A Multicriteria Decision Analysis Model for Optimal Land Uses: Guiding Farmers under the New European Union’s Common Agricultural Policy (2023–2027)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Farmer Groups
2.2. Questionnaire Design and Data Collection Temporal Structure
2.3. Methodology—Weighting Goal Programming
- wj: The weights attached to each objective represent the actual behavior of the farmer.
- fij: The pay-off matrix elements.
- fi: Τhe outcome obtained for the i-th objective based on the observed crop distribution.
- pi: The positive deviational variable, measuring the degree of over-achievement for the i-th objective concerning a given target.
- ni: The negative deviational variable that assesses the variance between the actual value and the modeled solution for the i-th objective.
2.4. Model Specification
2.4.1. Variables
2.4.2. Objectives
- Profit maximization: MaxGM = Σ GMi × XiThe term “profit maximization” is equivalent to maximizing gross profit, which is obtained by subtracting the variable cost from the gross output.
- Variable cost minimization: MinGC = Σ GCii × XiThis kind of cost arises from the total expenses on fertilizers, pesticides, fuel, irrigation fees, hired machinery work, and other consumables.
- Labor minimization: MinLAB = Σ LABi × XiThis term refers to the total agricultural activities expressed in hours of the human family and “hired” labor.
- Water use minimization: MinWAT = Σ WATi × XiThis term refers to the total volume of irrigation water per cultivation.
2.4.3. Constraints
- Total cultivation land: Up to 100 acres per farmer group.
- Common Agricultural Policy: According to the new CAP (2023–2027) rules, it is stated that all farms with arable land must adopt environmental practices. This implies that farms’ arable land should be converted into an ecological focus area [13]. Therefore, it is essential to consider the constraints arising from the new CAP, such as the set-aside land, which affects most cultivated species.
- Irrigation: Additionally, it is also important to consider the CAP’s constraints regarding the rational use of irrigation water [13]. Specifically, it has been estimated in advance that potential irrigation water savings are considered necessary during the production process [13]. The first three farmer groups (Chalastra, Lagyna, and Chrisoupoli) primarily utilize irrigation techniques. The irrigated crops are cotton, alfalfa, alfalfa hay, clover, vetch, sunflower, corn, corn silage, and rice.Non-irrigated crops are: Soft wheat, dryland alfalfa, fallow (SA) land, chopped alfalfa, and grassland. Regarding the two remaining farmer groups (Kranidia and Mesorrachi), their land is exclusively utilized for dry farming. The crops cultivated by these farmer groups are: Alfalfa seed production, alfalfa hay, dryland alfalfa, clover, vetch, corn, grassland, hard and soft wheat, rapeseed, sunflower, barley, and fallow (SA) land.
- Market constraints and other constraints: They were determined according to market constraints. Some crops are not subject to the specific constraints of the CAP, but market constraints impose an upper limit on short-term variations.
3. Results
3.1. Chalastra’s Farmer Group—Existing Crop Plan
3.1.1. Optimal Land Change of Chalastra’s Farmer Group
3.1.2. Objectives Analysis of Chalastra’s Farmer Group
3.2. Lagyna’s Farmer Group—Existing Crop Plan
3.2.1. Agricultural Land Change of Lagyna’s Farmer Group
