A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Region
2.2. Data Collection and Sampling
2.3. System Description and Evaluation Approach
2.4. Life Cycle Inventory
Units | Amount | Notes | ||
---|---|---|---|---|
Rice–Rice System | Rice–Cowpea System | |||
Inputs a | ||||
Land occupied | ha/yr | 1 | 1 | Annual land occupation |
Seeds | ||||
Rice | kg | 121 | 63.5 | |
Cowpea | kg | - | 18.1 | |
Crop nutrients b | ||||
N-synthetic | kg N | 177 | 90.33 | |
Manure N | kg N | 24.1 | 29.46 | |
P-synthetic | kg P2O5 | 78 | 63.5 | |
Manure P | kg P2O5 | 13 | 15.91 | |
K-synthetic | kg K2O | 109 | 68.58 | |
Manure K | kg K2O | 39 | 47.72 | |
Farmyard manure (FYM) | kg | 4813 | 5891 | Used in the above manure-based crop nutrients applied |
Primary energy input | MJ | 3794 | 1750 | Diesel used in farm operations |
Outputs a | ||||
Rice | kg | 9401 | 4914 | |
Cowpea | kg | - | 1282 | |
Straw | kg | 12,691 | 8685 | |
Emissions | ||||
N emissions c | ||||
N2O | kg | 2.76 | 2.61 | |
NH3 | kg | 14.83 | 7.59 | |
NOx | kg | 4.34 | 2.61 | |
NO3 | kg | 608 | 409 | |
Field GHG emissions d | ||||
CH4 ± | kg | 382 | 200 | |
Residue burnt (CO2 eq.) ±± | kg | 325 | 222 | GHG emissions equivalent from the emitted CH4 and N2O due to residual burnt |
P-emission e | ||||
P-losses | kg | 0.45 | 0.4 |
3. Results and Discussion
3.1. Energy Analysis
3.2. Energy Indices
3.3. Life Cycle Assessment
3.4. Implications of Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paramesh, V.; Chakurkar, E.B.; Bhagat, T.; Sreekanth, G.B.; Kumar, H.B.C.; Rajkumar, S.; Gokuldas, P.P.; Mahajan, G.R.; Manohara, K.K.; Ravishankar, N. Impact of Integrated Farming System on Residue Recycling, Nutrient Budgeting and Soil Health. Indian J. Agric. Sci. 2020, 91, 44–48. [Google Scholar] [CrossRef]
- Manjunath, B.L.; Paramesh, V.; Mahajan, G.R.; Reddy, K.V.; Das, B.; Singh, N.P. A Five Years Study on the Selection of Rice Based Cropping Systems in Goa, for West Coast Region of India. J. Environ. Biol. 2018, 39, 393–399. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Manjunath, B.L.; Morajkar, S.; Desai, A.; Das, B.; Paramesh, V. Long-Term Effect of Various Organic and Inorganic Nutrient Sources on Rice Yield and Soil Quality in West Coast India Using Suitable Indexing Techniques. Commun. Soil Sci. Plant Anal. 2021, 52, 1819–1833. [Google Scholar] [CrossRef]
- Korikanthmath, V.S.; Manjunath, B.L.; Manohara, K.K. Status Paper on Rice in Goa. ICAR Res. Complex Goa 2010, 23, 1–23. [Google Scholar]
- Brodt, S.; Kendall, A.; Mohammadi, Y.; Arslan, A.; Yuan, J.; Lee, I.-S.; Linquist, B. Life Cycle Greenhouse Gas Emissions in California Rice Production. Field Crops Res. 2014, 169, 89–98. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Chau, K. Energy Consumption Enhancement and Environmental Life Cycle Assessment in Paddy Production Using Optimization Techniques. J. Clean. Prod. 2017, 162, 571–586. [Google Scholar] [CrossRef]
