Land Use Change Net Removals Associated with Sugarcane in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dynamics of Land Use Change
2.2. Selecting the Study Areas
2.3. Carbon Stocks Data
2.3.1. Refinement of carbon Stocks
- Parametrization A—Default for pastures: Moderately degraded pastures;
- Parametrization B—Pasture quality levels;
- Parametrization C—Pasture quality levels and history of mechanized harvesting;
- Parametrization D—Pasture quality levels, history of mechanized harvesting, refinement of sugarcane biomass carbon stock, and adoption of annual crops biomass carbon stock from the IPCC [14].
Parametrization A—Default for Pastures: Moderately Degraded Pastures
Parametrization B—Pasture Quality Levels
Parametrization C—Pasture Quality Levels and History of Mechanized Harvesting
Parametrization D—Pasture Quality Levels, History of Mechanized Harvesting, Refinement of Sugarcane Biomass Carbon Stock, and Adoption of Annual Crops Biomass Carbon Stock from the IPCC [14]
2.3.2. Carbon Stock Balance
2.4. Direct LUC Contribution to the Ethanol Carbon Footprint
3. Results and Discussions
3.1. History of Land Use, LUC, and Pasture Quality
3.2. CO2 Emissions Associated with Direct Land Use Change
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, S.; Venkatramanan, V.; Singh, A. (Eds.) Renewable energy for a low-carbon future: Policy perspectives. In Sustainable Bioeconomy; Springer: Singapore, 2021; pp. 267–284. [Google Scholar]
- Reid, W.V.; Ali, M.K.; Field, C.B. The future of bioenergy. Glob. Chang. Biol. 2020, 26, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; Shindell, D.; Jiang, K.; Fifita, S.; Forster, P.; Ginzburg, V.; Handa, C.; Kheshgi, H.; Kobayashi, S.; Kriegler, E.; et al. Mitigation pathways compatible with 1.5 °C in the context of sustainable development. In Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; pp. 313–443. [Google Scholar]
- Brazil. Brazil’s Intended Nationally Determined Contribution (NDC). 2022. Available online: https://unfccc.int/NDCREG (accessed on 14 December 2022).
- UNICA. Observatório da Cana e Bioenergia. Ethanol Production. Available online: https://observatoriodacana.com.br/listagem.php?idMn=4 (accessed on 14 December 2022).
- CONSECANA Paraná. Manual de Instruções; Ganziani, J.R., Guimarães, V.A., Eds.; FAEP: Curitiba, Brazil, 2012; p. 118. Available online: https://www.sistemafaep.org.br/wp-content/uploads/2021/08/Manual-Consecana-2012.pdf (accessed on 14 December 2022).
- Souza, G.M.; Ballester, M.V.R.; de Brito Cruz, C.H.; Chum, H.; Dale, B.; Dale, V.H.; Fernandes, E.C.M.; Foust, T.; Karp, A.; Lynd, L.; et al. The role of bioenergy in a climate-changing world. Environ. Dev. 2017, 23, 57–64. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Zeng, J. Global Carbon Budget. Earth Syst. Sci. Data Discuss. 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- SEEG—Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa. Análise das Emissões Brasileiras de Gases de Efeito Estufa e Suas Implicações Para Metas Climáticas do Brasil—1970–2020. 2021. Available online: https://seeg-br.s3.amazonaws.com/Documentos%20Analiticos/SEEG_9/OC_03_relatorio_2021_FINAL.pdf (accessed on 14 December 2022).
- Garofalo, D.F.T.; Novaes, R.M.L.; Pazianotto, R.A.A.; Maciel, V.G.; Brandão, M.; Shimbo, J.Z.; Folegatti-Matsuura, M.I.S. Land-use change CO2 emissions associated with agricultural products at municipal level in Brazil. J. Clean. Prod. 2022, 364, 132549. [Google Scholar] [CrossRef]
- Blonk Consultants. LUC Impact Tool, Full Dataset Version 2021; Blonk Consultants: Gouda, The Netherlands, 2021. [Google Scholar]
- Reinhard, J.; Bengoa, X.; Liernur, A. GeoFootprint, Technical Documentation; Version 1; Quantis: Lausanne, Switzerland, 2021; Available online: https://geofootprint.com/wp-content/uploads/2021/05/geoFootprint_TechnicalDocumentation20210504.pdf (accessed on 5 January 2023).
