Application of the Analysis Time Series and Multispectral Images for the Estimation of the Conditions of the Vegetation Covers of the Natural Areas of Southern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Method
2.3.1. Time Series Design
2.3.2. Construction of Vegetation Indices
2.3.3. Analysis of Land Use Change
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales, J.; García-Barrón, L.; Aguilar-Alba, M.; Sousa, A. Hazard Characterization of the Annual Maximum Daily Precipitation in the Southwestern Iberian Peninsula (1851–2021). Water 2022, 14, 1504. [Google Scholar] [CrossRef]
- Rodrigo, F.S.; Trigo, R.M. Trends in Daily Rainfall in the Peninsular Spain from 1951 to 2002. Int. J. Climatol. 2007, 27, 513–529. [Google Scholar] [CrossRef]
- Serrano, A.; Mateos, V.L.; García, J.A. Trend Analysis of Monthly Precipitation over the Iberian Peninsula for the Period 1921–1995. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 1999, 24, 85–90. [Google Scholar] [CrossRef]
- Lana, X.; Burgueño, A. Some Statistical Characteristics of Monthly and Annual Pluviometric Irregularity for the Spanish Mediterranean Coast. Theor. Appl. Climatol. 2000, 65, 79–97. [Google Scholar] [CrossRef]
- Serrano, A.; García, A.J.; Mateos, V.L.; Cancillo, M.L.; Garrido, J. Monthly Modes of Variation of Precipitation Over the Iberian Peninsula. J. Clim. 1999, 12, 2894–2919. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Peña-Angulo, D.; Brunetti, M.; Cortesi, C. Recent Trend in Temperature Evolution in Spanish Mainland (1951–2010): From Warming to Hiatus. Int. J. Climatol. 2016, 36, 2405–2416. [Google Scholar] [CrossRef]
- Brunet, M.; Jones, P.D.; Sigró, J.; Saladié, O.; Aguilar, E.; Moberg, A.; Della-Marta, P.; Lister, D.; Walther, A.; López, D. Temporal and Spatial Temperature Variability and Change over Spain during 1850–2005. J. Geophys. Res. 2007, 112, D12117. [Google Scholar] [CrossRef] [Green Version]
- Insua-Costa, D.; Senande-Rivera, M.; Llasat, M.C.; Minguez-Macho, G. A global perspective on western Mediterranean precipitation extremes. Npj Clim. Atmos. Sci. 2022, 5, 9. [Google Scholar] [CrossRef]
- Llasat, M.C.; Del Moral, A.; Cortés, M.; Rigo, T. Convective precipitation trends in the Spanish Mediterranean región. Atmos. Res. 2021, 257, 105581. [Google Scholar] [CrossRef]
- Halifa-Marín, A.; Lorente-Plazas, R.; Pravia-Sarabia, E.; Montávez, J.P.; Jiménez-Guerrero, P. Atlantic and Mediterranean influence promoting an abrupt change in winter precipitation over the southern Iberian Peninsula. Atmos. Res. 2021, 253, 105485. [Google Scholar] [CrossRef]
- Esbrí, L.; Rigo, T.; Llasat, M.C.; Aznar, B. Identifying Storm Hotspots and the Most Unsettled Areas in Barcelona by Analysing Significant Rainfall Episodes from 2013 to 2018. Water 2021, 13, 1730. [Google Scholar] [CrossRef]
- Hochman, A.; Marra, F.; Messori, G.; Pinto, J.G.; Raveh-Rubin, S.H.; Yosef, Y.; Zittis, G. Extreme weather and societal impacts in the eastern Mediterranean. Earth Syst. Dynam. 2022, 13, 749–777. [Google Scholar] [CrossRef]
- Kouroutzoglou, J.; Flocas, H.A.; Keay, K.; Hatzaki, M. Climatological aspects of explosive cyclones in the Mediterranean. Int. J. Climatol. 2011, 31, 1785–1802. [Google Scholar] [CrossRef]
- Nissen, K.M.; Leckebusch, G.C.; Pinto, J.G.; Renggli, D.; Ulbrich, S.; Ulbrich, U. Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Nat. Hazards Earth Syst. Sci. 2010, 10, 1379–1391. [Google Scholar] [CrossRef]
- Mariotti, A.; Ning, Z.; Lau, K.-M. Euro-Mediterranean rainfall and ENSO, a seasonally varying relationship. Geophys. Res. Lett. 2002, 29, 1621. [Google Scholar] [CrossRef] [Green Version]
- López-Parages, J.; Rodríguez-Fonseca, B. Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys. Res. Lett. 2012, 39, L02704. [Google Scholar] [CrossRef] [Green Version]
- Henriksson, S.V. Interannual oscillations and sudden shifts in observed and modeled climate. Atmos. Sci. Lett. 2018, 19, e850. [Google Scholar] [CrossRef]
- Turki, I.; Massei, N.; Laignel, B.; Shafiei, H. Effects of Global Climate Oscillations on Intermonthly to Interannual Variability of Sea levels along the English Channel Coasts (NW France). Oceanologia 2020, 62, 226–242. [Google Scholar] [CrossRef]
- Giuntoli, I.; Fabiano, F.; Corti, S. Seasonal predictability of Mediterranean weather regimes in the Copernicus C3S systems. Clim. Dyn. 2022, 58, 2131–2147. [Google Scholar] [CrossRef]
- Zampieri, M.; Toreti, A.; Schindler, A.; Scoccimarro, E.; Gualdi, S. Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer. Glob. Planet. Chang. 2017, 151, 92–100. [Google Scholar] [CrossRef]
- Merino-Martín, L.; Moreno-de las Heras, M.; Espigares, T.; Nicolau, J.M. Overland flow directs soil moisture and ecosystem processes at patch scale in Mediterranean restored hillslopes. Catena 2015, 133, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.U.; Seo, K.H.; Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 2019, 9, 18813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagas, V.B.P.; Chaffe, P.L.B.; Blöschl, G. Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 2022, 13, 5136. [Google Scholar] [CrossRef] [PubMed]
- Moatti, J.P.; Thiébault, S. The Mediterranean Region under Climate Change, 1st ed.; IRD Éditions: Marseille, France, 2018; 736p. [Google Scholar] [CrossRef]
- Hansen, W.D.; Schwartz, N.B.; Williams, A.P.; Albrich, K.; Kueppers, L.M.; