Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.3. Data Collecting and Processing
2.4. Data Analysis
2.4.1. Diagnosis of Ecosystem Degradation
2.4.2. Analysis of Natural-Social Driving Mechanism
3. Results
3.1. Degradation of Ecosystem Quantity and Quality
3.2. Natural-Social Drivers of Ecosystem Quantitative Degradation
3.3. Natural-Social Drivers of Ecosystem Quality Degradation
4. Discussion
4.1. Integrated Natural-Social Drivers
4.2. Strategies for Ecosystem Management
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diaz, S.; Settele, J.; Brondizio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Globa Warming of 1.5 ◦C. Available online: https://www.ipcc.ch/sr15/ (accessed on 6 April 2023).
- Jia, Q.; Li, M.F.; Dou, X.C. Climate Change Affects Crop Production Potential in Semi-Arid Regions: A Case Study in Dingxi, Northwest China, in Recent 30 Years. Sustainability 2022, 14, 12. [Google Scholar]
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Braga Junqueira, A.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R. Social Goals and the Valuation of Ecosystem Services. Ecosystems 2000, 3, 4–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Yang, Y.; Fu, B.; Ma, R.; Lue, Y.; Wu, X. Identifying ecological security patterns based on the supply, demand and sensitivity of ecosystem service: A case study in the Yellow River Basin, China. J. Environ. Manag. 2022, 315, 115158. [Google Scholar] [CrossRef]
- Ding, Z.; Xiao, N.; Gao, X.; Zheng, H.; Xiao, Y.; Kong, L.; Ouyang, Z.; Li, R. Changes of Ecosystem Quality and Services between 2000 and 2015 in Yangtze River Basin. Res. Environ. Sci. 2020, 33, 1308–1314. [Google Scholar]
- Klimaszyk, P.; Gołdyn, R. Water Quality of Freshwater Ecosystems in a Temperate Climate. Water 2020, 12, 2643. [Google Scholar] [CrossRef]
- Sultana, F.; Arfin-Khan, M.A.S.; Karim, M.R.; Mukul, S.A. Rainfall Modifies the Disturbance Effects on Regulating Ecosystem Services in Tropical Forests of Bangladesh. Forests 2023, 14, 272. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Costa, O.B.; Pedlowski, M.A.; Samek, J.H.; Miguel, E.P. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 2020, 369, 1378–1382. [Google Scholar] [CrossRef]
- Long, X.R.; Lin, H.; An, X.X.; Chen, S.D.; Qi, S.Y.; Zhang, M. Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecol. Indic. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Xu, K.; Chi, Y.; Wang, J.; Ge, R.; Wang, X. Analysis of the spatial characteristics and driving forces determining ecosystem quality of the Beijing-Tianjin-Hebei region. Environ. Sci. Pollut. Res. Int. 2021, 28, 12555–12565. [Google Scholar] [CrossRef]
- Yin, F.; Deng, X.Z.; Jin, Q.; Yuan, Y.W.; Zhao, C.H. The impacts of climate change and human activities on grassland productivity in Qinghai Province, China. Front. Earth Sci. 2014, 8, 93–103. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Cheng, H.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena 2016, 147, 789–796. [Google Scholar] [CrossRef]
- Gribovszki, Z.; Kalicz, P.; Palocz-Andresen, M.; Szalay, D.; Varga, T. Hydrological role of Central European forests in changing climate—Review. Időjárás 2019, 123, 535–550. [Google Scholar] [CrossRef]
- Ma, L.; Xu, M.-H.; Zhai, D.-T.; Jia, Y.-Y. Response of alpine meadow vegetation-soil system to climate change: A review. Shengtaixue Zazhi 2017, 36, 1708–1717. [Google Scholar]
- Jin, X.-Y.; Jin, H.-J.; Iwahana, G.; Marchenko, S.S.; Luo, D.-L.; Li, X.-Y.; Liang, S.-H. Impacts of climate-induced permafrost degradation on vegetation: A review. Adv. Clim. Chang. Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; Lopez, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tan, K.; Zhao, S.; Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid. Environ. 2011, 75, 946–952. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, B.; Ju, W. Assessing the Impact of Urban Sprawl on Net Primary Productivity of Terrestrial Ecosystems Using a Process-Based Model—A Case Study in Nanjing, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2318–2331. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef]
- Bebber, D.P.; Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000-2012. Sci. Rep. 2017, 7, 14005. [Google Scholar] [CrossRef]
- Staddon, P.L.; Faghihinia, M. Grazing intensity is key to global grassland carbon sequestration potential. Sustain. Environ. 2021, 7, 1895474. [Google Scholar] [CrossRef]
- Ji, S.; Ma, S. The effects of industrial pollution on ecosystem service value: A case study in a heavy industrial area, China. Environ. Dev. Sustain. 2021, 24, 6804–6833. [Google Scholar] [CrossRef]
- Clarke Murray, C.; Agbayani, S.; Ban, N.C. Cumulative effects of planned industrial development and climate change on marine ecosystems. Glob. Ecol. Conserv. 2015, 4, 110–116. [Google Scholar] [CrossRef]