- Novaes, R.M.L.; Pazianotto, R.A.A.; Brandão, M.; Alves, B.J.R.; May, A.; Folegatti-Matsuura, M.I.S. Estimating 20-year land-use change and derived CO2 emissions associated with crops, pasture and forestry in Brazil and each of its 27 states. Glob. Chang. Biol. 2017, 23, 3716–3728. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change—IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- De Rosa, M.; Pizzol, M.; Schmidt, J. How Methodological Choices Affect LCA Climate Impact Results: The Case of Structural Timber. Int. J. Life Cycle Assess. 2018, 23, 147–158. [Google Scholar] [CrossRef]
- Van Middelaar, C.E.; Cederberg, C.; Vellinga, T.V.; Van Der Werf, H.M.; De Boer, I.J. Exploring Variability in Methods and Data Sensitivity in Carbon Footprints of Feed Ingredients. Int. J. Life Cycle Assess. 2013, 18, 768–782. [Google Scholar] [CrossRef]
- Ahlgren, S.; Di Lucia, L. Indirect land use changes of biofuel production–a review of modelling efforts and policy developments in the European Union. Biotechnol. Biofuels 2014, 7, 35. [Google Scholar] [CrossRef]
- Donke, A.C.G.; Novaes, R.M.L.; Pazianotto, R.A.A.; Moreno-Ruiz, E.; Reinhard, J.; Picoli, J.F.; Folegatti-Matsuura, M.I.S. Integrating regionalized Brazilian land use change datasets into the ecoinvent database: New data, premises and uncertainties have large effects in the results. Int. J. Life Cycle Assess. 2020, 25, 1027–1042. [Google Scholar] [CrossRef]
- Andrade-Junior, M.A.U.; Valin, H.; Soterroni, A.C.; Ramos, F.M.; Halog, A. Exploring future scenarios of ethanol demand in Brazil and their land-use implications. Energy Policy 2019, 134, 110958. [Google Scholar] [CrossRef]
- Follador, M.; Soares-Filho, B.S.; Philippidis, G.; Davis, J.L.; de Oliveira, A.R.; Rajão, R. Brazil’s sugarcane embitters the EU-Mercosur trade talks. Sci. Rep. 2021, 11, 13768. [Google Scholar] [CrossRef] [PubMed]
- Picoli, M.C.A.; Machado, P.G. Land use change: The barrier for sugarcane sustainability. Biofuels Bioprod. Bioref. 2021, 15, 1591–1603. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento-MAPA. Plano Setorial Para Adaptação à Mudança do Clima e Baixa Emissão de Carbono na Agropecuária Com Vistas ao Desenvolvimento Sustentável (2020–2030): Visão Estratégica Para um Novo Ciclo; Secretaria de Inovação, Desenvolvimento Rural e Irrigação(MAPA): Brasília, Brasil, 2021. [Google Scholar]
- Banco Nacional Do Desenvolvimento—BNDES. Programa ABC+. Programa Para a Adaptação à Mudança do Clima e Baixa Emissão de Carbono na Agropecuária. Available online: https://www.Bndes.Gov.Br/Wps/Portal/Site/Home/Financiamento/Produto/Programa-Abc# (accessed on 14 February 2023).
- Brazil. Law 12.651/2012—Dispõe Sobre a Proteção da Vegetação Nativa (Forest Code). Diário Oficial da União, Brasília, 26 de maio 2012. 2012. Available online: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 3 September 2022).
- ANP—National Agency for Petroleum, Natural Gas and Biofuels. Resolution n. 758 of 11/23/2018—DOU 11/27/2018. 2018. Available online: https://www.gov.br/anp/pt-br/assuntos/renovabio/legislacao-do-renovabio (accessed on 3 September 2022).
- São Paulo. Green Ethanol Protocol. 2017. Available online: https://www.infraestruturameioambiente.sp.gov.br/etanolverde/protocolo-agroambiental/diretivas/ (accessed on 5 January 2023).
