The Spatial-Temporal Patterns and Driving Mechanisms of the Ecological Barrier Transition Zone in the Western Jilin, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
Code of Factor | Dataset | Year | Initial Resolution | Sources | |
---|---|---|---|---|---|
1 | - | Land use data | 1990, 2000, 2010, 2020 | 1″ | Resource and Environment Science and Data Center (https://www.resdc.cn, accessed on 28 February 2024) |
2 | X1 | DEM | 1990, 2020 | 30″ | Global Climate and Weather Database (https://worldclim.org/data/index.html, accessed on 28 February 2024) |
3 | X2 | Slope | 1990, 2020 | 30″ | Calculate from DEM |
4 | X3 | Aspect | 1990, 2020 | 30″ | Calculate from DEM |
5 | X4 | Annual rainfall | 1990, 2020 | 1° | Global Rainfall Climatology Centre dataset [38] |
6 | X5 | Average annual temperature | 1990, 2020 | 30″ | Global Climate and Weather Database (https://worldclim.org/data/index.html, accessed on 28 February 2024) |
7 | X6 | Soil moisture | 1990, 2020 | 15′ | Plant Science Data Center (https://www.plantplus.cn/doi/doi.org/10.6084, accessed on 25 May 2024) |
8 | X7 | Aridity index | 1990, 2020 | 30″ | Science Data Bank (https://www.scidb.cn/, accessed on 25 May 2024) |
9 | X8 | GDP | 1990, 2020 | - | China Statistical Yearbooks (http://www.stats.gov.cn/, accessed on 28 February 2024) Jilin Statistical Yearbook (http://tjj.jl.gov.cn/index.html, accessed on 28 February 2024) |
10 | X9 | Population size | 1990, 2020 | - | |
11 | X10 | Agricultural population size | 1990, 2020 | - | |
12 | X11 | Livestock population | 1990, 2020 | - | |
13 | X12 | Urbanization level | 1990, 2020 | - | |
14 | - | Relevant policies | 1990–2020 | - |
2.3. Methods
2.3.1. Land-Use Change Index
2.3.2. Land-Use Transfer Matrix and Trajectories
2.3.3. Driving Factors Detection
3. Results
3.1. Spatiotemporal Variation Analysis
3.2. Type Conversion Characteristics
3.3. Topographic-Climatic-Economic Factors
3.3.1. Factor Detection
3.3.2. Interaction Detection
3.3.3. Risk Detection
3.4. Policy Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Brito, L. Analyzing Sustainable Development Goals. Science 2012, 336, 1396. [Google Scholar] [CrossRef] [PubMed]
- Fan, J. Draft of major function oriented zoning of China. Acta Geogr. Sin. 2015, 70, 186–201. (In Chinese) [Google Scholar] [CrossRef]
- Fu, B. Several key points in territorial ecological restoration. Bull. Chin. Acad. Sci. 2021, 36, 64–69. (In Chinese) [Google Scholar] [CrossRef]
- Su, Y.-Z.; Zhao, H.-L.; Zhang, T.-H.; Zhao, X.-Y. Soil properties following cultivation and non-grazing of a semi-arid sandy grassland in northern China. Soil Tillage Res. 2004, 75, 27–36. [Google Scholar] [CrossRef]
- Piao, S.L.; Liu, Q.; Chen, A.P.; Janssens, I.A.; Fu, Y.S.; Dai, J.H.; Liu, L.L.; Lian, X.; Shen, M.G.; Zhu, X.L. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Wairiu, M. Land degradation and sustainable land management practices in Pacific Island Countries. Reg. Environ. Chang. 2017, 17, 1053–1064. [Google Scholar] [CrossRef]
- Wang, X.; LESI, M.; Zhang, M. Ecosystem pattern change and its influencing factors of “two barriers and three belts”. Chin. J. Ecol. 2019, 38, 2138–2148. (In Chinese) [Google Scholar] [CrossRef]