- Linquist, B.; Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; Kessel, C. An Agronomic Assessment of Greenhouse Gas Emissions from Major Cereal Crops. Glob. Chang. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Habibi, E.; Niknejad, Y.; Fallah, H.; Dastan, S.; Tari, D.B. Life Cycle Assessment of Rice Production Systems in Different Paddy Field Size Levels in North of Iran. Environ. Monit. Assess. 2019, 191, 202. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Dalgaard, T.; Knudsen, M.T.; Nguyen, T.L.T.; Borek, R.; Hermansen, J.E. Joint Life Cycle Assessment and Data Envelopment Analysis for the Benchmarking of Environmental Impacts in Rice Paddy Production. J. Clean. Prod. 2015, 106, 521–532. [Google Scholar] [CrossRef]
- Bhatia, A.; Pathak, H.; Aggarwal, P.K. Inventory of Methane and Nitrous Oxide Emissions from Agricultural Soils of India and Their Global Warming Potential. Curr. Sci. 2004, 87, 317–324. [Google Scholar]
- Paramesh, V.; Ravisankar, N.; Das, B.; Reddy, K.V.; Singh, N.P. Energy Budgeting and Sensitivity Analysis of Rice (Oryza sativa)—Wheat (Triticum aestivum) Cropping System in Indogangentic Plains of India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1534–1544. [Google Scholar]
- Lal, B.; Gautam, P.; Nayak, A.K.; Panda, B.B.; Bihari, P.; Tripathi, R.; Shahid, M.; Guru, P.K.; Chatterjee, D.; Kumar, U.; et al. Energy and Carbon Budgeting of Tillage for Environmentally Clean and Resilient Soil Health of Rice-Maize Cropping System. J. Clean. Prod. 2019, 226, 815–830. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S.; Mobtaker, H.G. Optimization of Energy Required and Greenhouse Gas Emissions Analysis for Orange Producers Using Data Envelopment Analysis Approach. J. Clean. Prod. 2014, 65, 311–317. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S.; Bagheri, I. Determination of Efficient and Inefficient Units for Watermelon Production-a Case Study: Guilan Province of Iran. J. Saudi Soc. Agric. Sci. 2016, 15, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Nikkhah, A.; Emadi, B.; Soltanali, H.; Firouzi, S.; Rosentrater, K.A.; Allahyari, M.S. Integration of Life Cycle Assessment and Cobb-Douglas Modeling for the Environmental Assessment of Kiwifruit in Iran. J. Clean. Prod. 2016, 137, 843–849. [Google Scholar] [CrossRef]
- Nikkhah, A.; Khojastehpour, M.; Emadi, B.; Taheri-Rad, A.; Khorramdel, S. Environmental Impacts of Peanut Production System Using Life Cycle Assessment Methodology. J. Clean. Prod. 2015, 92, 84–90. [Google Scholar] [CrossRef]
- Safa, M.; Samarasinghe, S. Determination and Modelling of Energy Consumption in Wheat Production Using Neural Networks: “A Case Study in Canterbury Province, New Zealand”. Energy 2011, 36, 5140–5147. [Google Scholar] [CrossRef] [Green Version]
- Goossens, Y.; Annaert, B.; De Tavernier, J.; Mathijs, E.; Keulemans, W.; Geeraerd, A. Life Cycle Assessment (LCA) for Apple Orchard Production Systems Including Low and High Productive Years in Conventional, Integrated and Organic Farms. Agric. Syst. 2017, 153, 81–93. [Google Scholar] [CrossRef]
- Phong, L.T.; De Boer, I.J.M.; Udo, H.M.J. Life Cycle Assessment of Food Production in Integrated Agriculture–Aquaculture Systems of the Mekong Delta. Livest. Sci. 2011, 139, 80–90. [Google Scholar] [CrossRef]