- La Scala, N.; Figueiredo, E.B.; Panosso, A.R. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities. Braz. J. Biol. 2012, 72, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Bordonal, R.D.O.; Carvalho, J.L.N.; Lal, R.; de Figueiredo, E.B.; de Oliveira, B.G.; La Scala, N. Sustainability of sugarcane production in Brazil. A review. Agron. Sustain. Dev. 2018, 38, 13. [Google Scholar] [CrossRef]
- Adami, M.; Rudorff, B.F.T.; Freitas, R.M.; Aguiar, D.A.; Sugawara, L.M.; Mello, M.P. Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil. Sustainability 2012, 4, 574–585. [Google Scholar] [CrossRef]
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.; Rudorff, B.F.T.; Azevedo, T. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and earth engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- MapBiomas. MapBiomas Project- Collection 6.0 of the Annual Series of Land Use and Land Cover Maps of Brazil. 2021. Available online: https://mapbiomas.org/en/download (accessed on 5 April 2022).
- Maia, S.M.F.; Ogle, S.M.; Cerri, C.E.P.; Cerri, C.C. Eect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 2009, 149, 8491. [Google Scholar] [CrossRef]
- Carvalho, J.L.N.; Raucci, G.S.; Cerri, C.E.P.; Bernoux, M.; Feigl, B.J.; Wruck, F.J.; Cerri, C.C. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Tillage Res. 2010, 110, 175–186. [Google Scholar] [CrossRef]
- Braz, S.P.; Urquiaga, S.; Alves, B.J.R.; Jantalia, C.P.; Guimarães, A.P.; dos Santos, C.A.; dos Santos, S.C.; Pinheiro, E.F.M.; Boddey, R.M. Soil carbon stocks under productive and degraded Brachiaria pastures in the Brazilian Cerrados. Soil Sci. Soc. Am. J. 2013, 77, 914–928. [Google Scholar] [CrossRef]
- Galdos, M.V.; Cerri, C.C.; Cerri, C.E.P. Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 2009, 153, 347–352. [Google Scholar] [CrossRef]
- Luca, E.F.; Chaplot, V.; Mutema, M.; Feller, C.; Ferreira, M.L.; Cerri, C.C.; Couto, H.T.Z.D. Effect of conversion from sugarcane preharvest burning to residues green-trashing on SOC stocks and soil fertility status: Results from different soil conditions in Brazil. Geoderma 2018, 310, 238–248. [Google Scholar] [CrossRef]
- Guimaraes, M.D.F.; Oliveira, J.F.; Telles, T.S.; Machado, W.; Barbosa, G.; Tavares Filho, J. Soil aggregation and carbon stabilization in burn and no-burn sugarcane management systems. An. Acad. Bras. Ciências 2018, 90, 2459–2467. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Karlen, D.L.; Franco, A.L.; Cerri, C.E.; Tormena, C.A.; Cerri, C.C. A Soil Management Assessment Framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 2016, 80, 215–226. [Google Scholar] [CrossRef]
- Oliveira, D.M.S.; Paustian, K.; Davies, C.A.; Cherubin, M.R.; Franco, A.L.C.; Cerri, C.C.; Cerri, C.E.P. Soil carbon changes in areas undergoing expansion of sugarcane into pastures in south-central Brazil. Agric. Ecosyst. Environ. 2016, 228, 38–48. [Google Scholar] [CrossRef]
- Nogueira, S.F.; Bayma, G.; Ligo, M.A.V.; Andrade, C.A.; Novaes, R.M.; Matsuura, M.I.S.F.; Adami, M.; Gmünder, S.; Dias, R.O.; Kabe, Y.O.; et al. Land-use change and carbon stocks: Regional assessment of sugarcane areas in Brazil. In Proceedings of the VIII International Conference on Life Cycle Analysis: LCA for Global Competitiveness, Cartago, Costa Rica, 15–20 July 2020. [Google Scholar]
- Escobar, N.; Tizado, E.J.; Zu Ermgassen, E.K.; Lofgren, P.; Borner, J.; Godar, J. Spatially-explicit footprints of agricultural commodities: Mapping carbon emissions embodied in Brazil’s soy exports. Glob. Environ. Chang. 2020, 62, 102067. [Google Scholar] [CrossRef]
- IMAFLORA. Atlas da Agropecuária Brasileira. Available online: https://www.imaflora.org/o-que-fazemos/politicas-interesse-publico/atlas-da-agropecuaria-brasileira (accessed on 10 April 2022).