- Fei, L.; Shuwen, Z.; Jiuchun, Y.; Liping, C.; Haijuan, Y.; Kun, B. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.M.; Gao, B.P.; Zheng, K.J.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Wen, S.; Wang, Y.; Song, H.; Liu, H.; Sun, Z.; Bilal, M.A. Integrated Predictive Modeling and Policy Factor Analysis for the Land Use Dynamics of the Western Jilin. Atmosphere 2024, 15, 288. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Gang, L.; Ouyang, Z.; Zheng, H. Effects of land use change on ecosystem services: A case study in Miyun reservoir watershed. Acta Ecol. Sin. 2013, 33, 726–736. [Google Scholar]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.P.; Song, B.W.; Wang, R.S.; Tao, Y. Assessing the changes in land use and ecosystem services in Changzhou municipality, Peoples’ Republic of China, 1991–2006. Ecol. Indic. 2014, 42, 95–103. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Zhao, Y.; Yang, Z. Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China. Int. J. Biometeorol. 2014, 58, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- Bohnet, I.C.; Pert, P.L. Patterns, drivers and impacts of urban growth-A study from Cairns, Queensland, Australia from 1952 to 2031. Landsc. Urban Plann. 2010, 97, 239–248. [Google Scholar] [CrossRef]
- Alberti, M. The effects of urban patterns on ecosystem function. Int Reg. Sci Rev 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, J.; Sciusco, P.; Kolluru, V.; Saraf, S.; John, R.; Ochirbat, B. Land Use Hotspots of the Two Largest Landlocked Countries: Kazakhstan and Mongolia. Remote Sens. 2022, 14, 1805. [Google Scholar] [CrossRef]
- Diogo, V.; Koomen, E.; Kuhlman, T. An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study. Agric. Syst. 2015, 139, 1–16. [Google Scholar] [CrossRef]
- Chen, K.; Long, H.; Liao, L.; Tu, S.; Li, T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 2020, 92, 104465. [Google Scholar] [CrossRef]
- Venkatesh, K.; Ramesh, H.; Das, P. Modelling stream flow and soil erosion response considering varied land practices in a cascading river basin. J. Environ. Manag. 2020, 264, 110448. [Google Scholar] [CrossRef]
- Wagle, N.; Acharya, T.D.; Kolluru, V.; Huang, H.; Lee, D.H. Multi-Temporal Land Cover Change Mapping Using Google Earth Engine and Ensemble Learning Methods. Appl. Sci. 2020, 10, 8083. [Google Scholar] [CrossRef]
- Feng, L.; Lei, G.; Nie, Y. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in black soil region of Northeast China under the goal of reducing non-point pollution and net carbon emission. Environ. Earth Sci. 2023, 82, 94. [Google Scholar] [CrossRef]
- Costanza, R.; dArge, R.; deGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; ONeill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Wang, R.S.; Li, F.; Hu, D.; Li, B.L. Understanding eco-complexity: Social-Economic-Natural Complex Ecosystem approach. Ecol. Complex. 2011, 8, 15–29. [Google Scholar] [CrossRef]
- Xu, X.Z.; Xu, Y.; Chen, S.C.; Xu, S.G.; Zhang, H.W. Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environ. Sci. Policy 2010, 13, 793–800. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Wang, B.; Sun, Y.; Cui, G.; Liang, Z. Analysis of spatial-temporal variation of the saline-sodic soil in the west of Jilin Province from 1989 to 2019 and influencing factors. CATENA 2022, 217, 106492. [Google Scholar] [CrossRef]