- Alam, M.K.; Bell, R.W.; Biswas, W.K. Decreasing the Carbon Footprint of an Intensive Rice-Based Cropping System Using Conservation Agriculture on the Eastern Gangetic Plains. J. Clean. Prod. 2019, 218, 259–272. [Google Scholar] [CrossRef]
- Alam, M.K.; Biswas, W.K.; Bell, R.W. Greenhouse Gas Implications of Novel and Conventional Rice Production Technologies in the Eastern-Gangetic Plains. J. Clean. Prod. 2016, 112, 3977–3987. [Google Scholar] [CrossRef]
- Fallahpour, F.; Aminghafouri, A.; Ghalegolab Behbahani, A.; Bannayan, M. The Environmental Impact Assessment of Wheat and Barley Production by Using Life Cycle Assessment (LCA) Methodology. Environ. Dev. Sustain. 2012, 14, 979–992. [Google Scholar] [CrossRef]
- Hokazono, S.; Hayashi, K. Life Cycle Assessment of Organic Paddy Rotation Systems Using Land- and Product-Based Indicators: A Case Study in Japan. Int. J. Life Cycle Assess. 2015, 20, 1061–1075. [Google Scholar] [CrossRef]
- Basavalingaiah, K.; Paramesh, V.; Parajuli, R.; Girisha, H.C.; Shivaprasad, M.; Vidyashree, G.V.; Thoma, G.; Hanumanthappa, M.; Yogesh, G.S.; Misra, S.D.; et al. Energy Flow and Life Cycle Impact Assessment of Coffee-Pepper Production Systems: An Evaluation of Conventional, Integrated and Organic Farms in India. Environ. Impact Assess. Rev. 2022, 92, 106687. [Google Scholar] [CrossRef]
- Paramesh, V.; Arunachalam, V.; Nikkhah, A.; Das, B.; Ghnimi, S. Optimization of Energy Consumption and Environmental Impacts of Arecanut Production through Coupled Data Envelopment Analysis and Life Cycle Assessment. J. Clean. Prod. 2018, 203, 674–684. [Google Scholar] [CrossRef]
- ISO 14044:2006; Environmental Management–Life Cycle Assessment–Requirement and Guidelines. ISO: Geneva, Switzerland, 2006.
- Azapagic, A. Life Cycle Assessment as an Environmental Sustainability Tool. In Renewables-Based Technology; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 87–110. [Google Scholar]
- Dalgaard, T.; Halberg, N.; Porter, J.R. A Model for Fossil Energy Use in Danish Agriculture Used to Compare Organic and Conventional Farming. Agric. Ecosyst. Environ. 2001, 87, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.J.; Liu, Z.; Safi, A.S.; Chief, K. Climate Change Perception, Observation and Policy Support in Rural Nevada: A Comparative Analysis of Native Americans, Non-Native Ranchers and Farmers and Mainstream America. Environ. Sci. Policy 2014, 42, 101–122. [Google Scholar] [CrossRef] [Green Version]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Chau, K. Integration of Artificial Intelligence Methods and Life Cycle Assessment to Predict Energy Output and Environmental Impacts of Paddy Production. Sci. Total Environ. 2018, 631–632, 1279–1294. [Google Scholar] [CrossRef]
- Vernooy, R. Does Crop Diversification Lead to Climate-Related Resilience? Improving the Theory through Insights on Practice. Agroecol. Sustain. Food Syst. 2022, 46, 877–901. [Google Scholar] [CrossRef]
- Little, R.J. Post-Stratification: A Modeler’s Perspective. J. Am. Stat. Assoc. 1993, 88, 1001–1012. [Google Scholar] [CrossRef]