3.2.2. Objectives Analysis of Lagyna’s Farmer Group
3.3. Chrisoupoli’s Farmer Group—Existing Crop Plan
3.3.1. Agricultural Land Change of Chrisoupoli’s Farmer Group
3.3.2. Objectives Analysis of Chrisoupoli’s Farmer Group
3.4. Kranidia’s Farmer Group—Existing Crop Plan
3.4.1. Agricultural Land Change of Kranidia’s Farmer Group
3.4.2. Objectives Analysis of Kranidia’s Farmer Group
3.5. Mesorrachi’s Farmer Group—Existing Crop Plan
3.5.1. Agricultural Land Change of Mesorrachi’s Farmer Group
3.5.2. Objectives Analysis of Mesorrachi’s Farmer Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaaloul, N.; Eslamian, S.; Katlance, R. Impacts of Climate Change and Water Resources Management in the Southern Mediterranean Countries. Water Product. J. 2021, 1, 51–72. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Dinar, A. Challenges to Water Resource Management: The Role of Economic and Modeling Approaches. Water 2024, 16, 610. [Google Scholar] [CrossRef]
- Bernas, J.; Konvalina, P.; Brom, J.; Moudrý, J.; Veselá, T.; Bucur, D.; Dirja, M.; Shim, S. Agrotechnology as Key Factor in Effective Use of Water on Arable Land BT. In Assessment and Protection of Water Resources in the Czech Republic; Zelenakova, M., Fialová, J., Negm, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 275–312. ISBN 978-3-030-18363-9. [Google Scholar]
- Ercin, E.; Veldkamp, T.I.E.; Hunink, J. Cross-Border Climate Vulnerabilities of the European Union to Drought. Nat. Commun. 2021, 12, 3322. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in Agricultural Soils: Sources, Effects, and Their Fate. Curr. Opin. Environ. Sci. Health 2022, 25, 100311. [Google Scholar] [CrossRef]
- Klages, S.; Heidecke, C.; Osterburg, B.; Bailey, J.; Calciu, I.; Casey, C.; Dalgaard, T.; Frick, H.; Glavan, M.; D’Haene, K.; et al. Nitrogen Surplus—A Unified Indicator for Water Pollution in Europe? Water 2020, 12, 1197. [Google Scholar] [CrossRef]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Rozakis, S. Positive Multicriteria (PMC) Models in Agriculture for Energy and Environmental Policy Analysis. Int. J. Multicriteria Decis. Mak. 2011, 1, 321–337. [Google Scholar] [CrossRef]
- Instruments and Reforms. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/107/the-common-agricultural-policy-instruments-and-reforms (accessed on 27 April 2023).
- Common Agricultural Policy 2023–2027. Available online: https://www.consilium.europa.eu/el/policies/cap-introduction/cap-future-2020-common-agricultural-policy-2023-2027/ (accessed on 2 February 2024).
- Cap Strategic Plan of Greece 2023–2027. Available online: https://www.minagric.gr/2013-04-05-10-13-09/ministry-example/diavoylefsi-i-kap-meta-to-2020-list/12311-kap2023-2027-130122 (accessed on 2 February 2024).
- Landriani, L.; Agrifoglio, R.; Metallo, C.; Lepore, L. The Role of Knowledge in Water Service Coproduction and Policy Implications. Util. Policy 2022, 79, 101439. [Google Scholar] [CrossRef]
- Medema, W.; Adamowski, J.; Orr, C.; Furber, A.; Wals, A.; Milot, N. Building a Foundation for Knowledge Co-Creation in Collaborative Water Governance: Dimensions of Stakeholder Networks Facilitated through Bridging Organizations. Water 2017, 9, 60. [Google Scholar] [CrossRef]
- Measure 16: Cooperation and Innovation (In Greek). Available online: https://ead.gr/measure-16/ (accessed on 27 April 2024).