- Chang, L.; Zhao, Z.; Jiang, L.; Li, Y. Quantifying the Ecosystem Services of Soda Saline-Alkali Grasslands in Western Jilin Province, NE China. Int. J. Environ. Res. Public Health 2022, 19, 4760. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Wang, J.; Zhao, G. Ecological footprint and major driving forces in West Jilin Province, Northeast China. Chin. Geogr. Sci. 2010, 20, 434–441. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chu, B.; Liu, S.; Yang, D.; Luan, J. Spatiotemporal Dynamics and Driving Forces of Ecosystem Changes: A Case Study of the National Barrier Zone, China. Sustainability 2020, 12, 6680. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geog. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Data Set (CNLUCC); Resource and Environment Data Cloud Platform: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Guo, L.Y.; Wang, D.L.; Qiu, J.J.; Wang, L.G.; Liu, Y. Spatio-temporal patterns of land use change along the Bohai Rim in China during 1985–2005. J. Geog. Sci. 2009, 19, 568–576. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geog. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.Y.; Kuang, W.H.; Xu, X.L.; Zhang, S.W.; Yan, C.Z.; Li, R.D.; Wu, S.X.; Hu, Y.F.; Du, G.M.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geog. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.-J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Q.; Wang, Y.; Zhao, Z.; Zhang, X.; Liu, H.; Gao, J. Agricultural drought dynamics in China during 1982–2020: A depiction with satellite remotely sensed soil moisture. GISci. Remote Sens. 2023, 60, 2257469. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Long, H. Land use policy in China: Introduction. Land Use Policy 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Guan, D.; Gao, W.; Watari, K.; Fukahori, H. Land use change of Kitakyushu based on landscape ecology and Markov model. J. Geog. Sci. 2008, 18, 455–468. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors–Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geog. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Zeng, J.; Ran, D.; Yang, B. Spatial heterogeneity and formation mechanism of eco-environmental effect of land use change in China. Geogr. Res. 2019, 38, 10878. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar] [CrossRef]
- Zhai, J.; Wang, L.; Liu, Y.; Wang, C.; Mao, X. Assessing the effects of China’s Three-North Shelter Forest Program over 40 years. Sci. Total Environ. 2023, 857, 159354. [Google Scholar] [CrossRef]
- Liu, J.; Zang, C.; Tian, S.; Liu, J.; Yang, H.; Jia, S.; You, L.; Liu, B.; Zhang, M. Water conservancy projects in China: Achievements, challenges and way forward. Glob. Environ. Chang. 2013, 23, 633–643. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.-P.; Jiang, J.; Wang, L.-J.; Zhang, J.-C. Incorporating the implementation intensity of returning farmland to lakes into policymaking and ecosystem management: A case study of the Jianghuai Ecological Economic Zone, China. J. Clean. Prod. 2021, 306, 127284. [Google Scholar] [CrossRef]
- Yuan, C.; Shang, M.; Han, Z.; Wang, J. Research on the impact of the national ecological demonstration zone on green total factor productivity: Evidence from China. J. Environ. Manag. 2024, 356, 120421. [Google Scholar] [CrossRef]