- Nemecek, T.; Kägi, T.; Blaser, S. Life Cycle Inventories of Agricultural Production Systems; Final Report; ecoinvent v2.0; No 15a; Swiss Centre for Life Cycle Inventories: Zurich, Switzerland, 2007. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- EPA. Life Cycle Assessment: Principles and Practice; EPA: Cincinnati, OH, USA, 2006. [Google Scholar]
- PRé Consultants SimaPro 8.0.4. Pre Consultants. Amersfort. The Netherlands. 2013. Available online: https://pre-sustainability.com/solutions/tools/simapro/ (accessed on 16 February 2023).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; Volume 4, Chapter 4. [Google Scholar]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Methods to Estimate On-Field Nitrogen Emissions from Crop Production as an Input to LCA Studies in the Agricultural Sector. Int. J. Life Cycle Assess. 2000, 5, 349–357. [Google Scholar] [CrossRef]
- Zhao, X.; Christianson, L.E.; Harmel, D.; Pittelkow, C.M. Assessment of Drainage Nitrogen Losses on a Yield-Scaled Basis. Field Crop. Res. 2016, 199, 156–166. [Google Scholar] [CrossRef]
- Sassenrath, G.F.; Schneider, J.M.; Gaj, R.; Grzebisz, W.; Halloran, J.M. Nitrogen Balance as an Indicator of Environmental Impact: Toward Sustainable Agricultural Production. Renew. Agric. Food Syst. 2013, 28, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Hoang, V.-N.; Alauddin, M. Assessing the Eco-Environmental Performance of Agricultural Production in OECD Countries: The Use of Nitrogen Flows and Balance. Nutr. Cycl. Agroecosystems 2010, 87, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.A.R.; Raju, B.M.K.; Samuel, J.; Dupdal, R.; Reddy, P.S.; Reddy, D.Y.; Ravindranath, E.; Rajeshwar, M.; Rao, C.S. Economic Analysis of Farming Systems. Agric. Econ. Res. Rev. 2017, 30, 37–45. [Google Scholar] [CrossRef]
- EEA. Technical Guidance to Prepare National Emission Inventories; EEA: Copenhagen, Denmark, 2019. [Google Scholar]
- Flugge, M.; Lewandrowski, J.; Rosenfeld, J.; Boland, C.; Hendrickson, T.; Jaglo, K.; Kolansky, S.; Moffroid, K.; Riley-Gilbert, M.; Pape, D. A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol. 2017. Available online: https://www.usda.gov/sites/default/files/documents/LCA_of_Corn_Ethanol_2018_Report.pdf (accessed on 16 February 2023).
- Dubberstein, D.; Partelli, F.L.; Dias, J.R.M.; Espindola, M.C. Concentration and Accumulation of Macronutrients in Leaf of Coffee Berries in the Amazon, Brazil. Aust. J. Crop Sci. 2016, 10, 701–710. [Google Scholar] [CrossRef]
- Fenilli, T.A.B.; Reichardt, K.; Favarin, J.L.; Bacchi, O.O.S.; Silva, A.L.; Timm, L.C. Fertilizer 15N Balance in a Coffee Cropping System: A Case Study in Brazil. Rev. Bras. Ciência do Solo 2008, 32, 1459–1469. [Google Scholar] [CrossRef] [Green Version]
- Winston, E.; Op de Laak, J.; Marsh, T.; Lempke, H.; Chapman, K. Arabica Coffee Manual for Lao-PDR; Food and Agricultural Organisation of the United Nations, Ed.; FAO Regional Office for Asia and Pacific: Bangkok, Thailand, 2005; pp. 1–74. ISBN 974-7946-78-5. [Google Scholar]
- Dev, M.S. Small Farmers in India: Challenges and Opportunities; Indira Gandhi Institute of Development Research: Mumbai, India, 2012. [Google Scholar]
- Shahan, S.; Jafari, A.; Mobli, H.; Rafiee, S.; Karimi, M. Energy Use and Economical Analysis of Wheat Production in Iran: A Case Study from Ardabil Province. J. Agric. Technol. 2008, 4, 77–88. [Google Scholar]