- Raizen. Georeferenced Database in Shapefile, Provided by the Industry, about Sugarcane Fields Georeferenced (Total of 1330 Thousand ha) and Validated CARs (Area of 2246 Thousand ha); Raizen: São Paulo, Brazil, 2020. [Google Scholar]
- Intergovernmental Panel on Climate Change—IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Maciel, V.G.; Novaes, R.M.L.; Brandão, M.; Cavalett, O.; Pazianotto, R.A.A.; Garofalo, D.T.; Folegatti-Matsuura, M.I. Towards a non-ambiguous view of the amortization period for quantifying direct land-use change in LCA. Int. J. Life Cycle Assess. 2022, 27, 1299–1315. [Google Scholar] [CrossRef]
- European Union Law. Directive 2018/2001/EC of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources (Recast). Official Journal of the European Union. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG (accessed on 3 September 2022).
- ICAO—International Civil Aviation Organization. CORSIA Sustainability Criteria for CORSIA Eligible Fuels. 2019. Available online: www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-Eligible-Fuels.aspx (accessed on 9 August 2022).
- Pereira, O.J.R.; Ferreira, L.G.; Pinto, F.; Baumgarten, L. Assessing pasture degradation in the Brazilian Cerrado based on the analysis of MODIS NDVI time-series. Remote Sens. 2018, 10, 1761. [Google Scholar] [CrossRef]
- Santos, C.O.; Mesquita, V.V.; Parente, L.L.; de Pinto, A.S.; Ferreira, L.G. Assessing the wall-to-wall spatial and qualitative dynamics of the Brazilian pasturelands 2010–2018, based on the analysis of the Landsat data archive. Remote Sens. 2022, 14, 1024. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change—IPCC. IPCC 2019: Annex I: Glossary. In Climate Change and Land: An IPCC Special Report On Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Portner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019; pp. 803–830. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Municipal Agricultural Production: 2020. 2022. Available online: http://www.sidra.ibge.gov.br (accessed on 2 August 2022).
- ANP—National Agency for Petroleum, Natural Gas and Biofuels. Painel Dinâmico de Produtores de Etanol. Available online: https://www.gov.br/anp/pt-br/centrais-de-conteudo/paineis-dinamicos-da-anp/paineis-e-mapa-dinamicos-de-produtores-de-combustiveis-e-derivados/painel-dinamico-de-produtores-de-etanol (accessed on 10 October 2022).
- Sparovek, G.; Reydon, B.P.; Pinto, L.F.; Faria, V.; de Freitas, F.L.; Azevedo-Ramos, C.; Gardner, T.; Hamamura, C.; Rajão, R.; Cerignoni, F.; et al. Who owns Brazilian lands? Land Use Policy 2019, 87, 104062. [Google Scholar] [CrossRef]
- SICAR—Sistema Nacional de Cadastro Ambiental Rural. Imóveis. Available online: https://www.car.gov.br/publico/imoveis/index (accessed on 5 April 2022).
- Bernoux, M.; Carvalho, M.C.S.; Volkoff, B.; Cerri, C.C. Brazil’s soil carbon stocks. Soil Sci. Soc. Am. J. 2002, 66, 888–896. [Google Scholar] [CrossRef]
- European Comission. Comission Decision of 10 June 2010 on Guidelines for the Calculation of Land Carbon Stocks for the Purpose of Annex V to Directive 2009/28/ EC; Official Journal of the European Union: Brussels, Belgium, 2010. [Google Scholar]
- Third National Communication of Brazil to the United Nations Framework Convention on Climate Change—Volume III; Ministry of Science, Technology and Innovation: Brasília, Brazil, 2016; p. 622.
- Dias-Filho, M. Diagnóstico Das Pastagens No Brasil; Embrapa Amazônia Oriental: Belém, Brazil, 2014; p. 38. [Google Scholar]
- Ferreira, L.G.; de Sousa, S.B.; Arantes, A.E. Radiografia Das Pastagens do Brasil; Laboratório de Processamento de Imagens e Geoprocessamento (LAPIG/UFG): Goiânia, Brazil, 2014; p. 214. [Google Scholar]
- dos Santos, S.S. O cultivo da Cana-De-Açúcar no Estado de Alagoas: Uma Análise Comparativa dos Efeitos da Mecanização no Estado de São Paulo. Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 2011; p. 103. [Google Scholar]
- Santos, F.; Borem, A.; Caldas, C. (Eds.) Sugarcane: Bioenergy, Sugar and Ethanol, 1st ed.; Ministry of Agriculture, Livestock and Food Supply: Brasília, Brazil, 2012.