- Yang, H. China’s Natural Forest Protection Program: Progress and impacts. For. Chron. 2017, 93, 113–117. [Google Scholar] [CrossRef]
- Liu, Z.; Lan, J. The Sloping Land Conversion Program in China: Effect on the Livelihood Diversification of Rural Households. World Dev. 2015, 70, 147–161. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Chen, J.; Zhang, Z. Assessing effects of the Returning Farmland to Forest Program on vegetation cover changes at multiple spatial scales: The case of northwest Yunnan, China. J. Environ. Manag. 2022, 304, 114303. [Google Scholar] [CrossRef]
- Jiang, M.K.; Wang, Z.; Qin, W.H.; He, Z.H. Effectiveness of national priority wildlife protection in nature reserves. J. Ecol. Rural Environ. 2006, 22, 35–38+VI. [Google Scholar] [CrossRef]
- Wang, X.; Bennett, J. Policy analysis of the Conversion of Cropland to Forest and Grassland Program in China. Environ. Econ. Policy Stud. 2008, 9, 119–143. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Madden, M.; Mao, D. China’s Wetlands: Conservation Plans and Policy Impacts. Ambio 2012, 41, 782–786. [Google Scholar] [CrossRef]
- Liu, D.; Song, C.; Fang, C.; Xin, Z.; Xi, J.; Lu, Y. A recommended nitrogen application strategy for high crop yield and low environmental pollution at a basin scale. Sci. Total Environ. 2021, 792, 148464. [Google Scholar] [CrossRef]
- You, Y.; Zhou, N.; Wang, Y. Comparative study of desertification control policies and regulations in representative countries of the Belt and Road Initiative. Glob. Ecol. Conserv. 2021, 27, e01577. [Google Scholar] [CrossRef]
- Fan, J.; Li, P. The scientific foundation of Major Function Oriented Zoning in China. J. Geog. Sci. 2009, 19, 515–531. [Google Scholar] [CrossRef]
- Xie, X.; Li, X.; Fan, H.; He, W. Spatial analysis of production-living-ecological functions and zoning method under symbiosis theory of Henan, China. Environ. Sci. Pollut. Res. 2021, 28, 69093–69110. [Google Scholar] [CrossRef]
- Qi, Q. Application of a groundwater modelling system in groundwater environmental impact assessment of river and lake connection in western Jilin region. Appl. Ecol. Environ. Res. 2019, 17, 5059–5066. [Google Scholar] [CrossRef]
- Lu, N.; Tian, H.; Fu, B.; Yu, H.; Piao, S.; Chen, S.; Li, Y.; Li, X.; Wang, M.; Li, Z.; et al. Biophysical and economic constraints on China’s natural climate solutions. Nat. Clim. Chang. 2022, 12, 847–853. [Google Scholar] [CrossRef]
- Lv, T.; Zeng, C.; Lin, C.; Liu, W.; Cheng, Y.; Li, Y. Towards an integrated approach for land spatial ecological restoration zoning based on ecosystem health assessment. Ecol. Indic. 2023, 147, 110016. [Google Scholar] [CrossRef]
- Niu, X.; Liao, F.; Liu, Z.; Wu, G. Spatial–Temporal Characteristics and Driving Mechanisms of Land–Use Transition from the Perspective of Urban–Rural Transformation Development: A Case Study of the Yangtze River Delta. Land 2022, 11, 631. [Google Scholar] [CrossRef]
- Venkatesh, K.; John, R.; Chen, J.; Jarchow, M.; Amirkhiz, R.G.; Giannico, V.; Saraf, S.; Jain, K.; Kussainova, M.; Yuan, J. Untangling the impacts of socioeconomic and climatic changes on vegetation greenness and productivity in Kazakhstan. Environ. Res. Lett. 2022, 17, 095007. [Google Scholar] [CrossRef]
