Engagement with Urban Soils Part II: Starting Points for Sustainable Urban Planning Guidelines Derived from Maya Soil Connectivity
Abstract
:1. Introduction
- Encounter and engagement with soils;
- Knowledge exchange for sharing and nurturing pro-environmental values;
- Encouraging broad participation in productive human–environment relations.
2. Soil Connectivity in Urban Environments
3. Translating Maya Practices into Starting Points for Urban Planning
3.1. Opportunities for Planning Urban Soil Connectivity
- (1)
- Converting public awareness of environmental threats, and the reported willingness to undertake environmental care, into shared values and quotidian behaviours that reinforce the responsible and productive use of soil as an intergenerational resource;
- (2)
- Enabling and encouraging wide participation in urban soil management by preserving and increasing urban soil availability, proximity, and accessibility to promote everyday encounters and durable conscious engagement with soils.
3.2. Urban Green Space as Soil Locations
- (1)
- Lack of financial support, often leading to land-use change and privatisation;
- (2)
- Separation of attributes, which means that green spaces are split up to serve specific functions, often as a result of cost-saving measures or conflict mitigation;
- (3)
- Increasing private control and infrastructural safety measures, which means monitoring and policing that may restrict access or impact ecological properties, privacy, and attractiveness, reducing social use of public green space;
- (4)
- Congestion or direct over-use, which can make transaction or governance costs excessive (e.g., crowding, access capacity, conflicts between users);
- (5)
- Activity intensification, often as a result of proximal population densification, where combining different functions in the same space, or improving efficiency for a single use of space, compromise the quality of environmental resources and sustainability aspirations.
3.3. Methods to Aid Urban Planning in Analysing and Assessing Urban Soil Connectivity
- (1)
- The promotion of pro-environmental habits, including dedicated attention to soil engagement;
- (2)
- The fact that urban expansion resulting from global urbanisation processes is a challenge that can only be tackled through creative interdisciplinary design thinking.
4. Conclusions
- Urban planning should direct urban design towards producing spatial configurations that consider the social-ecological benefits of maintaining and valuing healthy urban soils and enabling everyday engagements with soils by ensuring and enhancing their availability, proximity, and accessibility;
- There are opportunities for planning policy and urban design to order pro-environmental behaviour by instating and reinforcing environments which are conducive to values and behaviours that motivate and unify regionally appropriate social-ecological cultures [10];
- Planning policy and design can embrace the potential of habit architecture as an essential component in nurturing holistic pro-environmental attitudes and sustainable behaviours alongside stimulating wide participation and conscious engagement in soil management;
- Despite the difficulties in obtaining accurate data differentiating the uses and qualities of urban green space and their implicit reference to soil presence, urban green space still offers high-potential locations to foreground urban soils and promote soil-society relations;
- Critical threats to the usefulness and efficacy of urban green space as initial proxies for stimulating urban soil connectivity comprise:
- Failing to recognise the interconnectedness of urban green space sustainability benefits;
- Uneven access, especially correlated to socio-economic inequality and misalignment of urban green space use-value to community needs;
- Risk of urban green space loss from land-use competition pressures and cumulative incremental change resulting from the compact city model and population densification (e.g., loss of crucial engagement in private green space, see [10].
- Methods for assessing and analysing soil connectivity to remedy the lack of consistent and systematic data that match sustainable urban development concepts:
- Social-ecological urban surveys to mitigate inaccurate and imprecise data on urban green space, actual land use, and associated urban soil presence;
- Respondent-based bottom-up spatial definition of urban soil presence and encounters;
- Mapping the interfaces (edges) of sealed and unsealed soil areas to articulate their material and accessibility characteristics and analyse their urban morphological lineage over time;
- Choosing a landscape ecological scale of analysis to approach urban life as a social-ecological system, integrating landscape ecological and urban morphological concepts to assess the functional network qualities of sealed/unsealed urban soil areas;
- Using cogent role models from alternative urban traditions to inspire a creative design response catering to enhancing urban soil quality, optimising opportunities for soil-society relations, and supporting intergenerational maintenance practices.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Status of the World’s Soil Resources: Technical Summary; FAO: Rome, Italy, 2015. [Google Scholar]
- IPCC. IPCC Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/12/02_Summary-for-Policymakers_SPM.pdf (accessed on 23 February 2022).