- CONAB—Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Cana-De-Açúcar. Safra 2022/23; CONAB: Brasília, Brazil, 2022. Available online: https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar (accessed on 14 October 2022).
- Packer, A.P.C.; Vilela, V.A.A.; Degaspari, I.A.M.; Ramos, N.P. Relatório de Referência: Emissões de Gases de Efeito Estufa na Queima de Resíduos Agrícolas; Ministério da Ciência e Tecnologia: Brasília, Brazil, 2015.
- Carré, F.; Hiederer, R.; Blujdea, V.; Koeble, R. Background Guide for the Calculation of Land Carbon Stocks in the Biofuels Sustainability Scheme Drawing on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; EUR 24573 EN; Office for Official Publications of the European Communities: Luxembourg, 2010; p. 109. [Google Scholar]
- Gava, G.J.C.; Trivelin, P.C.O.; Oliveira, M.W.; Penatti, C.P. Crescimento e acúmulo de nitrogênio em cana-de-açúcar cultivada em solo coberto com palhada. Pesqui. Agropecuária Bras. 2001, 36, 1347–1354. [Google Scholar] [CrossRef]
- Franco, H.C.J.; Vitti, A.C.; Faroni, C.E.; Cantarella, H.; Trivelin, P.C.O. Estoque de nutrientes em resíduos culturais incorporados ao solo na reforma de áreas com cana-de-açúcar. STAB Açúcar Álcool E Subprodutos 2007, 25, 32–36. [Google Scholar]
- Franco, H.C.J.; Trivelin, P.C.O.; Faroni, C.E.; Vitti, A.C.; Otto, R. Stalk yield and technological attributes of planted cane as related to nitrogen fertilization. Sci. Agric. 2010, 67, 579–590. [Google Scholar]
- Franco, H.C.J.; Mariano, E.; Vitti, A.C.; Faroni, C.E.; Otto, R.; Trivelin, P.C.O. Sugarcane Response to Boron and Zinc in Southeastern Brazil. Sugar Tech 2011, 13, 86–95. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Lisboa, I.P.; Silva, A.G.B.; Varanda, L.L.; Bordonal, R.O.; Carvalho, J.L.N.; Otto, R.; Pavinato, P.S.; Soltangheisi, A.; Cerri, C.E.P. Sugarcane Straw Removal: Implications to Soil Fertility and Fertilizer Demand in Brazil. BioEnergy Res. 2019, 12, 888–900. [Google Scholar] [CrossRef]
- Cabral, O.M.R.; Freitas, H.C.; Cuadra, S.V.; Andrade, C.A.; Ramos, N.P.; Grutzmacher, P.; Galdos, M.; Packer, A.P.C.; Rocha, H.R.; Rossi, P. The sustainability of a sugarcane plantation in Brazil assessed by the eddy covariance fluxes of greenhouse gases. Agric. For. Meteorol. 2020, 282, 107864. [Google Scholar] [CrossRef]
- Cabral, O.M.R.; Rocha, H.R.; Gash, J.H.; Ligo, M.A.V.; Ramos, N.P.; Packer, A.P.; Batista, E.R. Fluxes of CO2 above a sugarcane plantation in Brazil. Agric. For. Meteorol. 2013, 182, 54–66. [Google Scholar] [CrossRef]
- Otto, R.; Franco, H.C.J.; Faroni, C.E.; Vitti, A.C.; Oliveira, E.C.A.; Sermarini, R.A.; Trivelin, P.C.O. The Role of Nitrogen Fertilizers in Sugarcane Root Biomass under Field Conditions. Agric. Sci. 2014, 5, 1527–1538. [Google Scholar] [CrossRef]
- Vieira-Megda, M.X.; Mariano, E.; Leite, J.M.; Franco, H.C.J.; Vitti, A.C.; Megda, M.M.; Khan, S.A.; Mulvaney, R.L.; Trivelin, P.C.O. Contribution of fertilizer nitrogen to the total nitrogen extracted by sugarcane under Brazilian field conditions. Nutr. Cycl. Agroecosyst. 2015, 101, 241–257. [Google Scholar] [CrossRef]
- Melo, P.L.A.; Cherubin, M.R.; Gomes, T.C.A.; Lisboa, I.P.; Satiro, L.S.; Cerri, C.E.P.; Siqueira-Neto, M. Straw Removal Effects on Sugarcane Root System and Stalk Yield. Agronomy 2020, 10, 1048. [Google Scholar] [CrossRef]
- Carvalho 2013 Carvalho, J.L.N.; Otto, R.; Franco, H.C.J.; Trivelin, P.C.O. Input of sugarcane post-harvest residues into the soil. Sci. Agric. 2013, 70, 336–344. [Google Scholar] [CrossRef]
