to Simulate the Landscape Dynamics in an Amazonian Colonization Frontier. Ecol. Model. 2002, 154, 217–235. [Google Scholar] [CrossRef]
- He, C.; Zhao, Y.; Tian, J.; Shi, P. Modeling the Urban Landscape Dynamics in a Megalopolitan Cluster Area by Incorporating a Gravitational Field Model with Cellular Automata. Landsc. Urban Plan. 2013, 113, 78–89. [Google Scholar] [CrossRef]
- Luo, G.; Amuti, T.; Zhu, L.; Mambetov, B.T.; Maisupova, B.; Zhang, C. Dynamics of Landscape Patterns in an Inland River Delta of Central Asia Based on a Cellular Automata-Markov Model. Reg. Environ. Change 2015, 15, 277–289. [Google Scholar] [CrossRef]
- Gulinck, H.; Múgica, M.; de Lucio, J.V.; Atauri, J.A. A Framework for Comparative Landscape Analysis and Evaluation Based on Land Cover Data, with an Application in the Madrid Region (Spain). Landsc. Urban Plan. 2001, 55, 257–270. [Google Scholar] [CrossRef]
- Brabyn, L. Classifying Landscape Character. Landsc. Res. 2009, 34, 299–321. [Google Scholar] [CrossRef]
- Blankson, E.J.; Green, B.H. Use of Landscape Classification as an Essential Prerequisite to Landscape Evaluation. Landsc. Urban Plan. 1991, 21, 149–162. [Google Scholar] [CrossRef]
- Mücher, C.A.; Klijn, J.A.; Wascher, D.M.; Schaminée, J.H.J. A New European Landscape Classification (LANMAP): A Transparent, Flexible and User-Oriented Methodology to Distinguish Landscapes. Ecol. Indic. 2010, 10, 87–103. [Google Scholar] [CrossRef]
- Swanwick, C. The Assessment of Countryside and Landscape Character in England: An Overview. In Countryside Planning; Routledge: Abingdon, UK, 2003; ISBN 978-1-84977-091-0. [Google Scholar]
- Tveit, M.; Ode, Å.; Fry, G. Key Concepts in a Framework for Analysing Visual Landscape Character. Landsc. Res. 2006, 31, 229–255. [Google Scholar] [CrossRef]
- Warnock, S.; Griffiths, G. Landscape Characterisation: The Living Landscapes Approach in the UK. Landsc. Res. 2015, 40, 261–278. [Google Scholar] [CrossRef]
- Gormus, S.; Oğuz, D.; Tunçay, H.E.; Cengiz, S. The Use of Landscape Character Analysis to Reveal Differences Between Protected and Nonprotected Landscapes in Kapısuyu Basin. J. Agric. Sci.-Tarım Bilimleri Dergisi 2021, 27, 414–425. [Google Scholar] [CrossRef]
- Tara, A.; Lawson, G.; Davies, W.; Chenoweth, A.; Pratten, G. Integrating Landscape Character Assessment with Community Values in a Scenic Evaluation Methodology for Regional Landscape Planning. Land 2024, 13, 169. [Google Scholar] [CrossRef]
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Ruiz-Aviles, P. Assessing the Visual Quality of Rural Landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Bradley, A.; Buchli, V.; Fairclough, G.; Hicks, D.; Miller, J.; Schofield, J. Change and Creation: Historic Landscape Character 1950–2000; English Heritage: London, UK, 2004. [Google Scholar]
- Turner, S. Historic Landscape Characterisation: A Landscape Archaeology for Research, Management and Planning. Landsc. Res. 2006, 31, 385–398. [Google Scholar] [CrossRef]
- McKenzie, N.N.; Jacquier, D.D.; Isbell, R.R.F.; Brown, K.K. Australian Soils and Landscapes: An Illustrated Compendium; Csiro Publishing: Clayton, Australia, 2004; ISBN 978-0-643-10433-4. [Google Scholar]
- Green, R. MEANING AND FORM IN COMMUNITY PERCEPTION OF TOWN CHARACTER. J. Environ. Psychol. 1999, 19, 311–329. [Google Scholar] [CrossRef]
- Kim, K.-H.; Pauleit, S. Landscape Character, Biodiversity and Land Use Planning: The Case of Kwangju City Region, South Korea. Land Use Policy 2007, 24, 264–274. [Google Scholar] [CrossRef]
- Atik, M.; Işikli, R.C.; Ortaçeşme, V.; Yildirim, E. Definition of Landscape Character Areas and Types in Side Region, Antalya-Turkey with Regard to Land Use Planning. Land Use Policy 2015, 44, 90–100. [Google Scholar] [CrossRef]