- Uisso, A.M.; Tanrıvermiş, H. Driving factors and assessment of changes in the use of arable land in Tanzania. Land Use Policy 2021, 104, 105359. [Google Scholar] [CrossRef]
- Kovács, D.D.; Amin, E.; Berger, K.; Reyes-Muñoz, P.; Verrelst, J. Untangling the Causal Links between Satellite Vegetation Products and Environmental Drivers on a Global Scale by the Granger Causality Method. Remote Sens. 2023, 15, 4956. [Google Scholar] [CrossRef]
- Overmars, K.P.; de Koning, G.H.J.; Veldkamp, A. Spatial autocorrelation in multi-scale land use models. Ecol. Model. 2003, 164, 257–270. [Google Scholar] [CrossRef]
- Tong, X.; Feng, Y. A review of assessment methods for cellular automata models of land-use change and urban growth. Int. J. Geog. Inf. Sci. 2020, 34, 866–898. [Google Scholar] [CrossRef]
- Mitsuda, Y.; Ito, S. A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landsc. Ecol. Eng. 2011, 7, 117–125. [Google Scholar] [CrossRef]
- Chakir, R.; Le Gallo, J. Predicting land use allocation in France: A spatial panel data analysis. Ecol. Econ. 2013, 92, 114–125. [Google Scholar] [CrossRef]
Connotation | |
---|---|
1 | Cropland → woodland |
2 | Cropland → grassland |
3 | Cropland → built-up land |
4 | Woodland → cropland |
5 | Woodland → grassland |
6 | Woodland → built-up land |
7 | Grassland → cropland |
8 | Grassland → woodland |
9 | Grassland → built-up land |
10 | Water body → cropland |
11 | Cropland/woodland/grassland/water → unused land |
12 | Unused land → cropland/woodland/grassland/water |
1990–2020 | Cropland (1) | Woodland (2) | Grassland (3) | Water Body (4) | Built-Up Land (5) | Unused Land (6) | Sum |
---|---|---|---|---|---|---|---|
Cropland | 20,401.7 | 587.37 | 194.17 | 9.71 | 22.64 | 77.86 | 891.75 |
Woodland | 285.21 | 1181.81 | 20.85 | 0.88 | 1.46 | 3.86 | 312.26 |
Grassland | 2920.88 | 588.02 | 4253.72 | 17.38 | 6.32 | 777.15 | 4309.74 |
Water body | 131.76 | 0.3 | 20.44 | 2426.71 | 0.05 | 498.67 | 651.22 |
Built-up land | 3.39 | 0.3 | 0.15 | 0.01 | 1557.74 | 0.2 | 4.04 |
Unused land | 917.8 | 113.24 | 598.57 | 109.4 | 1.52 | 8929.98 | 1740.53 |
Sum | 4259.04 | 1289.22 | 834.17 | 137.38 | 31.99 | 1357.75 | - |
2000–2010 | Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land | Sum |
Cropland | 23,010.49 | 421.78 | 457.99 | 124.25 | 260.21 | 386.03 | 1650.25 |
Woodland | 318.4 | 1956.86 | 104.77 | 20.94 | 15.05 | 55.02 | 514.18 |
Grassland | 997.08 | 136.72 | 3229.79 | 13.56 | 27.37 | 683.37 | 1858.1 |
Water body | 87.76 | 84.89 | 76.65 | 1572.54 | 15.32 | 726.95 | 991.56 |
Built-up land | 205.38 | 11.71 | 14.31 | 1.73 | 1335.4 | 21.2 | 254.33 |
Unused land | 593.12 | 44.49 | 620.46 | 175.34 | 61.4 | 8792.91 | 1494.81 |
Sum | 2201.74 | 699.58 | 1274.18 | 335.82 | 379.34 | 1872.57 | - |
2010–2020 | Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land | Sum |
Cropland | 24,513.91 | 373.51 | 78.98 | 26.12 | 133.64 | 86.07 | 698.32 |
Woodland | 270.89 | 2337.64 | 8.98 | 17.08 | 4.25 | 17.61 | 318.8 |
Grassland | 236.21 | 38.43 | 4120.12 | 26.44 | 13.12 | 69.64 | 383.85 |
Water body | 22.74 | 11.39 | 8.42 | 1735.63 | 0.93 | 129.26 | 172.73 |