- Landell, M.G.; Scarpari, M.S.; Xavier, M.A.; Anjos, I.A.; Baptista, A.S.; Aguiar, C.L.; Silva, D.N.; Bidóia, M.A.; Brancalião, S.R.; Bressiani, J.A.; et al. Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Sci. Agric. 2013, 70, 299–304. [Google Scholar] [CrossRef]
- Menandro, L.M.S.; Cantarella, H.; Franco, H.C.J.; Kölln, O.T.; Pimenta, M.T.B.; Sanches, G.M.; Rabelo, S.C.; Carvalho, J.L.N. Comprehensive assessment of sugarcane straw: Implications for biomass and bioenergy production. Biofuels Bioprod. Bioref. 2017, 11, 488–504. [Google Scholar] [CrossRef]
- Bordonal, R.O.; Menandro, L.M.S.; Barbosa, L.C.; Lal, R.; Milori, D.M.B.P.; Kolln, O.T.; Franco, H.C.J.; Carvalho, J.L.N. Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma 2018, 328, 79–90. [Google Scholar] [CrossRef]
- Castioni, G.A.F.; Cherubin, M.R.; Bordonal, R.D.O.; Barbosa, L.C.; Menandro, L.M.S.; Carvalho, J.L.N. Straw removal affects soil physical quality and sugarcane yield in Brazil. BioEnergy Res. 2019, 12, 789–800. [Google Scholar] [CrossRef]
- Castro, S.A.Q.; Otto, R.; Sánchez, C.E.B.; Tenelli, S.; Sermarini, R.A.; Trivelin, P.C.O. Sugarcane straw preservation results in limited immobilization and improves crop N-fertilizer recovery. Biomass Bioenergy 2021, 144, 105889. [Google Scholar] [CrossRef]
- Jane, S.A.; Fernandes, F.A.; Silva, E.M.; Muniz, J.A.; Fernandes, T.J.; Pimentel, G.V. Adjusting the growth curve of sugarcane varieties using nonlinear models. Ciência Rural 2020, 50, e20190408. [Google Scholar] [CrossRef]
- ANP—National Agency for Petroleum, Natural Gas and Biofuels. Renovacalc v7. 2022. Available online: https://www.gov.br/anp/pt-br/assuntos/renovabio/renovacalc (accessed on 14 December 2022).
- BRAZIL. RenovaBio. Proposta de Metas Compulsórias Anuais de Redução de Emissões na Comercialização de Combustíveis. Consulta Pública—Anexo da Nota Tecnica n 12/2018/DBIO/SPG. 2018. Available online: http://antigo.mme.gov.br/c/document_library/get_file?uuid=40d35ad0-582d-82e3-1de0-61979c5905ae&groupId=36224 (accessed on 4 November 2022).
- Hernandes, T.A.D.; Bordonal, R.O.; Duft, D.G.; Leal, M.R.L.V. Implications of regional agricultural land use dynamics and deforestation associated with sugarcane expansion for soil carbono stocks in Brazil. Reg. Environ. Chang. 2022, 22, 49. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Carvalho, J.L.N.; Cerri, C.E.P.; Nogueira, L.A.H.; Souza, G.M.; Cantarella, H. Land use and management effects on sustainable sugarcane-derived bioenergy. Land 2021, 10, 72. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Gandolfi, S.; Nave, A.G.; Aronson, J.; Barreto, T.E.; Vidal, C.Y.; Brancalion, P.H.S. Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For. Ecol. Manag. 2011, 261, 1605–1613. [Google Scholar] [CrossRef]
- Hernandes, T.A.D.; Duft, D.G.; dos Santos Luciano, A.C.; Leal, M.R.L.V.; Cavalett, O. Identifying suitable areas for expanding sugarcane ethanol production in Brazil under conservation of environmentally relevant habitats. J. Clean. Prod. 2021, 292, 125318. [Google Scholar] [CrossRef]
- Walter, A.; Seabra, J.; Rocha, J.; Guarenghi, M.; Vieira, N.; Damame, D.; Santos, J.L. Spatially Explicit Assessment of Suitable Conditions for the Sustainable Production of Aviation Fuels in Brazil. Land 2021, 10, 705. [Google Scholar] [CrossRef]
- WRI. The GHG Protocol Land Sector and Removal Guidance (Draft for Pilot Testing and Review). 2022. Available online: Ghgprotocol.org/land-sector-and-removals-guidance (accessed on 3 September 2022).