- Hadi, M.R.H.S. Energy Efficiency of Potato Crop in Major Production Regions of Iran. Int. J. Agric. Crop Sci. 2012, 4, 51–53. [Google Scholar]
- Azarpour, E. Determination of Energy Balance and Energy Indices in Wheat Production under Watered Farming in North of Iran. ARPN J. Agric. Biol. Sci. 2012, 7, 250–255. [Google Scholar]
- Soni, P.; Sinha, R.; Perret, S.R. Energy Use and Efficiency in Selected Rice-Based Cropping Systems of the Middle-Indo Gangetic Plains in India. Energy Rep. 2018, 4, 554–564. [Google Scholar] [CrossRef]
- Alluvione, F.; Moretti, B.; Sacco, D.; Grignani, C. EUE (Energy Use Efficiency) of Cropping Systems for a Sustainable Agriculture. Energy 2011, 36, 4468–4481. [Google Scholar] [CrossRef]
- Bockari-Gevao, S.M.; bin Wan Ismail, W.I.; Yahya, A.; Wan, C.C. Analysis of Energy Consumption in Lowland Rice-Based Cropping System of Malaysia. Energy 2005, 27, 820. [Google Scholar]
- AghaAlikhani, M.; Kazemi-Poshtmasari, H.; Habibzadeh, F. Energy Use Pattern in Rice Production: A Case Study from Mazandaran Province, Iran. Energy Convers. Manag. 2013, 69, 157–162. [Google Scholar] [CrossRef]
- Chaudhary, V.P.; Singh, K.K.; Pratibha, G.; Bhattacharyya, R.; Shamim, M.; Srinivas, I.; Patel, A. Energy Conservation and Greenhouse Gas Mitigation under Different Production Systems in Rice Cultivation. Energy 2017, 130, 307–317. [Google Scholar] [CrossRef]
- Htwe, T.; Sinutok, S.; Chotikarn, P.; Amin, N.; Akhtaruzzaman, M.; Techato, K.; Hossain, T. Energy Use Efficiency and Cost-Benefits Analysis of Rice Cultivation: A Study on Conventional and Alternative Methods in Myanmar. Energy 2021, 214, 119104. [Google Scholar] [CrossRef]
- Chaudhary, V.P.; Gangwar, B.; Pandey, D.K.; Gangwar, K.S. Energy Auditing of Diversified Rice–Wheat Cropping Systems in Indo-Gangetic Plains. Energy 2009, 34, 1091–1096. [Google Scholar] [CrossRef]
- Hülsbergen, K.-J.; Feil, B.; Biermann, S.; Rathke, G.-W.; Kalk, W.-D.; Diepenbrock, W. A Method of Energy Balancing in Crop Production and Its Application in a Long-Term Fertilizer Trial. Agric. Ecosyst. Environ. 2001, 86, 303–321. [Google Scholar] [CrossRef]
- Pahlavan, R.; Omid, M.; Akram, A. Energy Use Efficiency in Greenhouse Tomato Production in Iran. Energy 2011, 36, 6714–6719. [Google Scholar] [CrossRef]
- Tuti, M.D.; Prakash, V.; Pandey, B.M.; Bhattacharyya, R.; Mahanta, D.; Bisht, J.K.; Kumar, M.; Mina, B.L.; Kumar, N.; Bhatt, J.C.; et al. Energy Budgeting of Colocasia-Based Cropping Systems in the Indian Sub-Himalayas. Energy 2012, 45, 986–993. [Google Scholar] [CrossRef]
- Paramesh, V.; Sreekanth, G.B.; Chakurkar, E.B.; Chethan Kumar, H.B.; Gokuldas, P.; Manohara, K.K.; Ramdas Mahajan, G.; Rajkumar, R.S.; Ravisankar, N.; Panwar, A.S. Ecosystem Network Analysis in a Smallholder Integrated Crop–Livestock System for Coastal Lowland Situation in Tropical Humid Conditions of India. Sustainability 2020, 12, 5017. [Google Scholar] [CrossRef]