- Siren, A.H. Population growth and land use intensification in a subsistence-based indigenous community in the Amazon. Hum. Ecol. 2007, 35, 669–680. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S. Environmental Concerns of Deforestation in Myanmar 2001–2010. Remote Sens. 2016, 8, 728. [Google Scholar] [CrossRef]
- Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef]
- Yi, L.; Sun, Y.; Ouyang, X.; Yin, S. Identifying the Impacts of Climate Change and Human Activities on Vegetation Cover Changes: A Case Study of the Yangtze River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 6239. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jiang, Q.o.; Engel, B.; Mercado, J.A.V.; Zhang, Z. Analysis on net primary productivity change of forests and its multi–level driving mechanism—A case study in Changbai Mountains in Northeast China. Technol. Forecast. Soc. Chang. 2020, 153, 119939. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, X.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Delang, C.O.; Hou, G.; Gao, L.; Lu, X. Net primary production increases in the Yangtze River Basin within the latest two decades. Glob. Ecol. Conserv. 2021, 26, e01497. [Google Scholar] [CrossRef]
- Lu, N.; Tian, H.; Fu, B.; Yu, H.; Piao, S.; Chen, S.; Li, Y.; Li, X.; Wang, M.; Li, Z.; et al. Biophysical and economic constraints on China’s natural climate solutions. Nat. Clim. Chang. 2022, 12, 847–853. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, C.; Liu, X.; Lu, Y.; Chen, Y.; Wei, Y.; Ma, Y. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 108745. [Google Scholar] [CrossRef]
- Wang, J.; Dun, Y. A review on the effects of land use change on ecosystem services. Resour. Environ. Yangtze Basin 2015, 24, 798–808. [Google Scholar]
- Peng, J.; Hu, X.; Zhao, M.; Liu, Y.; Tian, L. Research progress on ecosystem service trade-offs: From cognition to decision-making. Acta Geogr. Sin. 2017, 72, 960–973. [Google Scholar]
- Yuanyun, X.I.E.; Changan, L.I.; Qiuliang, W.; Hongfu, Y.I.N. Sediment Records on Climate Change and Human Activities since the Holocene in Jiangling Area, Hubei Province, China. Geogr. Geo-Inf. Sci. 2008, 24, 85–90. [Google Scholar]
- Luo, M.; Zhuang, P.; Zhang, H.; Zhang, T.; Hou, J.; Wang, Y. Community characteristics of macrobenthos in waters around the Nature Reserve of the Chinese sturgeon Acipenser sinensis and the adjacent waters in Yangtze River Estuary. J. Appl. Ichthyol. 2011, 27, 425–432. [Google Scholar] [CrossRef]
- Liu, X.; Qin, J.; Xu, Y.; Ouyang, S.; Wu, X. Biodiversity decline of fish assemblages after the impoundment of the Three Gorges Dam in the Yangtze River Basin, China. Rev. Fish Biol. Fish. 2019, 29, 177–195. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, X.; Zhu, Y. Impact of public participation in the River Chief System on river governance: An empirical study in Jiangsu and Hubei provinces. Resour. Sci. 2021, 43, 1077–1087. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Sprintsin, M.; Karnieli, A.; Sprintsin, S.; Cohen, S.; Berliner, P. Relationships between stand density and canopy structure in a dryland forest as estimated by ground-based measurements and multi-spectral spaceborne images. J. Arid Environ. 2009, 73, 955–962. [Google Scholar] [CrossRef]
- Sexton, J.O.; Noojipady, P.; Anand, A.; Song, X.-P.; McMahon, S.; Huang, C.; Feng, M.; Channan, S.; Townshend, J.R. A model for the propagation of uncertainty from continuous estimates of tree cover to categorical forest cover and change. Remote Sens. Environ. 2015, 156, 418–425. [Google Scholar] [CrossRef]
- Badgley, G.; Anderegg, L.D.L.; Berry, J.A.; Field, C.B. Terrestrial gross primary production: Using NIR(V) to scale from site to globe. Glob. Chang. Biol. 2019, 25, 3731–3740. [Google Scholar] [CrossRef]
- Strain, E.M.; Thomson, R.J.; Micheli, F.; Mancuso, F.P.; Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Chang. Biol. 2014, 20, 3300–3312. [Google Scholar] [CrossRef]
- Murshed, M.; Alam, M.S. Estimating the macroeconomic determinants of total, renewable, and non-renewable energy demands in Bangladesh: The role of technological innovations. Environ. Sci. Pollut. Res. Int. 2021, 28, 30176–30196. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Y.; Bai, Y.; Chen, W.; Yang, X. A dynamic evaluation of regional ecosystem health using a multiple index system: A case study of Maoji Biosphere Reserve. Acta Ecol. Sin. 2016, 36, 4279–4287. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China; Technical Specification for Investigation and Assessment of National Ecological Status—Ecosystem Quality Assessment (HJ 1172—2021). Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/stzl/202106/W020210910456717871866.pdf (accessed on 21 May 2021).