- Van Eetvelde, V.; Antrop, M. A Stepwise Multi-Scaled Landscape Typology and Characterisation for Trans-Regional Integration, Applied on the Federal State of Belgium. Landsc. Urban Plan. 2009, 91, 160–170. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, S.; Liu, S.; Wu, J. An Approach to Urban Landscape Character Assessment: Linking Urban Big Data and Machine Learning. Sustain. Cities Soc. 2022, 83, 103983. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, D.; Gao, C. Identifying Landscape Character for Large Linear Heritage: A Case Study of the Ming Great Wall in Ji-Town, China. Sustainability 2023, 15, 2615. [Google Scholar] [CrossRef]
- Ding, D.; Jiang, Y.; Wu, Y.; Shi, T. Landscape Character Assessment of Water-Land Ecotone in an Island Area for Landscape Environment Promotion. J. Clean. Prod. 2020, 259, 120934. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J. Landscape Character Identification and Zoning Management in Disaster-Prone Mountainous Areas: A Case Study of Mentougou District, Beijing. Land 2024, 13, 2191. [Google Scholar] [CrossRef]
- Gao, H.; Abu Bakar, S.; Maulan, S.; Mohd Yusof, M.J.; Mundher, R.; Zakariya, K. Identifying Visual Quality of Rural Road Landscape Character by Using Public Preference and Heatmap Analysis in Sabak Bernam, Malaysia. Land 2023, 12, 1440. [Google Scholar] [CrossRef]
- Koblet, O.; Purves, R.S. From Online Texts to Landscape Character Assessment: Collecting and Analysing First-Person Landscape Perception Computationally. Landsc. Urban Plan. 2020, 197, 103757. [Google Scholar] [CrossRef]
- Butler, A. Dynamics of Integrating Landscape Values in Landscape Character Assessment: The Hidden Dominance of the Objective Outsider. Landsc. Res. 2016, 41, 239–252. [Google Scholar] [CrossRef]
- Odeh, T.; Boulad, N.; Abed, O.; Abu Yahya, A.; Khries, N.; Abu-Jaber, N. The Influence of Geology on Landscape Typology in Jordan: Theoretical Understanding and Planning Implications. Land 2017, 6, 51. [Google Scholar] [CrossRef]
- Yang, D.; Gao, C.; Li, L.; Van Eetvelde, V. Multi-Scaled Identification of Landscape Character Types and Areas in Lushan National Park and Its Fringes, China. Landsc. Urban Plan. 2020, 201, 103844. [Google Scholar] [CrossRef]
- Nakarmi, G.; Strager, M.P.; Yuill, C.; Moreira, J.C.; Burns, R.C.; Butler, P. Landscape Characterization and Assessment of a Proposed Appalachian Geopark Project in West Virginia, United States. Geoheritage 2023, 15, 72. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, B.; Lei, K.; Wu, Y.; Wei, D.; Zhang, B. Assessing Rural Landscape Diversity for Management and Conservation: A Case Study in Lichuan, China. Environ. Dev. Sustain. 2025, 27, 14523–14551. [Google Scholar] [CrossRef]
- Erikstad, L.; Uttakleiv, L.A.; Halvorsen, R. Characterisation and Mapping of Landscape Types, a Case Study from Norway. Belgeo. Revue Belge de Géographie 2015, 3. [Google Scholar] [CrossRef]
- Li, G.; Zhang, B. Identification of Landscape Character Types for Trans-Regional Integration in the Wuling Mountain Multi-Ethnic Area of Southwest China. Landsc. Urban Plan. 2017, 162, 25–35. [Google Scholar] [CrossRef]
- Hartley, M.J. Rationale and Methods for Conserving Biodiversity in Plantation Forests. For. Ecol. Manag. 2002, 155, 81–95. [Google Scholar] [CrossRef]
- Ratcliffe, E.; Gatersleben, B.; Sowden, P.T. Bird Sounds and Their Contributions to Perceived Attention Restoration and Stress Recovery. J. Environ. Psychol. 2013, 36, 221–228. [Google Scholar] [CrossRef]