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future Urban Land Expansion and Implications for Global Croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Barthel, S.; Isendahl, C.; Vis, B.N.; Drescher, A.; Evans, D.L.; Van Timmeren, A. Global urbanization and food production in direct competition for land: Leverage places to mitigate impacts on SDG2 and on the Earth System. Anthr. Rev. 2019, 6, 71–97. [Google Scholar] [CrossRef]
- Evans, D.L.; Quinton, J.N.; Tye, A.M.; Rodés, Á.; Davies, J.A.C.; Mudd, S.M.; Quine, T.A. Arable soil formation and erosion: A hillslope-based cosmogenic nuclide study in the United Kingdom. Soil 2019, 5, 253–263. [Google Scholar] [CrossRef]
- Evans, D.L.; Quinton, J.N.; Davies, J.A.C.; Zhao, J.; Govers, G. Soil Lifespans and How They Can Be Extended by Land Use and Management Change. Environ. Res. Lett. 2020, 15, 0940b2. [Google Scholar] [CrossRef]
- Evans, D.L.; Vis, B.N.; Dunning, N.P.; Graham, E.; Isendahl, C. Buried solutions: How Maya urban life substantiates soil connectivity. Geoderma 2021, 387, 114925. [Google Scholar] [CrossRef]
- Science for Environment Policy. No Net Land Take by 2050? Future Brief 14; Produced for the European Commission DG Environment by the Science Communication Unit, UWE: Bristol, 2016. Available online: https://ec.europa.eu/science-environment-policy (accessed on 8 March 2022).
- United Nations. New Urban Agenda; United Nations, 2017. Available online: https://www.habitat3.org/the-new-urban-agenda (accessed on 10 February 2023).
- Vis, B.N.; Evans, D.L.; Graham, E. Engagement with Urban Soils Part I: Applying Maya Soil Connectivity Practices to Intergenerational Planning for Urban Sustainability. Land 2023, 12, Page. [Google Scholar]
- Peleman, D.; Ronner, E.; Barcelloni Corte, M.; Viganò, P. Exploring the Soil: Not a Sentimental Journey. OASE 2022, 110, 5–15. [Google Scholar]
- McBratney, A.; Field, D.J.; Koch, A. The Dimensions of Soil Security. Geoderma 2014, 212, 203–213. [Google Scholar] [CrossRef]
- Morgan, C.L.S.; McBratney, A.B.; Field, D.J.; Koch, A.; Bouma, J.; Carré, F. Synthesis: Goals to Achieve Soil Security. In Global Soil Security; Field, D.J., Morgan, C.L.S., McBratney, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 457–463. [Google Scholar]
- Stump, D. On Applied Archaeology, Indigenous Knowledge, and the Usable Past. Curr. Anthropol. 2013, 54, 268–298. [Google Scholar] [CrossRef]
- Isendahl, C.; Stump, D. Conclusion: Anthropocentric historical ecology, applied archaeology, and the future of a useable past. In Oxford Handbook of Historical Ecology and Applied Archaeology; Isendahl, C., Stump, D., Eds.; Oxford University Press: Oxford, UK, 2019; pp. 581–597. [Google Scholar]
- McDonnell, M.J.; Pickett, S.T.A.; Groffman, P.; Bohlen, P.; Pouyat, R.V.; Zipperer, W.C.; Parmelee, R.W.; Carreiro, M.M.; Medley, K. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1997, 1, 21–36. [Google Scholar] [CrossRef]
- Tresch, S.; Moretti, M.; Le Bayon, R.-C.; Mäder, P.; Zanetta, A.; Frey, D.; Stehle, B.; Kuhn, A.; Munyangabe, A.; Fliessbach, A. Urban Soil Quality Assessment—A Comprehensive Case Study Dataset of Urban Garden Soils. Front. Environ. Sci. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Streeter, M.T.; Schilling, K.E.; Demanett, Z. Soil health variations across an agricultural–urban gradient, Iowa, USA. Environ. Earth Sci. 2019, 78, 691. [Google Scholar] [CrossRef]
- Rawlins, B.G.; Harris, J.; Price, S.; Bartlett, M. A review of climate change impacts on urban soil functions with examples and policy insights from England, UK. Soil Use Manag. 2013, 31, 46–61. [Google Scholar] [CrossRef]
- Ferrara, A.; Salvati, L.; Sabbi, A.; Colantoni, A. Soil resources, land cover changes and rural areas: Towards a spatial mismatch? Sci. Total Environ. 2014, 478, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J. Soils Sediments 2015, 15, 1659–1666. [Google Scholar] [CrossRef]