- Zhang, L.; Chen, Z.; Zhang, X.; Zhao, L.; Li, Q.; Chen, D.; Tang, Y.; Gu, S. Evapotranspiration and Its Partitioning in Alpine Meadow of Three-River Source Region on the Qinghai-Tibetan Plateau. Water 2021, 13, 2061. [Google Scholar] [CrossRef]
- Hao, L.; Sun, G.; Liu, Y.; Wan, J.; Qin, M.; Qian, H.; Liu, C.; Zheng, J.; John, R.; Fan, P.; et al. Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China. Hydrol. Earth Syst. Sci. 2015, 19, 3319–3331. [Google Scholar] [CrossRef]
- Smethurst, P.J. Forest fertilization: Trends in knowledge and practice compared to agriculture. Plant Soil 2010, 335, 83–100. [Google Scholar] [CrossRef]
- Rabbat, C.; Awad, S.; Villot, A.; Rollet, D.; Andrès, Y. Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials. Renew. Sustain. Energy Rev. 2022, 156, 111962. [Google Scholar] [CrossRef]
- Warren-Rhodes, K.; Koenig, A. Ecosystem appropriation by Hong Kong and its implications for sustainable development. Ecol. Econ. 2001, 39, 347–359. [Google Scholar] [CrossRef]
- Hamzehpour, N.; Shafizadeh-Moghadam, H.; Valavi, R. Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture. Catena 2019, 182, 104141. [Google Scholar] [CrossRef]
- Notice of the People’s Government of Hubei Province on Implementing the Policy of Returning Farmland to Forests. Available online: http://www.hubei.gov.cn/zfwj/ezf/201112/t20111208_1711355.shtml (accessed on 25 October 2007).
- Dehghan, F.; Uribe, G.V. Analysing Mexican population concentration: A model with empirical evidence. Urban Stud. 1999, 36, 1269–1281. [Google Scholar] [CrossRef]
- Parris, K. Impact of Agriculture on Water Pollution in OECD Countries: Recent Trends and Future Prospects. Int. J. Water Resour. Dev. 2011, 27, 33–52. [Google Scholar] [CrossRef]
- Peters, N.E.; Meybeck, M. Water Quality Degradation Effects on Freshwater Availability: Impacts of Human Activities. Water Int. 2000, 25, 185–193. [Google Scholar] [CrossRef]
- Ma, H.; Townsend, H.; Zhang, X.; Sigrist, M.; Christensen, V. Using a fisheries ecosystem model with a water quality model to explore trophic and habitat impacts on a fisheries stock: A case study of the blue crab population in the Chesapeake Bay. Ecol. Model. 2010, 221, 997–1004. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, Y.; Zhang, J.; Hu, X.; Huang, J.; Chang, C.-P.; Guo, Y. Relationship between forest resources and economic growth: Empirical evidence from China. J. Clean. Prod. 2019, 214, 848–859. [Google Scholar] [CrossRef]
- Wei, X.; Khachatryan, H.; Zhu, H. Poyang lake wetlands restoration in China: An analysis of farmers’ perceptions and willingness to participate. J. Clean. Prod. 2021, 284, 125001. [Google Scholar] [CrossRef]
- Davidsen, C.; Pereira-Cardenal, S.J.; Liu, S.; Mo, X.; Rosbjerg, D.; Bauer-Gottwein, P. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China. J. Water Resour. Plan. Manag. 2015, 141, 04014086. [Google Scholar] [CrossRef]
- Harris, J.A.; Hobbs, R.J.; Higgs, E.; Aronson, J. Ecological Restoration and Global Climate Change. Restor. Ecol. 2006, 14, 170–176. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Xu, C.; Ye, Z.; Chen, Y. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environ. Earth Sci. 2014, 73, 547–558. [Google Scholar] [CrossRef]