- Strassburg, B.B.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; Da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef]
- Perillo, L.I.; de Oliveira Bordonal, R.; de Figueiredo, E.B.; Moitinho, M.R.; Aguiar, D.A.; Rudorff, B.F.; Panosso, A.R.; La Scala, N. Avoiding burning practice and its consequences on the greenhouse gas emission in sugarcane areas southern Brazil. Environ. Sci. Pollut. Res. 2022, 29, 719–730. [Google Scholar] [CrossRef]
- Capaz, R.S.; Carvalho, V.S.B.; Nogueira, L.A.H. Impact of mechanization and previous burning reduction on GHG emissions of sugarcane harvesting operations in Brazil. Appl. Energy 2013, 102, 220–228. [Google Scholar] [CrossRef]
- Cerri, C.C.; Feigl, B.J.; Galdos, M.V.; Bernoux, M.; Cerri, C.E.P. Carbon stock in soil and greenhouse gas flows in the sugarcane agro-system. In Sugarcane Bioethanol—R&D for Productivity and Sustainability; Cortez, L.A.B., Ed.; Edgard Blücher: São Paulo, Brazil, 2014; pp. 203–216. [Google Scholar]
- Marin, F.R.; Edreira, J.I.R.; Andrade, J.; Grassini, P. On-farm sugarcane yield and yield components as influenced by number of harvests. Field Crop Res. 2019, 240, 134–142. [Google Scholar] [CrossRef]
- Moore, P.H.; Botha, F.C. Sugarcane: Physiology, Biochemistry and Functional Biology; John Wiley & Sons: Oxford, UK, 2013. [Google Scholar]
- Balugani, E.; Sumfleth, B.; Majer, S.; Marazza, D.; Thrän, D. Bridging modeling and certification to evaluate Low-ILUC-Risk practices for biobased materials with a user-friendly tool. Sustainability 2022, 14, 2030. [Google Scholar] [CrossRef]
- Leland, A.; Hoekman, S.K.; Liu, X.V. Review of Modifications to Indirect Land Use Change Modeling and Resulting Carbon Intensity Values within the California Low Carbon Fuel Standard Regulations. J. Clean. Prod. 2018, 180, 698–707. [Google Scholar] [CrossRef]
- CARB. CA-GREET3.0 Model. Current Version: Effective 4 January 2019. 2019. Available online: https://ww2.arb.ca.gov/resources/documents/lcfs-life-cycle-analysis-models-and-documentation (accessed on 14 December 2022).
- ANP—National Agency for Petroleum, Natural Gas and Biofuels. Certificado da Produção Eficiente de Biocombustíveis. Available online: https://www.gov.br/anp/pt-br/assuntos/renovabio/certificados-producao-importacao-eficiente-biocombustiveis (accessed on 14 December 2022).