- Bournaris, T.; Moulogianni, C.; Manos, B. A Multicriteria Model for the Assessment of Rural Development Plans in Greece. Land Use Policy 2014, 38, 1–8. [Google Scholar] [CrossRef]
- Moulogianni, C.; Bournaris, T. Assessing the Impacts of Rural Development Plan Measures on the Sustainability of Agricultural Holdings Using a Pmp Model. Land 2021, 10, 446. [Google Scholar] [CrossRef]
- Duan, S.X.; Wibowo, S.; Chong, J. A Multicriteria Analysis Approach for Evaluating the Performance of Agriculture Decision Support Systems for Sustainable Agribusiness. Mathematics 2021, 9, 884. [Google Scholar] [CrossRef]
- Zolekar, R.B.; Bhagat, V.S. Multi-Criteria Land Suitability Analysis for Agriculture in Hilly Zone: Remote Sensing and GIS Approach. Comput. Electron. Agric. 2015, 118, 300–321. [Google Scholar] [CrossRef]
- Riesgo, L.; Gómez-Limón, J.A. Multi-Criteria Policy Scenario Analysis for Public Regulation of Irrigated Agriculture. Agric. Syst. 2006, 91, 1–28. [Google Scholar] [CrossRef]
- Tiwari, D.N.; Loof, R.; Paudyal, G.N. Environmental-Economic Decision-Making in Lowland Irrigated Agriculture Using Multi-Criteria Analysis Techniques. Agric. Syst. 1999, 60, 99–112. [Google Scholar] [CrossRef]
- Mendas, A.; Delali, A. Integration of Multi Criteria Decision Analysis in GIS to Develop Land Suitability for Agriculture: Application to Durum Wheat Cultivation in the Region of Mleta in Algeria. Comput. Electron. Agric. 2012, 83, 117–126. [Google Scholar] [CrossRef]
- Pashaei Kamali, F.; Borges, J.A.R.; Meuwissen, M.P.M.; de Boer, I.J.M.; Oude Lansink, A.G.J.M. Sustainability Assessment of Agricultural Systems: The Validity of Expert Opinion and Robustness of a Multi-Criteria Analysis. Agric. Syst. 2017, 157, 118–128. [Google Scholar] [CrossRef]
- Talukder, B.; Hipel, K.W.; van Loon, G.W. Using Multi-Criteria Decision Analysis for Assessing Sustainability of Agricultural Systems. Sustain. Dev. 2018, 26, 781–799. [Google Scholar] [CrossRef]
- Kazemi, H.; Akinci, H. A Land Use Suitability Model for Rainfed Farming by Multi-Criteria Decision-Making Analysis (MCDA) and Geographic Information System (GIS). Ecol. Eng. 2018, 116, 1–6. [Google Scholar] [CrossRef]
- Siskos, Y.; Matsatsinis, N.F.; Baourakis, G. Multicriteria Analysis in Agricultural Marketing: The Case of French Olive Oil Market. Eur. J. Oper. Res. 2001, 130, 315–331. [Google Scholar] [CrossRef]
- Puška, A.; Nedeljković, M.; Šarkoćević, Ž.; Golubović, Z.; Ristić, V.; Stojanović, I. Evaluation of Agricultural Machinery Using Multi-Criteria Analysis Methods. Sustainability 2022, 14, 8675. [Google Scholar] [CrossRef]
- Aldababseh, A.; Temimi, M.; Maghelal, P.; Branch, O.; Wulfmeyer, V. Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment. Sustainability 2018, 10, 803. [Google Scholar] [CrossRef]
- Ozsahin, E.; Ozdes, M. Agricultural Land Suitability Assessment for Agricultural Productivity Based on GIS Modeling and Multi-Criteria Decision Analysis: The Case of Tekirdağ Province. Environ. Monit. Assess. 2022, 194, 41. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Limón, J.A.; Berbel, J. Multicriteria Analysis of Derived Water Demand Functions: A Spanish Case Study. Agric. Syst. 2000, 63, 49–72. [Google Scholar] [CrossRef]
- Dooley, A.E.; Smeaton, D.C.; Sheath, G.W.; Ledgard, S.F. Application of Multiple Criteria Decision Analysis in the New Zealand Agricultural Industry. J. Multi-Criteria Decis. Anal. 2009, 16, 39–53. [Google Scholar] [CrossRef]