- Jiang, B.; Chang, C.-Y.; Sullivan, W.C. A Dose of Nature: Tree Cover, Stress Reduction, and Gender Differences. Landsc. Urban Plan. 2014, 132, 26–36. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, T.; Xu, H.; Liu, W.; Wang, J.; Chen, X.; Liu, L. GLC_FCS30D: The First Global 30 m Land-Cover Dynamics Monitoring Product with a Fine Classification System for the Period from 1985 to 2022 Generated Using Dense-Time-Series Landsat Imagery and the Continuous Change-Detection Method. Earth Syst. Sci. Data 2024, 16, 1353–1381. [Google Scholar] [CrossRef]
- Zhao, T.; Mu, X.; Song, W.; Liu, Y.; Xie, Y.; Zhong, B.; Xie, D.; Jiang, L.; Yan, G. Mapping Spatially Seamless Fractional Vegetation Cover over China at a 30-m Resolution and Semimonthly Intervals in 2010–2020 Based on Google Earth Engine. J. Remote Sens. 2023, 3, 0101. [Google Scholar] [CrossRef]
- Xu, H.; He, B.; Guo, L.; Yan, X.; Dong, J.; Yuan, W.; Hao, X.; Lv, A.; He, X.; Li, T. Changes in the Fine Composition of Global Forests from 2001 to 2020. J. Remote Sens. 2024, 4, 0119. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.-P.; Morley, J.G. Mapping Regional Economic Activity from Night-Time Light Satellite Imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on Spatial Pattern of Land-Use Change in China during 1995–2000. Sci. China Ser. D-Earth Sci. 2003, 46, 373–384. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Fawagreh, K.; Gaber, M.M.; Elyan, E. Random Forests: From Early Developments to Recent Advancements. Syst. Sci. Control Eng. 2014, 2, 602–609. [Google Scholar] [CrossRef]
- Chen, H.; Covert, I.C.; Lundberg, S.M.; Lee, S.-I. Algorithms to Estimate Shapley Value Feature Attributions. Nat. Mach. Intell. 2023, 5, 590–601. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Wong, D.W.S. The Modifiable Areal Unit Problem in Multivariate Statistical Analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Weng, Y.; Zhu, Y.; Huang, Y.; Chen, Q.; Dong, J. Empirical Study on the Impact of Different Types of Forest Environments in Wuyishan National Park on Public Physiological and Psychological Health. Forests 2024, 15, 393. [Google Scholar] [CrossRef]
- Webb, E.B.; Smith, L.M.; Vrtiska, M.P.; Lagrange, T.G. Effects of Local and Landscape Variables on Wetland Bird Habitat Use During Migration Through the Rainwater Basin. J. Wildl. Manag. 2010, 74, 109–119. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Wang, J.; Wei, X.; Schuler, J.; Sun, P.; Harper, R.; Zegre, N. Natural Forests Exhibit Higher Carbon Sequestration and Lower Water Consumption than Planted Forests in China. Glob. Change Biol. 2019, 25, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Antrop, M. Why Landscapes of the Past Are Important for the Future. Landsc. Urban Plan. 2005, 70, 21–34. [Google Scholar] [CrossRef]
- Mallick, J.; Al-Wadi, H.; Rahman, A.; Ahmed, M. Landscape Dynamic Characteristics Using Satellite Data for a Mountainous Watershed of Abha, Kingdom of Saudi Arabia. Environ. Earth Sci. 2014, 72, 4973–4984. [Google Scholar] [CrossRef]
- Dorning, M.A.; Van Berkel, D.B.; Semmens, D.J. Integrating Spatially Explicit Representations of Landscape Perceptions into Land Change Research. Curr. Landsc. Ecol. Rep. 2017, 2, 73–88. [Google Scholar] [CrossRef]
- Wang, J.; Ogawa, S. Analysis of Dynamic Changes in Land Use Based on Landscape Metrics in Nagasaki, Japan. J. Appl. Remote Sens. 2017, 11, 016022. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Godron, M. Landscape Ecology; Wiley: Hoboken, NJ, USA, 1986; ISBN 978-0-471-87037-1. [Google Scholar]
- Turner, M.G.; Gardner, R.H.; O’Neill, R.V. Landscape Ecology in Theory and Practice: Pattern and Process; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; ISBN 978-0-387-95123-2. [Google Scholar]