- Vrščaj, B.; Poggio, L.; Marsan, F.A. A method for soil environmental quality evaluation for management and planning in urban areas. Landsc. Urban Plan. 2008, 88, 81–94. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.X.; Ren, Y.; Luo, X.S.; Zhu, Y.G. Urban Soil and Human Health: A review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef]
- Viganò, P.; Guenat, C. Our Common Soil. OASE 2022, 110, 53–65. [Google Scholar]
- Graham, E. Maya Cities and the Character of Tropical Urbanism. In The Development of Urbanism from a Global Perspective; Sinclair, P., Ed.; Uppsala University: Uppsala, Sweden, 1996; Available online: https://www.arkeologi.uu.se/Research/Publications/Development_of_Urbanism/ (accessed on 19 January 2023).
- Graham, E. Stone Cities, Green Cities. Archaeol. Pap. Am. Anthropol. Assoc. 1999, 9, 185–194. [Google Scholar] [CrossRef]
- Chase, A.; Chase, D. Scale and Intensity in Classic Maya Agriculture: Terracing and Agriculture in the ‘Garden City’ of Caracol, Belize. Cult. Agricult. 1998, 20, 60–77. [Google Scholar] [CrossRef]
- Isendahl, C.; Smith, M.E. Sustainable agrarian urbanism: The low-density cities of the Mayas and Aztecs. Cities 2013, 31, 132–143. [Google Scholar] [CrossRef]
- Graham, E.; Isendahl, C. Neotropical Cities as Agro-Urban Landscapes. In The Resilience of Heritage—Cultivating a Future of the Past; Studies in Global Archaeology 23; Ekblom, A., Isendahl, C., Lindholm, K.-J., Eds.; Dept. of Archaeology and Ancient History, Uppsala University: Uppsala, Sweden, 2018; pp. 165–180. [Google Scholar]
- Lucero, L.J.; Cruz, J.G. Reconceptualizing Urbanism: Insights From Maya Cosmology. Front. Sustain. Cities 2020, 2, 1. [Google Scholar] [CrossRef]
- Pugh, T.W.; Rice, P.M. Early Urban Planning, Spatial Strategies, and the Maya Gridded City of Nixtun-Ch’ich’, Petén, Guatemala. Curr. Anthropol. 2017, 58, 576–603. [Google Scholar] [CrossRef]
- Vis, B.N. Establishing Boundaries: A conceptualisation for the comparative social study of built environment configurations. Spaces Flows Int. J. Urban ExtraUrban Stud. 2013, 2, 15–29. [Google Scholar] [CrossRef]
- Vis, B.N. Cities Made of Boundaries: Mapping Social Life in Urban Form; UCL Press: London, UK, 2018. [Google Scholar]
- Robin, C. Outside of Houses: The practices of everyday life at Chan Nòohol, Belize. J. Soc. Archaeol. 2002, 2, 245–268. [Google Scholar] [CrossRef]
- Hutson, S.R.; Stanton, T.W.; Magnoni, A.; Terry, R.; Craner, J. Beyond the buildings: Formation processes of ancient Maya houselots and methods for the study of non-architectural space. J. Anthr. Archaeol. 2007, 26, 442–473. [Google Scholar] [CrossRef]
- Macphail, R.I.; Graham, E.; Crowther, J.; Turner, S. Marco Gonzalez, Ambergris Caye, Belize: A geoarchaeological record of ground raising associated with surface soil formation and the presence of a Dark Earth. J. Archaeol. Sci. 2017, 77, 35–51. [Google Scholar] [CrossRef]
- Graham, E.; Evans, D.L.; Duncan, L. A Waste of Time. In The Temporalities of Waste: Out of Sight, Out of Time; Allon, F., Barcan, R., Eddison-Cogan, K., Eds.; Routledge: Abingdon, UK, 2021; pp. 151–166. [Google Scholar]
- Grauer, K.C. Active environments: Relational ontologies of landscape at the ancient Maya city of Aventura, Belize. J. Soc. Archaeol. 2020, 20, 74–94. [Google Scholar] [CrossRef]
- Hutson, S.R. Adapting LiDAR Data for Regional Variation in the Tropics: A case study from the Northern Maya Lowlands. J. Archaeol. Sci. Rep. 2015, 4, 252–263. [Google Scholar] [CrossRef]
- Kepecs, S.; Boucher, S. The Prehispanic Cultivation of Rejolladas and Stone-lands: New evidence from northeast Yucatán. In The Managed Mosaic: Ancient Maya Agriculture and Resource Use; Fedick, S.L., Ed.; University of Utah Press: Salt Lake City, UT, USA, 1996; pp. 69–91. [Google Scholar]
- Isendahl, C. Common Knowledge: Lowland Maya urban farming at Xuch. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2002. Available online: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A161573anddswid=-615 (accessed on 5 April 2020).