- Paramesh, V.; Parajuli, R.; Chakurkar, E.B.; Sreekanth, G.B.; Kumar, H.B.C.; Gokuldas, P.P.; Mahajan, G.R.; Manohara, K.K.; Viswanatha, R.K.; Ravisankar, N. Sustainability, Energy Budgeting, and Life Cycle Assessment of Crop-Dairy-Fish-Poultry Mixed Farming System for Coastal Lowlands under Humid Tropic Condition of India. Energy 2019, 188, 116101. [Google Scholar] [CrossRef]
- Koga, N.; Tajima, R. Assessing Energy Efficiencies and Greenhouse Gas Emissions under Bioethanol-Oriented Paddy Rice Production in Northern Japan. J. Environ. Manag. 2011, 92, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Bodelier, P.L.E. Interactions between Oxygen-Releasing Roots and Microbial Processes in Flooded Soils and Sediments. In Root Ecology; Springer: Berlin, Germany, 2003; pp. 331–362. [Google Scholar]
- Adhya, T.K.; Bharati, K.; Mohanty, S.R.; Ramakrishnan, B.; Rao, V.R.; Sethunathan, N.; Wassmann, R. Methane Emission from Rice Fields at Cuttack, India. Nutr. Cycl. Agroecosystems 2000, 58, 95–105. [Google Scholar] [CrossRef]
- Nunes, F.A.; Seferin, M.; Maciel, V.G.; Flôres, S.H.; Ayub, M.A.Z. Life Cycle Greenhouse Gas Emissions from Rice Production Systems in Brazil: A Comparison between Minimal Tillage and Organic Farming. J. Clean. Prod. 2016, 139, 799–809. [Google Scholar] [CrossRef]
- Nemecek, T.; Schnetzer, J.; Reinhard, J. Updated and Harmonised Greenhouse Gas Emissions for Crop Inventories. Int. J. Life Cycle Assess. 2016, 21, 1361–1378. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, S.; Guo, Y.; Liu, Q.; Zou, J. Methane and Nitrous Oxide Emissions from Organic and Conventional Rice Cropping Systems in Southeast China. Biol. Fertil. Soils 2010, 46, 825–834. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Barker-Reid, F.; Eckard, R. Simulation of N2O Emissions from Rain-Fed Wheat and the Impact of Climate Variation in Southeastern Australia. Plant Soil 2008, 309, 239–251. [Google Scholar] [CrossRef]
- Wang, M.; Xia, X.; Zhang, Q.; Liu, J. Life Cycle Assessment of a Rice Production System in Taihu Region, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 157–161. [Google Scholar] [CrossRef]
- Iriarte, A.; Rieradevall, J.; Gabarrell, X. Life Cycle Assessment of Sunflower and Rapeseed as Energy Crops under Chilean Conditions. J. Clean. Prod. 2010, 18, 336–345. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chimonyo, V.G.P.; Hlahla, S.; Massawe, F.; Mayes, S.; Nhamo, L.; Modi, A.T. Prospects of Orphan Crops in Climate Change. Planta 2019, 250, 695–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béné, C. Resilience of Local Food Systems and Links to Food Security—A Review of Some Important Concepts in the Context of COVID-19 and Other Shocks. Food Secur. 2020, 12, 805–822. [Google Scholar] [CrossRef]
- Meldrum, G.; Mijatović, D.; Rojas, W.; Flores, J.; Pinto, M.; Mamani, G.; Condori, E.; Hilaquita, D.; Gruberg, H.; Padulosi, S. Climate Change and Crop Diversity: Farmers’ Perceptions and Adaptation on the Bolivian Altiplano. Environ. Dev. Sustain. 2018, 20, 703–730. [Google Scholar] [CrossRef] [Green Version]
Categories * | Rice–Rice System (MJ/ha) | Rice–Cowpea System (MJ/ha) |
---|---|---|
Labor | 1323 (4.1) | 547 (3.1) |
Machinery | 5817 (17.9) | 4129 (22.7) |
Diesel | 5543 (17) | 2550 (14.1) |
Seeds | 1776 (5.5) | 1276 (7.1) |