Built-up land | 55.66 | 4.83 | 3.18 | 12.23 | 1632.72 | 6.12 | 82.03 |
Unused land | 466.76 | 107.48 | 262.82 | 109.55 | 46.34 | 9672.52 | 992.95 |
Sum | 1052.26 | 535.64 | 362.39 | 191.42 | 198.28 | 308.69 | - |
Type | DEM (m) | Slope (°) | Aspect (°) | Annual Rainfall (mm) | Average Annual Temperature (°) | Soil Moisture (cm3/cm3) | Aridity Index |
---|---|---|---|---|---|---|---|
Cropland → woodland | 170–190 | 36.5–39.5 | 124–165 | 14.1–15.3 | 6.36–6.49 | 0.230–0.235 | 0.305–0.326 |
Cropland → grassland | 303–361 | 33.9–37.8 | 170–176 | 14.1–15.8 | 6.17–6.42 | 0.215–0.232 | 0.292–0.315 |
Cropland → built-up land | 145–156 | 16.5–32 | 151–169 | 18.1–20.9 | 6.19–6.67 | 0.256–0.286 | 0.229–0.310 |
Woodland → cropland | 208–243 | 42.4–50.2 | 203–230 | 17.8–20.9 | 5.43–5.49 | 0.230–0.236 | 0.340–0.361 |
Woodland → grassland | 159–165 | 41.9–45.7 | 167–180 | 16.3–17.2 | 6.15–6.26 | 0.236–0.239 | 0.355–0.367 |
Woodland → built-up land | 159–173 | 62.2–76.5 | 202–230 | 17.5–20.9 | 5.43–5.50 | 0.222–0.230 | 0.321–0.348 |
Grassland → cropland | 304–362 | 35.8–39.7 | 182–196 | 14.1–15.2 | 6.00–6.24 | 0.250–0.268 | 0.360–0.348 |
Grassland → woodland | 160–167 | 35.8–39.1 | 142–155 | 16.3–17.0 | 6.61–6.67 | 0.220–0.229 | 0.292–0.298 |
Grassland → built-up land | 146–155 | 16.9–26.7 | 164–168 | 14.1–16.2 | 5.89–6.05 | 0.219–0.241 | 0.333–0.351 |
Water body → cropland | 159–173 | 62.2–76.5 | 202–230 | 17.8–18.1 | 5.43–5.50 | 0.222–0.230 | 0.321–0.348 |
Cropland/woodland/grassland/water → unused land | 128–142 | 70.4–80.9 | 66.8–83.8 | 17.0–17.2 | 5.93–6.06 | 0.213–0.227 | 0.343–0.361 |
Unused land → cropland/ woodland/grassland/water | 167–186 | 20.5–32.4 | 167–171 | 14.1–15.3 | 6.30–6.46 | 0.202–0.221 | 0.338–0.352 |
Type | GDP (in 10,000 s RMB) | Population Size (in 10,000 s) | Agricultural Population Size (in 10,000 s) | Livestock (Head) | Urbanization Level (%) |
---|---|---|---|---|---|
Cropland → woodland | 777,000–1170,000 | 35.3–52.2 | 11.6–13.2 | 35,800–54,500 | 43.4–77.3 |
Cropland → grassland | 665,000–777,000 | 29.8–35.3 | 8.02–12.4 | 25,500–43,100 | 63.7–67.2 |
Cropland → built-up land | 1,440,000–2,240,000 | 43.8–51.2 | 28.8–43.4 | 15,100–25,500 | 33.1–45.2 |
Woodland → cropland | 1,400,000–1,420,000 | 57.2–63.0 | 12.4–19.0 | 72,600–123,000 | 24.2–36.1 |
Woodland → grassland | 1,400,000–1,420,000 | 57.2–63.0 | 30.4– 43.4 | 56,400–83,200 | 24.2–36.1 |
Woodland → built-up land | 777,000–909,000 | 43.3–71.0 | 28.8–43.4 | 46,400–56,400 | 45.2–61.5 |
Grassland → cropland | 665,000–777,000 | 27.1–35.3 | 8.02–12.4 | 25,500–43,100 | 63.7–67.2 |
Grassland → woodland | 665,000–777,000 | 26.3–35.3 | 8.02–12.4 | 25,500–43,100 | 67.2–70.4 |
Grassland → built-up land | 655,000–777,000 | 27.1–35.3 | 10.6–11.6 | 25,500–43,100 | 63.7–67.2 |
Water body → cropland | 777,000–909,000 | 26.3–27.1 | 19.0–28.8 | 46,400–56,400 | 45.2–61.5 |
Cropland/woodland/grassland/water → unused land | 901,000–1,220,000 | 35.3–37.8 | 19.0–28.8 | 15,100–25,500 | 45.2–61.5 |
Unused land → cropland/ woodland/grassland/water | 777,000–1,310,000 | 35.3–49.0 | 11.6–13.9 | 35,800–54,500 | 43.4–77.3 |
Time | Main Policy | Type | Trend | Direction | Rate (%) |
---|---|---|---|---|---|
Before 1990 | Three North Shelter Forest Program (1978–2050) [47] | - | - | - | - |