- Terkenli, T.S.; Gkoltsiou, A.; Kavroudakis, D. The Interplay of Objectivity and Subjectivity in Landscape Character Assessment: Qualitative and Quantitative Approaches and Challenges. Land 2021, 10, 53. [Google Scholar] [CrossRef]
- Tasser, E.; Ruffini, F.V.; Tappeiner, U. An Integrative Approach for Analysing Landscape Dynamics in Diverse Cultivated and Natural Mountain Areas. Landsc. Ecol. 2009, 24, 611–628. [Google Scholar] [CrossRef]
- Niemi, G.J.; Johnson, L.B.; Howe, R.W. Environmental Indicators of Land Cover, Land Use, and Landscape Change. In Environmental Indicators; Armon, R.H., Hänninen, O., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 265–276. ISBN 978-94-017-9499-2. [Google Scholar]
- Krajewski, P.; Solecka, I.; Mrozik, K. Forest Landscape Change and Preliminary Study on Its Driving Forces in Ślęża Landscape Park (Southwestern Poland) in 1883–2013. Sustainability 2018, 10, 4526. [Google Scholar] [CrossRef]
- Jiang, F.; Huang, Y.; Wang, M.; Lin, J.; Zhao, G.; Ge, H. Effects of Rainfall Intensity and Slope Gradient on Steep Colluvial Deposit Erosion in Southeast China. Soil Sci. Soc. Am. J. 2014, 78, 1741–1752. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J. Chapter 1—Precipitation: A Regional Geographic Topic with Numerous Challenges. In Precipitation; Rodrigo-Comino, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–18. ISBN 978-0-12-822699-5. [Google Scholar]
- Körner, C. The Use of ‘Altitude’ in Ecological Research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Palmero-Iniesta, M.; Espelta, J.M.; Gordillo, J.; Pino, J. Changes in Forest Landscape Patterns Resulting from Recent Afforestation in Europe (1990–2012): Defragmentation of Pre-Existing Forest versus New Patch Proliferation. Ann. For. Sci. 2020, 77, 43. [Google Scholar] [CrossRef]
- Kumawat, A.; Yadav, D.; Samadharmam, K.; Rashmi, I.; Kumawat, A.; Yadav, D.; Samadharmam, K.; Rashmi, I. Soil and Water Conservation Measures for Agricultural Sustainability. In Soil Moisture Importance; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-83968-096-0. [Google Scholar]
- Li, T.; Zhao, L.; Duan, H.; Yang, Y.; Wang, Y.; Wu, F. Exploring the Interaction of Surface Roughness and Slope Gradient in Controlling Rates of Soil Loss from Sloping Farmland on the Loess Plateau of China. Hydrol. Process. 2020, 34, 339–354. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Moomaw, W.R.; Chmura, G.L.; Davies, G.T.; Finlayson, C.M.; Middleton, B.A.; Natali, S.M.; Perry, J.E.; Roulet, N.; Sutton-Grier, A.E. Wetlands In a Changing Climate: Science, Policy and Management. Wetlands 2018, 38, 183–205. [Google Scholar] [CrossRef]
- Holling, C.S. Understanding the Complexity of Economic, Ecological, and Social Systems. Ecosystems 2001, 4, 390–405. [Google Scholar] [CrossRef]
- Drummond, M.A.; Stier, M.P.; Auch, R.F.; Taylor, J.L.; Griffith, G.E.; Riegle, J.L.; Hester, D.J.; Soulard, C.E.; McBeth, J.L. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA. Environ. Manag. 2015, 56, 1252–1271. [Google Scholar] [CrossRef]
- Swanwick, C.; Consultants (Firm), L.U.; Heritage, S.N.; Agency, G.B.C. Landscape Character Assessment Guidance for England and Scotland; Scottish Natural Heritage: Edinburgh, Scotland, 2002. [Google Scholar]
- Gobster, P.H. An Ecological Aesthetic for Forest Landscape Management. Landsc. J. 1999, 18, 54–64. [Google Scholar] [CrossRef]
- Kulkarni, A.; Lowe, B. Random Forest Algorithm for Land Cover Classification. Comput. Sci. Fac. Publ. Present. 2016, 43, 58–63. Available online: http://hdl.handle.net/10950/341 (accessed on 10 September 2025).