- Hutson, S.R.; Magnoni, A.; Stanton, T.W. House rules? The practice of social organization in classic períod Chunchucmil, Yucatán, Mexico. Anc. Mesoam. 2004, 15, 74–92. [Google Scholar]
- Beach, T.; Luzadder-Beach, S.; Sweetwood, R.V.; Farrell, P.; Mazeau, D.E.; Terry, R.E. Soils and Agricultural Carrying Capacity. In Ancient Maya Commerce: Multidisciplinary Research at Chunchucmil; Hutson, S.R., Ed.; University Press of Colorado: Boulder, CO, USA, 2017; pp. 197–220. [Google Scholar]
- Keene, D. Survey of Medieval Winchester; Winchester Studies 2; Clarendon Press: Oxford, UK, 1985; Volume 2. [Google Scholar]
- Smith, M.L. Urban empty spaces. Contentious places for consensus-building. Archaeol. Dialog. 2008, 15, 216–231. [Google Scholar] [CrossRef]
- Stanley, B.W.; Stark, B.L.; Johnston, K.L.; Smith, M.E. Urban Open Spaces in Historical Perspective: A transdisciplinary typology and analysis. Urban Geogr. 2012, 33, 1089–1117. [Google Scholar] [CrossRef]
- Stark, B.L. Urban Gardens and Parks in Pre-modern States and Empires. Camb. Archaeol. J. 2014, 24, 87–115. [Google Scholar] [CrossRef]
- Jervis, B.; Cembrzyński, P.; Fleisher, J.; Tys, D.; Wynne-Jones, S. The Archaeology of Emptiness? Understanding Open Urban Spaces in the Medieval World. J. Urban Archaeol. 2021, 4, 221–246. [Google Scholar]
- Nor, A.N.M.; Abdullah, S.A. Developing Urban Green Space Classification System Using Multi-Criteria: The Case of Kuala Lumpur City, Malaysia. J. Landsc. Ecol. 2019, 12, 16–36. [Google Scholar] [CrossRef]
- Woldesemayat, E.M.; Genovese, P.V. Urban Green Space Composition and Configuration in Functional Land Use Areas in Addis Ababa, Ethiopia, and Their Relationship with Urban Form. Land 2021, 10, 85. [Google Scholar] [CrossRef]
- Le Texier, M.; Schiel, K.; Caruso, G. The provision of urban green space and its accessibility: Spatial data effects in Brussels. PLoS ONE 2018, 13, e0204684. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Clinton, N.; Yu, L.; Huang, H.; Dronova, I.; Jin, J. Mapping the maximum extents of urban green spaces in 1039 cities using dense satellite images. Environ. Res. Lett. 2021, 16, 064072. [Google Scholar] [CrossRef]
- Ludwig, C.; Hecht, R.; Lautenbach, S.; Schorcht, M.; Zipf, A. Mapping Public Urban Green Spaces Based on OpenStreetMap and Sentinel-2 Imagery Using Belief Functions. ISPRS Int. J. Geo-Inf. 2021, 10, 251. [Google Scholar] [CrossRef]
- McElwee, P. The role of soils in learning and inspiration, physical and psychological experiences, and in supporting identities. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200184. [Google Scholar] [CrossRef]
- Nicholls, E.; Ely, A.; Birkin, L.; Basu, P.; Goulson, D. The contribution of small-scale food production in urban areas to the sustainable development goals: A review and case study. Sustain. Sci. 2020, 15, 1585–1599. [Google Scholar] [CrossRef]
- Barcelloni Corte, M.; Boivin, P. Soils for Transition: Towards an urbanism of ‘living soil’. OASE 2022, 110, 177–185. [Google Scholar]
- Dehaene, M.; Vandermaelen, H. Waking up in the Land of Urban Agroecology: Lessons in Modesty for Urbanism. OASE 2022, 110, 43–51. [Google Scholar]
- Vis, B.N. Mapping Socio-Spatial Relations in the Urban Built Environment through Time: Describing the Socio-Spatial Significance of Inhabiting Urban Form. In Mapping Spatial Relations, Their Perceptions and Dynamics: The City Today and in the Past; Lecture Notes in Geoinformation and Cartography; Rau, S., Schönherr, E., Eds.; Springer International: Berlin, Germany, 2014; pp. 45–93. [Google Scholar]