Driving Factors | Indicators | Codes | |
---|---|---|---|
Natural | Climate conditions | Average annual temperature | XTEMP |
Annual precipitation | XPCP | ||
Annual evaporation | XET | ||
Annual sunshine hours | XSH | ||
Social | Population and urban expansion | Population quantity | XPOP |
Impervious surface area | XIS | ||
Resource utilization | Agricultural output value | XAOV | |
Forestry output value | XFOV-1 | ||
Livestock output value | XLOV | ||
Fishery output value | XFOV-2 | ||
Industrial output value | XIOV | ||
Construction output value | XCOV | ||
Economic structure | Gross national product | XGNP | |
Primary industry output value | XPOV | ||
Secondary industry output value | XSOV | ||
Tertiary industry output value | XTOV | ||
Consumption level | Urban per capita disposable income | XUPCDI | |
Rural per capita net income | XRPCNI | ||
Total sales of consumer goods | XSTROCG |
Model | Variable | Stand. Coeff. | R2 | Adj. R2 | p-Value | Collinearity Statistics | |
---|---|---|---|---|---|---|---|
Tol. | VIF | ||||||
Farmland | XFOV-1 | −0.388 * | 0.690 | 0.619 | <0.05 | 0.773 | 1.294 |
XET | −0.376 | 0.771 | 1.297 | ||||
XIS | −0.308 | 0.779 | 1.283 | ||||
Forest land | XFOV-1 | 0.428 | 0.449 | 0.370 | <0.05 | 0.837 | 1.195 |
XET | 0.371 | 0.837 | 1.195 | ||||
Grassland | XPCP | 0.980 *** | 0.821 | 0.762 | <0.001 | 0.523 | 1.913 |
XFOV-1 | −0.938 *** | 0.468 | 2.139 | ||||
XLOV | 0.546 ** | 0.503 | 1.989 | ||||
XTEMP | 0.417 * | 0.497 | 2.014 | ||||
Water body | XRPCNI | −0.559 ** | 0.792 | 0.723 | <0.001 | 0.759 | 1.318 |
XFOV-2 | −0.411 * | 0.788 | 1.269 | ||||
XET | 0.392 * | 0.983 | 1.018 | ||||
XSH | −0.298 * | 0.970 | 1.031 |
Model | Variables | Stand. Coeff. | R2 | Adj. R2 | p-Value | Collinearity Statistics | |
---|---|---|---|---|---|---|---|
Tol. | VIF | ||||||
Excellent | XFOV-1 | 0.628 *** | 0.734 | 0.696 | <0.001 | 0.999 | 1.001 |
XPCP | −0.567 ** | 0.999 | 1.001 | ||||
Good | XPCP | 0.908 ** | 0.498 | 0.426 | <0.05 | 0.581 | 1.720 |
XTEMP | 0.726 * | 0.581 | 1.720 | ||||
Medium | XRPCNI | 0.390 | 0.404 | 0.319 | <0.05 | 0.789 | 1.267 |
XFOV-2 | 0.354 | 0.789 | 1.267 | ||||
Low | XET | −0.529 ** | 0.862 | 0.816 | <0.001 | 0.782 | 1.279 |
XPCP | 0.433 ** | 0.946 | 1.058 | ||||
XLOV | −0.395 ** | 0.719 | 1.391 | ||||
XSH | −0.269 * | 0.906 | 1.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, S.; Liu, W. Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss. Land 2023, 12, 1280. https://doi.org/10.3390/land12071280
Zhang M, Chen S, Liu W. Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss. Land. 2023; 12(7):1280. https://doi.org/10.3390/land12071280
Chicago/Turabian StyleZhang, Mengyuan, Shuaipeng Chen, and Wenping Liu. 2023. "Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss" Land 12, no. 7: 1280. https://doi.org/10.3390/land12071280
APA StyleZhang, M., Chen, S., & Liu, W. (2023). Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss. Land, 12(7), 1280. https://doi.org/10.3390/land12071280