- Adugna, T.; Xu, W.; Fan, J. Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens. 2022, 14, 574. [Google Scholar] [CrossRef]
Type | Index | Code | Time | Source | Explanation |
---|---|---|---|---|---|
Natural Factor | Elevation | X1 | _ | ASTER GDEM V3 (https://urs.earthdata.nasa.gov, accessed on 17 March 2025) | Average |
Slope | X2 | _ | Average | ||
Precipitation | X3 | 2005, 2010, 2015, 2020 | Institute of Tibetan Plateau Research (https://data.tpdc.ac.cn, accessed on 17 March 2025) | Multi-year Average | |
Surface Temperature | X4 | 2005, 2010, 2015, 2020 | Multi-year Average | ||
Soil Type | X5 | _ | China Soil Science Database (http://vdb3.soil.csdb.cn/, accessed on 17 March 2025) | Constant | |
Social Factor | Road Density | X6 | 2005, 2010 | Global Roads Open Access Dataset (https://sedac.ciesin.columbia.edu, accessed on 6 April 2025) | Multi-year Average |
2015, 2020 | Open Street Map (https://www.openstreetmap.org, accessed on 6 April 2025). | ||||
Distance to Artificial Area | X7 | 2005, 2010, 2015, 2020 | GLC-FCS30D [45] (https://zenodo.org/records/8239305, accessed on 6 April 2025) | Multi-year Average | |
Population Density | X8 | 2005, 2010, 2015, 2020 | World-pop (https://hub.worldpop.org/, accessed on 6 April 2025) | Multi-year Average | |
Nighttime Light Index | X9 | 2005, 2010, 2015, 2020 | DMSP-OLS [49] (https://doi.org/10.7910/DVN/GIYGJU, accessed on 6 April 2025) | Multi-year Average |
ID | Representative Photo | Description | Index | Value |
---|---|---|---|---|
Cluster_1 | Low-altitude rugged high-coverage artificial deciduous broadleaf forest mountain landscape. | Elevation | 664.66 ± 88.19 | |
Slope | 15.12 ± 5.86 | |||
Roughness | 1.12 ± 0.10 | |||
FVC | 0.77 ± 0.12 | |||
Land Cover | Deciduous Broadleaved Forest 100% | |||
Forest Type | Planted Forest 100% | |||
Cluster_2 | Low-altitude rugged high-coverage natural deciduous broadleaf forest mountain landscape | Elevation | 685.15 ± 83.09 | |
Slope | 16.00 ± 5.81 | |||
Roughness | 1.13 ± 0.09 | |||
FVC | 0.83 ± 0.13 | |||
Land Cover | Deciduous Broadleaved Forest 100% | |||
Forest Type | Agroforestry 11.72% Natural Forest 88.28% | |||
Cluster_3 | Low-altitude rugged medium-coverage natural forest-grass mixed mountain landscape | Elevation | 642.72 ± 91.35 | |
Slope | 14.53 ± 7.20 | |||
Roughness | 1.12 ± 0.12 | |||
FVC | 0.62 ± 0.17 | |||
Land Cover | Deciduous Broadleaf Forest 1.15% Evergreen Needle-leaved Forest 20.32% Grassland 78.53% | |||
Forest Type | Natural Forest 6.83% Others 93.17% | |||
Cluster_4 | Low-altitude flat medium-coverage wetland-grass mixed plain landscape | Elevation | 565.99 ± 103.15 | |
Slope | 6.45 ± 6.83 | |||
Roughness | 1.04 ± 0.07 | |||
FVC | 0.47 ± 0.25 | |||
Land Cover | Grassland 91.39% Water 7.53% Wetland 1.08% | |||
Forest Type | Others 100% | |||
Cluster_5 | Low-altitude flat medium-coverage farmland plain landscape | Elevation | 530.09 ± 68.60 | |
Slope | 1.85 ± 2.16 | |||
Roughness | 1.01 ± 0.02 | |||
FVC | 0.62 ± 0.19 | |||