- Vogdrup-Schmidt, M.; Olsen, S.B.; Dubgaard, A.; Kristensen, I.T.; Jørgensen, L.B.; Normander, B.; Ege, C.; Dalgaard, T. Using Spatial Multi-Criteria Decision Analysis to Develop New and Sustainable Directions for the Future Use of Agricultural Land in Denmark. Ecol. Indic. 2019, 103, 34–42. [Google Scholar] [CrossRef]
- Sarı, F.; Sarı, F.K. Multi Criteria Decision Analysis to Determine the Suitability of Agricultural Crops for Land Consolidation Areas. Int. J. Eng. Geosci. 2021, 6, 64–73. [Google Scholar] [CrossRef]
- Paul, M.; Negahban-Azar, M.; Shirmohammadi, A.; Montas, H. Assessment of Agricultural Land Suitability for Irrigation with Reclaimed Water Using Geospatial Multi-Criteria Decision Analysis. Agric. Water Manag. 2020, 231, 105987. [Google Scholar] [CrossRef]
- Jozi, S.A.; Ebadzadeh, F. Application of Multi-Criteria Decision-Making in Land Evaluation of Agricultural Land Use. J. Indian Soc. Remote Sens. 2014, 42, 363–371. [Google Scholar] [CrossRef]
- Macary, F.; Dias, J.A.; Figueira, J.R.; Roy, B. A Multiple Criteria Decision Analysis Model Based on ELECTRE TRI-C for Erosion Risk Assessment in Agricultural Areas. Environ. Model. Assess. 2014, 19, 221–242. [Google Scholar] [CrossRef]
- Miranda, J.I. Multicriteria Analysis Applied to the Sustainable Agriculture Problem. Int. J. Sustain. Dev. World Ecol. 2001, 8, 67–77. [Google Scholar] [CrossRef]
- Fealy, R.M.; Buckley, C.; Mechan, S.; Melland, A.; Mellander, P.E.; Shortle, G.; Wall, D.; Jordan, P. The Irish Agricultural Catchments Programme: Catchment Selection Using Spatial Multi-Criteria Decision Analysis. Soil. Use Manag. 2010, 26, 225–236. [Google Scholar] [CrossRef]
- Gésan-Guiziou, G.; Alaphilippe, A.; Aubin, J.; Bockstaller, C.; Boutrou, R.; Buche, P.; Collet, C.; Girard, A.; Martinet, V.; Membré, J.M.; et al. Diversity and Potentiality of Multi-Criteria Decision Analysis Methods for Agri-Food Research. Agron. Sustain. Dev. 2020, 40, 44. [Google Scholar] [CrossRef]
- Lombardi, P.; Todella, E. Multi-Criteria Decision Analysis to Evaluate Sustainability and Circularity in Agricultural Waste Management. Sustainability 2023, 15, 14878. [Google Scholar] [CrossRef]
- Blanquart, S. Role of Multicriteria Decision-Aid (MCDA) to Promote Sustainable Agriculture: Heterogeneous Data and Different Kinds of Actors in a Decision Process. Int. J. Agric. Resour. Gov. Ecol. 2009, 8, 258–281. [Google Scholar] [CrossRef]
- Romano, G.; Dal Sasso, P.; Trisorio Liuzzi, G.; Gentile, F. Multi-Criteria Decision Analysis for Land Suitability Mapping in a Rural Area of Southern Italy. Land Use Policy 2015, 48, 131–143. [Google Scholar] [CrossRef]
- Sarı, F.; Ceylan, D.A.; Özcan, M.M.; Özcan, M.M. A Comparison of Multicriteria Decision Analysis Techniques for Determining Beekeeping Suitability. Apidologie 2020, 51, 481–498. [Google Scholar] [CrossRef]
- Stewart, T.J.; French, S.; Rios, J. Integrating Multicriteria Decision Analysis and Scenario Planning-Review and Extension. Omega 2013, 41, 679–688. [Google Scholar] [CrossRef]
- Arriaza, M.; Gomez-Limon, J.A. How Decoupling Could Mean Dismantling of the Cotton Sector in Spain. New Medit. Mediterr. J. Econ. Agric. Environ. 2006, V, 4–14. [Google Scholar]
- Aggelopoulos, S.; Arabatzis, G. European Union Young Farmers Program: A Greek Case Study. New Medit. 2010, 9, 50–55. [Google Scholar]
- Kazakopoulos, L.; Gidarakou, I. Young Women Farm Heads in Greek Agriculture: Entering Farming through Policy Incentives. J. Rural. Stud. 2003, 19, 397–410. [Google Scholar] [CrossRef]