- Dovey, K.; Pafka, E.; Ristic, M. Mapping Urbanities: Morphologies, Flows, Possibilities; Routledge: Abingdon, UK, 2017. [Google Scholar] [CrossRef]
- Marcus, L.; Berghauser Pont, M. Towards a Social-Ecological Urban Morphology: Integrating urban form and landscape ecology. ISUF 2015, 2015, 556613–557385. [Google Scholar]
- da Silva, R.T.; Fleskens, L.; van Delden, H.; van der Ploeg, M. Incorporating soil ecosystem services into urban planning: Status, challenges and opportunities. Landsc. Ecol. 2018, 33, 1087–1102. [Google Scholar] [CrossRef]
- Sun, X.; Liddicoat, C.; Tiunov, A.; Bin Wang, B.; Zhang, Y.; Lu, C.; Li, Z.; Scheu, S.; Breed, M.F.; Geisen, S.; et al. Harnessing soil biodiversity to promote human health in cities. npj Urban Sustain. 2023, 3, 1–8. [Google Scholar] [CrossRef]
- Dempsey, N. Revisiting the Compact City. Built Environ. 2010, 36, 5–8. [Google Scholar] [CrossRef]
- Smith, M. Form and Meaning in the Earliest Cities: A New Approach to Ancient Urban Planning. J. Plan. Hist. 2007, 6, 3–47. [Google Scholar] [CrossRef]
- Peiró Vitoria, A. La Estructura Urbana de las Ciudades Mayas del Periodo Clásico; Harrasowitz Verlag: Wiesbaden, Germany, 2018. [Google Scholar]
- Hutson, S.R. The Ancient Urban Maya: Neighborhoods, Inequality, and Built Form; University Press of Florida: Gainesville, FL, USA, 2016. [Google Scholar]
- Campiani, A. Dimensión Urbana y Percepción en la Ciudad Maya Clásica de Palenque. Gremium 2021, 8, 75–90. [Google Scholar] [CrossRef]
- Du Plessis, C. A Conceptual Framework for Understanding Social-Ecological Systems. In Exploring Sustainability Science—A Southern African Perspective; Burns, M., Weaver, A., Eds.; Sun Press: Stellenbosch, South Africa, 2008; pp. 59–90. [Google Scholar]
- Siebe, C.; Cram, S.; Palomino, L.M. Enhancing Awareness about the Importance of Urban Soils’. In Urban Soils; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 351–374. [Google Scholar]
- Linder, N.; Giusti, M.; Samuelsson, K.; Barthel, S. Pro-environmental habits: An underexplored research agenda in sustainability science. AMBIO 2021, 51, 546–556. [Google Scholar] [CrossRef]
- Pred, A. Social Reproduction and the Time-Geography of Everyday Life. Geogr. Ann. Ser. B Hum. Geogr. 1981, 63, 5. [Google Scholar] [CrossRef]
- Pred, A. Place as Historically Contingent Process: Structuration and the Time-Geography of Becoming Places. Ann. Assoc. Am. Geogr. 1984, 74, 279–297. [Google Scholar] [CrossRef]
- Pred, A.R. Place, Practice and Structure: Social and Spatial Transformation in Southern Sweden: 1750–1850; Polity Press: Cambridge, UK, 1986. [Google Scholar]
- Colding, J.; Gren, Å.; Barthel, S. The Incremental Demise of Urban Green Spaces. Land 2020, 9, 162. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The Science, Policy and Practice of Nature-Based Solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Drescher, A.W. Food for the Cities: Urban agriculture in developing countries. Acta Hortic. 2004, 643, 227–231. [Google Scholar] [CrossRef]
- Barthel, S.; Parker, J.; Ernstson, H. Food and Green Space in Cities: A Resilience Lens on Gardens and Urban Environmental Movements. Urban Stud. 2013, 52, 1321–1338. [Google Scholar] [CrossRef]