Land Cover | Cropland 100% | |||
Forest Type | Others 100% | |||
Cluster_6 | Low-altitude flat low-coverage urban plain landscape | Elevation | 514.88 ± 34.05 | |
Slope | 1.14 ± 0.93 | |||
Roughness | 1 ± 0.01 | |||
FVC | 0.17 ± 0.15 | |||
Land Cover | Impervious Surface 100% | |||
Forest Type | Bare 100% | |||
Cluster_7 | Mid-altitude rugged high-coverage artificial deciduous broadleaf forest mountain landscape | Elevation | 955.80 ± 165.54 | |
Slope | 19.72 ± 6.03 | |||
Roughness | 1.18 ± 0.11 | |||
FVC | 0.84 ± 0.10 | |||
Land Cover | Deciduous Broadleaved Forest 100% | |||
Forest Type | Planted Forest 100% | |||
Cluster_8 | Mid-altitude rugged high-coverage natural deciduous broadleaf forest mountain landscape | Elevation | 1023.29 ± 196.41 | |
Slope | 20.84 ± 5.45 | |||
Roughness | 1.2 ± 0.11 | |||
FVC | 0.89 ± 0.07 | |||
Land Cover | Deciduous Broadleaved Forest 100% | |||
Forest Type | Agroforestry 0.24% Natural Forest 99.76% | |||
Cluster_9 | Mid-altitude rugged high-coverage forest-grass mixed mountain landscape | Elevation | 1019.00 ± 197.10 | |
Slope | 22.15 ± 6.13 | |||
Roughness | 1.21 ± 0.12 | |||
FVC | 0.86 ± 0.13 | |||
Land Cover | Deciduous Broadleaf Forest 3.51% Evergreen Needle-leaved Forest 83.53% Grassland 15.96% | |||
Forest Type | Natural Forest 48.30% Planted Forest 51.70% |
Time | Q Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
2005–2010 | 0.349 ** | 0.502 ** | 0.423 ** | 0.399 ** | 0.225 * | 0.440 ** | 0.454 ** | 0.342 ** | 0.280 ** |
2010–2015 | 0.342 ** | 0.395 ** | 0.397 ** | 0.347 ** | 0.209 * | 0.322 ** | 0.260 ** | 0.326 ** | 0.165 * |
2015–2020 | 0.366 ** | 0.403 ** | 0.450 ** | 0.303 ** | 0.215 * | 0.334 ** | 0.252 ** | 0.341 ** | 0.181 * |
2005–2020 | 0.421 ** | 0.530 ** | 0.504 ** | 0.432 ** | 0.286 ** | 0.458 ** | 0.348 ** | 0.370 ** | 0.224 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Cao, X.; Liu, J.; Zhang, J.; Takeda, S.; Zhang, S. Analyzing Spatial–Temporal Changes and Driving Mechanism of Landscape Character Using Multi-Model Interpreters: A Case Study in Yanqing District, Beijing. Land 2025, 14, 1942. https://doi.org/10.3390/land14101942
Li D, Cao X, Liu J, Zhang J, Takeda S, Zhang S. Analyzing Spatial–Temporal Changes and Driving Mechanism of Landscape Character Using Multi-Model Interpreters: A Case Study in Yanqing District, Beijing. Land. 2025; 14(10):1942. https://doi.org/10.3390/land14101942
Chicago/Turabian StyleLi, Donglin, Xuqing Cao, Jiarui Liu, Junhua Zhang, Shiro Takeda, and Siyu Zhang. 2025. "Analyzing Spatial–Temporal Changes and Driving Mechanism of Landscape Character Using Multi-Model Interpreters: A Case Study in Yanqing District, Beijing" Land 14, no. 10: 1942. https://doi.org/10.3390/land14101942
APA StyleLi, D., Cao, X., Liu, J., Zhang, J., Takeda, S., & Zhang, S. (2025). Analyzing Spatial–Temporal Changes and Driving Mechanism of Landscape Character Using Multi-Model Interpreters: A Case Study in Yanqing District, Beijing. Land, 14(10), 1942. https://doi.org/10.3390/land14101942