- Bournaris, T.; Papathanasiou, J.; Manos, B.; Kazakis, N.; Voudouris, K. Support of Irrigation Water Use and Eco-Friendly Decision Process in Agricultural Production Planning. Oper. Res. 2015, 15, 289–306. [Google Scholar] [CrossRef]
- Bartolini, F.; Viaggi, D. Recent Developments in Multi-Criteria Evaluation of Regulations. Qual. Assur. Saf. Crops Foods 2010, 2, 182–196. [Google Scholar] [CrossRef]
- Finn, J.A.; Bartolini, F.; Bourke, D.; Kurz, I.; Viaggi, D. DEx post environmental evaluation of agri-environment schemes using experts’ judgements and multicriteria analysis. J. Environ. Plan. Manag. 2009, 52, 717–737. [Google Scholar] [CrossRef]
- Viaggi, D.; Finn, J.A.; Kurz, I.; Bartolini, F. Multicriteria Analysis for Environmental Assessment of Agri-Environment Schemes: How to Use Partial Information from Mid-Term Evaluations? Agric. Econ. Rev. 2011, 12, 6–21. [Google Scholar]
- Bartolini, F.; Finn, J.; Kurz, I.; Samoggia, A.; Viaggi, D. Using Information from Mid Term Evaluations of RDP for the Multicriteria Analysis of Agri-Environmental Schemes. In Proceedings of the 2005 International Congress, Copenhagen, Denmark, 23–27 August 2005. [Google Scholar]
- Moulogianni, C. Comparison of Selected Mathematical Programming Models Used for Sustainable Land and Farm Management. Land 2022, 11, 1293. [Google Scholar] [CrossRef]
- Bournaris, T.; Moulogianni, C.; Vlontzos, G.; Georgilas, I. Methodologies Used to Assess the Impacts of Climate Change in Agricultural Economics: A Rapid Review. Int. J. Sustain. Agric. Manag. Inform. 2021, 7, 253–269. [Google Scholar] [CrossRef]
- Georgilas, I.; Moulogianni, C.; Bournaris, T.; Vlontzos, G.; Manos, B. Socioeconomic Impact of Climate Change in Rural Areas of Greece Using a Multicriteria Decision-Making Model. Agronomy 2021, 11, 1779. [Google Scholar] [CrossRef]
- Sumpsi, J.M.; Amador, F.; Romero, C. On Farmers’ Objectives: A Multi-Criteria Approach. Eur. J. Oper. Res. 1997, 96, 64–71. [Google Scholar] [CrossRef]
- Sumpsi, J.M.; Amador, F.; Romero, C. A Research on the Andalusian Farmers’ Objectives: Methodological Aspects and Policy Implications. In Proceedings of the Aspects of the Common Agricultural Policy, VIIth EAAE Congress, Stresa, Italy, 6–10 September 1993. [Google Scholar]
- Amador, F.; Sumpsi, J.M.; Romero, C. A Non-Interactive Methodology to Assess Farmers’ Utility Functions: An Application to Large Farms in Andalusia, Spain. Eur. Rev. Agric. Econ. 1998, 25, 92–102. [Google Scholar] [CrossRef]
- Manos, B.; Bournaris, T.; Moulogianni, C.; Kiomourtzi, F. Assessment of Rural Development Plan Measures in Greece. Int. J. Oper. Res. 2017, 28, 448. [Google Scholar] [CrossRef]
- Hayashi, K. Multicriteria Analysis for Agricultural Resource Management: A Critical Survey and Future Perspectives. Eur. J. Oper. Res. 2000, 122, 486–500. [Google Scholar] [CrossRef]
- Mendoza, G.A.; Martins, H. Multi-Criteria Decision Analysis in Natural Resource Management: A Critical Review of Methods and New Modelling Paradigms. Ecol. Manag. 2006, 230, 1–22. [Google Scholar] [CrossRef]
- Bruzzese, S.; Blanc, S.; Novelli, S.; Brun, F. A Multicriteria Analysis to Support Natural Resource Governance: The Case of Chestnut Forests. Resources 2023, 12, 40. [Google Scholar] [CrossRef]
- Romero, C.; Rehman, T. Natural Resource Management and the Use of Multiple Criteria Decision-Making Techniques: A Review. Eur. Rev. Agric. Econ. 1987, 14, 61–89. [Google Scholar] [CrossRef]