- Canabarro, N.I.; Silva-Ortiz, P.; Nogueira, L.A.H.; Cantarella, H.; Maciel-Filho, R.; Souza, G.M. Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala. Renew. Sustain. Energy Rev. 2023, 171, 113019. [Google Scholar] [CrossRef]
- Walter, A.; Galdos, M.; Scarpare, F.; Leal, M.; Seabra, J. Brazilian sugarcane ethanol: Developments so far and challenges for the future. WIRES Energy Environ. 2014, 3, 70–92. [Google Scholar] [CrossRef]
MapBiomas Classes—Col. 6 | BRLUC 2.0 Classes | Adopted Classes |
---|---|---|
1.1. Forest Formation | Unspecified, natural | Natural Vegetation |
1.2. Savanna Formation | Unspecified, natural | Natural Vegetation |
1.2. Mangrove | Unspecified, natural | Natural Vegetation |
1.4. Wooded Restinga | Unspecified, natural | Natural Vegetation |
2.1. Wetlands | Unspecified, natural | Natural Vegetation |
2.2. Grassland | Unspecified, natural | Natural Vegetation |
2.3. Salt Flat | Unspecified, natural | Natural Vegetation |
2.4. Rocky Outcrop | Unspecified, natural | Others |
2.5. Other non-Forest Formations | Unspecified, natural | Natural Vegetation |
3.1. Pasture | Planted pastures | Pasture |
3.2.1.1. Soybean | Soybean | Temporary Crop |
3.2.1.2. Sugarcane | Arable, sugarcane | Sugarcane |
3.2.1.3. Rice | Temporary crop | Temporary Crop |
3.2.1.4. Other temporary Crops | Temporary crop | Temporary Crop |
3.2.2.1. Coffee | Permanent crops | Perennial Crop |
3.2.2.2. Citrus | Permanent crops | Perennial Crop |
3.2.2.3. Other Perennial Crop | Permanent crops | Perennial Crop |
3.2. Forest Plantation | Forestry | Forest Plantation |
3.4. Mosaic of Agriculture and Pasture | - | Mosaic |
4.1. Beach, Dune and Sand Spot | - | Others |
4.2. Urban Area | - | Others |
4.3. Mining | - | Others |
4.4. Other no-Vegetation Areas | - | Others |
5.1. River, Lake and Ocean | - | Others |
5.2. Aquaculture | - | Others |
6. Not Observed | - | Others |
Period | Sugarcane—Brazil’s Center–South/North | Emission Rate (MgCO2∙ha−1∙yr−1) | Difference with the Previous Parametrization 1 | Impact % on Amplitude 3 |
---|---|---|---|---|
2000–2020 | A: mod. deg. pasture | 0.26 | - | - |
B: pasture quality | −0.26 | −0.52 2 | 37% 4 | |
C: mechanized harvest | −0.50 | −0.24 | 17% | |
D: biomass carbon stock | −1.16 | −0.66 | 46% | |
Amplitude between values from A to D | −1.43 | 100% | ||
2008–2020 | A: mod. deg. pasture | 0.11 | - | - |
B: pasture quality | −0.09 | −0.20 | 22% | |
C: mechanized harvest | −0.48 | −0.39 | 43% | |
D: biomass carbon stock | −0.81 | −0.32 | 35% | |
Amplitude between values from A to D | −0.92 | 100% |
Parametrization | A | B | C | D |
---|---|---|---|---|
Emission/removal carbon associated with all LUCs in the CARs (TgCO2) | 8.65 | −143.15 | −195.37 | −344.05 |
Emission/removal carbon exclusively associated with sugarcane LUC in the CARs (TgCO2) | 44.45 | −44.02 | −85.10 | −196.53 |
dLUC contribution to ethanol carbon footprint (g CO2eq∙MJ−1) | 2.53 | −2.51 | −4.85 | −11.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarenghi, M.M.; Garofalo, D.F.T.; Seabra, J.E.A.; Moreira, M.M.R.; Novaes, R.M.L.; Ramos, N.P.; Nogueira, S.F.; de Andrade, C.A. Land Use Change Net Removals Associated with Sugarcane in Brazil. Land 2023, 12, 584. https://doi.org/10.3390/land12030584
Guarenghi MM, Garofalo DFT, Seabra JEA, Moreira MMR, Novaes RML, Ramos NP, Nogueira SF, de Andrade CA. Land Use Change Net Removals Associated with Sugarcane in Brazil. Land. 2023; 12(3):584. https://doi.org/10.3390/land12030584
Chicago/Turabian StyleGuarenghi, Marjorie M., Danilo F. T. Garofalo, Joaquim E. A. Seabra, Marcelo M. R. Moreira, Renan M. L. Novaes, Nilza Patrícia Ramos, Sandra F. Nogueira, and Cristiano A. de Andrade. 2023. "Land Use Change Net Removals Associated with Sugarcane in Brazil" Land 12, no. 3: 584. https://doi.org/10.3390/land12030584
APA StyleGuarenghi, M. M., Garofalo, D. F. T., Seabra, J. E. A., Moreira, M. M. R., Novaes, R. M. L., Ramos, N. P., Nogueira, S. F., & de Andrade, C. A. (2023). Land Use Change Net Removals Associated with Sugarcane in Brazil. Land, 12(3), 584. https://doi.org/10.3390/land12030584