1990–2000 | Water Conservancy Project during 8th Five-Year Plan Period (1991–1995) [48] Returning of Farmland to River (Lake) Program (1993–2016) [49] The Outline of National Demonstration Zone Construction Planning (1996–2050) [50] Natural Forest Protection Program (1998–2020) [51] Sloping Land Conversion Program (1999–2019) [52,53] | Cropland | ↑ | Woodland | 1.58 |
Woodland | ↑ | Cropland, Grassland | 6.54 | ||
Grassland | ↓ | Woodland, Cropland | −4.06 | ||
Water body | ↓ | Unused land | −1.67 | ||
Built-up land | ↑ | Cropland, Woodland | 0.18 | ||
Unused land | ↓ | Cropland, Woodland | −0.36 | ||
2000–2010 | National Wildlife Protection and Nature Reserve Construction Program (2001–2050) [54] Alkali Control Project in the West of Jilin Province (2002–) [28] Conversion of Farmland to Grassland Program (2003–2008) [55] Wetland Protection Program (2002–2030) [56] The Major Land Consolidation Project in the West of Jilin Province(2008–) [28] 100 Billion Catties Grain Production Capacity Project (2009–2020) [57] | Cropland | ↑ | Woodland | 0.22 |
Woodland | ↑ | Cropland | 0.75 | ||
Grassland | ↓ | Woodland, Cropland | −1.15 | ||
Water body | ↓ | Unused land | −2.56 | ||
Built-up land | ↑ | Unused land | 0.79 | ||
Unused land | ↑ | Water body | 0.37 | ||
2010–2020 | National Desertification Prevention and Control Plan (2010–2020) [58] Nationwide Major Function Oriented Zoning (2011–2021) [59] Development Goals of “Three-life space”(2012–) [60] River-lake Connection Project (2013–) [61] Management Measures for Ecological Protection Guidelines for the Red Line of Ecological Protection (2016–) [58] Wetland Protection and Restoration System Plan (2017–) [56] | Cropland | ↑ | Woodland, Grassland | 0.14 |
Woodland | ↑ | Cropland, Grassland | 0.82 | ||
Grassland | ↓ | Woodland, Water body | −0.05 | ||
Water body | ↑ | Unused land | 0.1 | ||
Built-up land | ↑ | Cropland | 0.68 | ||
Unused land | ↓ | Water body | −0.64 | ||
After 2020 | The Master Plan for Major Projects of National Important Ecosystem Protection and Restoration (2021–2035) [62] Land Spatial Ecological Restoration Planning (2021–2035) [63] | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, S.; Wang, Y.; Tang, T.; Su, C.; Li, B.; Bilal, M.A.; Meng, Y. The Spatial-Temporal Patterns and Driving Mechanisms of the Ecological Barrier Transition Zone in the Western Jilin, China. Land 2024, 13, 856. https://doi.org/10.3390/land13060856
Wen S, Wang Y, Tang T, Su C, Li B, Bilal MA, Meng Y. The Spatial-Temporal Patterns and Driving Mechanisms of the Ecological Barrier Transition Zone in the Western Jilin, China. Land. 2024; 13(6):856. https://doi.org/10.3390/land13060856
Chicago/Turabian StyleWen, Shibo, Yongzhi Wang, Tianqi Tang, Congcong Su, Bowen Li, Muhammad Atif Bilal, and Yibo Meng. 2024. "The Spatial-Temporal Patterns and Driving Mechanisms of the Ecological Barrier Transition Zone in the Western Jilin, China" Land 13, no. 6: 856. https://doi.org/10.3390/land13060856
APA StyleWen, S., Wang, Y., Tang, T., Su, C., Li, B., Bilal, M. A., & Meng, Y. (2024). The Spatial-Temporal Patterns and Driving Mechanisms of the Ecological Barrier Transition Zone in the Western Jilin, China. Land, 13(6), 856. https://doi.org/10.3390/land13060856