- Guerrero-Baena, M.D.; Gómez-Limón, J.A.; Fruet, J.V. A Multicriteria Method for Environmental Management System Selection: An Intellectual Capital Approach. J. Clean. Prod. 2015, 105, 428–437. [Google Scholar] [CrossRef]
- Bartolini, F.; Bazzani, G.M.; Gallerani, V.; Raggi, M.; Viaggi, D. The Impact of Water and Agriculture Policy Scenarios on Irrigated Farming Systems in Italy: An Analysis Based on Farm Level Multi-Attribute Linear Programming Models. Agric. Syst. 2007, 93, 90–114. [Google Scholar] [CrossRef]
- Bartolini, F.; Gallerani, V.; Raggi, M.; Viaggi, D. Implementing the Water Framework Directive: Contract Design and the Cost of Measures to Reduce Nitrogen Pollution from Agriculture. Environ. Manag. 2007, 40, 567–577. [Google Scholar] [CrossRef]
- Romero, C. Handbook of Critical Issues in Goal Programming; Pergamon Press: Oxford, UK, 1991. [Google Scholar]
- Bournaris, T.; Papathanasiou, J.; Moulogianni, C.; Manos, B. A Fuzzy Multicriteria Mathematical Programming Model for Planning Agricultural Regions. New Medit. 2009, 8, 22–27. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020. [Google Scholar]
- Tsaliki, E.; Loison, R.; Kalivas, A.; Panoras, I.; Grigoriadis, I.; Traore, A.; Gourlot, J.P. Cotton Cultivation in Greece under Sustainable Utilization of Inputs. Sustainability 2024, 16, 347. [Google Scholar] [CrossRef]
- Chatzinikolaou, P.; Bournaris, T.; Kiomourtzi, F.; Moulogianni, C.; Manos, B. Classification and Ranking Rural Areas in Greece Based on Technical, Economic and Social Indicators of the Agricultural Holdings. Int. J. Bus. Innov. Res. 2015, 9, 455. [Google Scholar] [CrossRef]
- Sarov, A.; Kostenarov, K. The Impact of Cap Subsidies on the Agricultural Enterprise’s Production Structure. Bulg. J. Agric. Sci. 2019, 25, 10–17. [Google Scholar]
- Ciliberti, S.; Frascarelli, A. A Critical Assessment of the Implementation of CAP 2014–2020 Direct Payments in Italy. Bio-Based Appl. Econ. 2015, 4, 261–277. [Google Scholar] [CrossRef]
- Jaime, M.M.; Coria, J.; Liu, X. Interactions between CAP Agricultural and Agri-Environmental Subsidies and Their Effects on the Uptake of Organic Farming. Am. J. Agric. Econ. 2016, 98, 1114–1145. [Google Scholar] [CrossRef]
- Coelho, L.A.G.; Pires, C.M.P.; Dionísio, A.T.; da Conceição Serrão, A.J. The Impact of CAP Policy in Farmer’s Behavior—A Modeling Approach Using the Cumulative Prospect Theory. J. Policy Model. 2012, 34, 81–98. [Google Scholar] [CrossRef]
- Garrone, M.; Emmers, D.; Lee, H.; Olper, A.; Swinnen, J. Subsidies and Agricultural Productivity in the EU. Agric. Econ. 2019, 50, 803–817. [Google Scholar] [CrossRef]
Crop | Acres | Existing Plan % | MCDA % | Deviation % |
---|---|---|---|---|
Cotton | 492 | 25.90 | 30.91 | 19.34 |
Rice | 1405 | 73.90 | 68.93 | −6.73 |
Corn | 4 | 0.20 | 0.16 | −20.00 |
Total | 1901 | 100.00 | 100.00 |
Existing Plan | MCDA Model | ||
---|---|---|---|
Value | Deviation (%) | ||
Gross profit (€) | 17,078.00 | 17,405.00 | 1.91 |
Variable cost (€) | 21,279.00 | 21,108.44 | −0.80 |
Labor (hours) | 271.00 | 265.00 | −2.21 |
Water use (m3) | 108,754.00 | 105,697.19 | −2.81 |
Crop | Acres | Existing Plan % | MCDA % | Deviation % |
---|---|---|---|---|
Alfalfa hay | 880 | 45.76 | 48.96 | 6.90 |
Vetch | 388 | 20.19 | 13.30 | −34.16 |
Corn silage | 352 | 18.32 | 20.34 | 11.15 |
Soft wheat | 193 | 10.02 | 11.70 | 17.00 |
Clover | 24 | 1.24 | 1.00 | −16.67 |