- Barthel, S.; Isendahl, C. Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecol. Econ. 2013, 86, 224–234. [Google Scholar] [CrossRef]
- E Walsh, L.; Mead, B.R.; A Hardman, C.; Evans, D.; Liu, L.; Falagán, N.; Kourmpetli, S.; Davies, J. Potential of urban green spaces for supporting horticultural production: A national scale analysis. Environ. Res. Lett. 2022, 17, 014052. [Google Scholar] [CrossRef]
- Angold, P.G.; Sadler, J.P.; Hill, M.O.; Pullin, A.; Rushton, S.; Austin, K.; Small, E.; Wood, B.; Wadsworth, R.; Sanderson, R.; et al. Biodiversity in Urban Habitat Patches. Sci. Total Environ. 2006, 360, 196–204. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban Green Space Network Development for Biodiversity Conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Turrini, T.; Knop, E. A Landscape Ecology Approach Identifies Important Drivers of Urban Diversity. Glob. Change Biol. 2015, 21, 1652–1667. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Childers, D.L.; Mcdonnell, M.J.; Zhou, W. Evolution and future of urban ecological science: Ecology in, of, and for the city. Ecosyst. Health Sustain. 2016, 2, 1229. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S. Biodiveristy in the City: Fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the City: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Evans, D.; Falagán, N.; Hardman, C.; Kourmpetli, S.; Liu, L.; Mead, B.; Davies, J. Ecosystem service delivery by urban agriculture and green infrastructure—A systematic review. Ecosyst. Serv. 2022, 54, 101405. [Google Scholar] [CrossRef]
- Lee, A.; Jordan, H.; Horsley, J. Value of urban green spaces in promoting healthy living and wellbeing: Prospects for planning. Risk Manag. Health Policy 2015, 8, 131–137. [Google Scholar] [CrossRef]
- Kruize, H.; van der Vliet, N.; Staatsen, B.; Bell, R.; Chiabai, A.; Muiños, G.; Higgins, S.; Quiroga, S.; Martinez-Juarez, P.; Aberg Yngwe, M.; et al. Urban Green Space: Creating a triple win for environmental sustainability, health, and health equity through behavior change. Int. J. Environ. Res. Public Health 2019, 16, 4403. [Google Scholar] [CrossRef]
- Wood, E.; Harsant, A.; Dallimer, M.; Cronin de Chavez, A.; McEachan, R.R.; Hassall, C. Not All Green Space Is Created Equal: Biodiversity predicts psychological restorative benefits from urban green space. Front. Psychol. 2018, 9, 2320. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Brindley, P.; Mears, M.; McEwan, K.; Ferguson, F.; Sheffield, D.; Jorgensen, A.; Riley, J.; Goodrick, J.; Ballard, L.; et al. Where the Wild Things Are! Do urban green spaces with greater avian biodiversity promote more positive emotions in humans? Urban Ecosyst. 2020, 23, 301–317. [Google Scholar]
- Moseley, D.; Marzano, M.; Chetcuti, J.; Watts, K. Green networks for people: Application of a functional approach to support the planning and management of greenspace. Landsc. Urban Plan. 2013, 116, 4. [Google Scholar] [CrossRef]
- Santiago, L.E.; Ortiz, J.C.V.; Santiago-Bartolomei, R.; Meléndez-Ackerman, E.J.; Garcia-Montiel, D.C. Uneven Access and Underuse of Ecological Amenities in Urban Parks of the Río Piedras Watershed. Ecol. Soc. 2014, 19, 26. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. The ecology of human–nature interactions. Proc. R. Soc. B Boil. Sci. 2020, 287, 20191882. [Google Scholar] [CrossRef] [PubMed]