Nitrogen | 11,743 (36) | 6132 (33.7) |
Phosphorus | 973 (3) | 848 (4.7) |
Potassium | 1211 (3.8) | 842 (4.7) |
FYM | 1446 (4.5) | 1873 (10.3) |
Irrigation | 2841 (8.7) | 0 |
Energy Indices | Rice–Rice System | Rice–Cowpea System |
---|---|---|
Energy input (MJ/ha) | 32,673 | 18,197 |
Energy output (MJ/ha) | 157,409 | 211,071 |
Energy use efficiency | 4.8 | 11.6 |
Specific energy (kg/MJ) | 3.6 | 1.5 |
Net energy (MJ/ha) | 124,736 | 193,018 |
Energy productivity (MJ/kg) | 0.28 | 0.69 |
Impact Categories | Units | RR | RC | RR | RC |
---|---|---|---|---|---|
Per ha Basis | Per kg of Production | ||||
GWP100 | kg CO2 eq. | 13,894 ± 1329 | 7679 ± 719 | 1.260 | 0.561 |
FPM | kg PM2.5 eq. | 11 ± 1 | 7 ± 1 | 0.001 | 0.0003 |
TA | kg SO2 eq. | 43 ± 6 | 24 ± 2 | 0.004 | 0.002 |
FE | kg P eq. | 4 ± 1 | 4 ± 1 | 0.000 | 0.00003 |
TE | kg 1,4-DCB eq. | 9103 ± 949 | 5132 ± 424 | 0.838 | 0.369 |
FET | kg 1,4-DCB eq. | 135 ± 15 | 78 ± 7 | 0.012 | 0.006 |
HCT | kg 1,4-DCB eq. | 60 ± 6 | 34 ± 3 | 0.005 | 0.002 |
MRS | kg Cu eq. | 24 ± 3 | 17 ± 2 | 0.002 | 0.001 |
FRS | kg oil eq. | 434 ± 42 | 233 ± 18 | 0.040 | 0.017 |
Impact Categories | Units | Field Emissions (N2O, CO2, CH4) | NPK Production | Seeds | Fuel | ||||
---|---|---|---|---|---|---|---|---|---|
RR | RC | RR | RC | RR | RC | RR | RC | ||
GWP100 | kg CO2 eq. | 11,597 ± 1334 | 6451 ± 722 | 1642 ± 209 | 896 ± 81 | 179 ± 10 | 102 ± 6 | 476 ± 31 | 220 ± 13 |
FPM | kg PM2.5 eq. | 5 ± 1 | 3 ± 1 | 3 ± 1 | 2 ± 1 | 1 ± 1 | 1 ± 1 | 2 ± 1 | 1 ± 1 |
TA | kg SO2 eq. | 31 ± 4 | 16 ± 2 | 8 ± 2 | 5 ± 1 | 1 ± 1 | 1 ± 1 | 3 ± 1 | 2 ± 1 |
FE | kg P eq. | 1 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 1 | 1 ± 1 |
TE | kg 1,4-DCB eq. | 0 | 0 | 6955 ± 860 | 4038 ± 387 | 435 ± 24 | 304 ± 16 | 1713 ± 109 | 790 ± 44 |
FET | kg 1,4-DCB eq. | 0 | 0 | 104 ± 13 | 62 ± 7 | 8 ± 1 | 5 ± 1 | 23 ± 2 | 11 ± 1 |
HCT | kg 1,4-DCB eq. | 0 | 0 | 34 ± 5 | 21 ± 3 | 3 ± 1 | 2 ± 1 | 23 ± 2 | 11 ± 1 |
MRS | kg Cu eq. | 0 | 0 | 18 ± 3 | 13 ± 2 | 1 ± 1 | 1 ± 1 | 5 ± 1 | 3 ± 1 |
FRS | kg oil eq. | 0 | 0 | 276 ± 35 | 157 ± 15 | 19 ± 2 | 12 ± 1 | 139 ± 9 | 64 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramesh, V.; Kumar, P.; Parajuli, R.; Francaviglia, R.; Manohara, K.K.; Arunachalam, V.; Mayekar, T.; Toraskar, S. A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India. Land 2023, 12, 502. https://doi.org/10.3390/land12020502
Paramesh V, Kumar P, Parajuli R, Francaviglia R, Manohara KK, Arunachalam V, Mayekar T, Toraskar S. A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India. Land. 2023; 12(2):502. https://doi.org/10.3390/land12020502
Chicago/Turabian StyleParamesh, Venkatesh, Parveen Kumar, Ranjan Parajuli, Rosa Francaviglia, Kallakeri Kannappa Manohara, Vadivel Arunachalam, Trivesh Mayekar, and Sulekha Toraskar. 2023. "A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India" Land 12, no. 2: 502. https://doi.org/10.3390/land12020502
APA StyleParamesh, V., Kumar, P., Parajuli, R., Francaviglia, R., Manohara, K. K., Arunachalam, V., Mayekar, T., & Toraskar, S. (2023). A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India. Land, 12(2), 502. https://doi.org/10.3390/land12020502