Dryland alfalfa | 86 | 4.47 | 4.70 | 4.44 |
Total | 1923 | 100.00 | 100.00 |
Existing Plan | MCDA Model | ||
---|---|---|---|
Value | Deviation (%) | ||
Gross profit (€) | 32,933.00 | 33,144.00 | 0.64 |
Variable cost (€) | 16,676.30 | 16,592.20 | −0.50 |
Labor (hours) | 248.70 | 242.40 | −2.53 |
Water use (m3) | 79,566.10 | 79,495.00 | −0.09 |
Crop | Acres | Existing Plan % | MCDA % | Deviation % |
---|---|---|---|---|
Dryland alfalfa | 845 | 36.81 | 44.00 | 19.57 |
Corn | 178 | 7.77 | 9.20 | 17.95 |
Alfalfa hay | 47 | 2.05 | 2.30 | 15.00 |
Rice | 115 | 5.00 | 4.30 | −14.00 |
Fallow (SA) land | 67 | 2.90 | 3.40 | 17.24 |
Chopped alfalfa | 395 | 17.19 | 20.50 | 19.19 |
Grassland | 649 | 28.28 | 16.30 | −42.40 |
Total | 2296 | 100.00 | 100.00 |
Existing Plan | MCDA Model | ||
---|---|---|---|
Value | Deviation (%) | ||
Gross profit (€) | 17,228.00 | 20,276.00 | 17.69 |
Variable cost (€) | 18,178.00 | 15,953.00 | −12.24 |
Labor (hours) | 169.00 | 133.10 | −21.24 |
Water use (m3) | 12,795.00 | 12,633.00 | −1.27 |
Crop | Acres | Existing Plan % | MCDA % | Deviation % |
---|---|---|---|---|
Alfalfa seed production | 983 | 58.23 | 68.60 | 17.87 |
Clover (Organic) | 49 | 2.90 | 3.30 | 13.79 |
Clover (Conventional) | 28 | 1.67 | 1.90 | 11.76 |
Vetch (Organic) | 203 | 12.00 | 4.10 | −65.83 |
Vetch (Conventional) | 23 | 1.39 | 1.10 | −21.43 |
Corn | 24 | 1.41 | 1.60 | 14.29 |
Alfalfa hay (Organic) | 88 | 5.21 | 6.20 | 19.23 |
Alfalfa hay (Conventional) | 116 | 6.88 | 8.10 | 17.39 |
Grassland | 174 | 10.30 | 5.10 | −50.48 |
Total | 1688 | 100.00 | 100.00 |
Existing Plan | MCDA Model | ||
---|---|---|---|
Value | Deviation (%) | ||
Gross profit (€) | 15,396.00 | 15,908.24 | 3.33 |
Variable cost (€) | 6072.00 | 6057.40 | −0.24 |
Labor (hours) | 155.00 | 144.00 | −3.87 |
Crop | Acres | Existing Plan % | MCDA % | Deviation % |
---|---|---|---|---|
Hard wheat | 2782 | 43.79 | 52.56 | 20.00 |
Rapeseed | 983 | 15.47 | 16.43 | 6.00 |
Dryland alfalfa | 1223 | 19.25 | 23.04 | 20.00 |
Sunflower | 915 | 14.40 | 0.00 | −100.00 |
Barley | 107 | 1.69 | 2.04 | 20.00 |
Soft wheat | 244 | 3.84 | 4.01 | 5.53 |
Fallow (SA) land | 100 | 1.57 | 1.92 | 20.00 |
Total | 6354 | 100.00 | 100.00 |
Existing Plan | MCDA Model | ||
---|---|---|---|
Value | Deviation (%) | ||
Gross profit (€) | 10,101.00 | 10,909.93 | 8.01 |
Variable cost (€) | 4519.00 | 4502.00 | −0.38 |
Labor (hours) | 75.00 | 72.00 | −4.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouriati, A.; Tafidou, A.; Lialia, E.; Prentzas, A.; Moulogianni, C.; Dimitriadou, E.; Bournaris, T. A Multicriteria Decision Analysis Model for Optimal Land Uses: Guiding Farmers under the New European Union’s Common Agricultural Policy (2023–2027). Land 2024, 13, 788. https://doi.org/10.3390/land13060788
Kouriati A, Tafidou A, Lialia E, Prentzas A, Moulogianni C, Dimitriadou E, Bournaris T. A Multicriteria Decision Analysis Model for Optimal Land Uses: Guiding Farmers under the New European Union’s Common Agricultural Policy (2023–2027). Land. 2024; 13(6):788. https://doi.org/10.3390/land13060788
Chicago/Turabian StyleKouriati, Asimina, Anna Tafidou, Evgenia Lialia, Angelos Prentzas, Christina Moulogianni, Eleni Dimitriadou, and Thomas Bournaris. 2024. "A Multicriteria Decision Analysis Model for Optimal Land Uses: Guiding Farmers under the New European Union’s Common Agricultural Policy (2023–2027)" Land 13, no. 6: 788. https://doi.org/10.3390/land13060788