- Pauly, D. Anecdotes and the Shifting Baseline Syndrome of Fisheries. Trends Ecol. Evol. 1995, 10, 430. [Google Scholar] [CrossRef] [PubMed]
- Jones, P. Technological Innovation and Resource Management in the Fisheries of the British Isles, ca. 1400-1900. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2016. [Google Scholar]
- Hartig, T.; Kahn, P.H. Living in cities, naturally. Science 2016, 352, 938–940. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Shifting baseline syndrome: Causes, consequences, and implications. Front. Ecol. Environ. 2018, 16, 222–230. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Extinction of experience: The loss of human-nature interactions. Front. Ecol. Environ. 2016, 14, 94–101. [Google Scholar] [CrossRef]
- Samuelsson, K.; Colding, J.; Barthel, S. Urban resilience at eye level: Spatial analysis of empirically defined experiential landscapes. Landsc. Urban Plan. 2019, 187, 70–80. [Google Scholar] [CrossRef]
- Ernstson, H.; Van Der Leeuw, S.E.; Redman, C.L.; Meffert, D.J.; Davis, G.E.; Alfsen, C.; Elmqvist, T. Urban Transitions: On Urban Resilience and Human-Dominated Ecosystems. AMBIO 2010, 39, 531–545. [Google Scholar]
- Marcus, L.; Colding, J. Toward an integrated theory of spatial morphology and resilient urban systems. Ecol. Soc. 2014, 19, 190455. [Google Scholar] [CrossRef]
- Isendahl, C. Agro-urban landscapes: The example of Maya lowland cities. Antiquity 2012, 86, 1112–1125. [Google Scholar] [CrossRef]
- Smith, M.E.; Lobo, J.; Peeples, M.A.; York, A.M.; Stanley, B.W.; Crawford, K.A.; Gauthier, N.; Huster, A.C. The persistence of ancient settlements and urban sustainability. Proc. Natl. Acad. Sci. USA 2021, 118, e2018155118. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; Molenaar, C.; de Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Vis, B.N.; Evans, D.L.; Isendahl, C.; Graham, E. Dust to Dust: Redesigning urban life in healthy soil. Air Water Environ. Int. 2020, 66, 47–55. [Google Scholar]
- Bee, M.; Clément, G. Soil as Space of Indecision. OASE 2022, 110, 145–151. [Google Scholar]
- Kuzniecow Bacchin, T.; Recubenis Sanchis, I. Soil, Planning and Climatic Crisis in the Dutch Upper Delta. OASE 2022, 110, 167–175. [Google Scholar]
- Gwagwa, A.; Dipura, R.; Baranyk, I. From Suitcase to Mayor: A subversive politics of soil care. OASE 2022, 110, 199–201. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vis, B.N.; Evans, D.L.; Graham, E. Engagement with Urban Soils Part II: Starting Points for Sustainable Urban Planning Guidelines Derived from Maya Soil Connectivity. Land 2023, 12, 891. https://doi.org/10.3390/land12040891
Vis BN, Evans DL, Graham E. Engagement with Urban Soils Part II: Starting Points for Sustainable Urban Planning Guidelines Derived from Maya Soil Connectivity. Land. 2023; 12(4):891. https://doi.org/10.3390/land12040891
Chicago/Turabian StyleVis, Benjamin N., Daniel L. Evans, and Elizabeth Graham. 2023. "Engagement with Urban Soils Part II: Starting Points for Sustainable Urban Planning Guidelines Derived from Maya Soil Connectivity" Land 12, no. 4: 891. https://doi.org/10.3390/land12040891
APA StyleVis, B. N., Evans, D. L., & Graham, E. (2023). Engagement with Urban Soils Part II: Starting Points for Sustainable Urban Planning Guidelines Derived from Maya Soil Connectivity. Land, 12(4), 891. https://doi.org/10.3390/land12040891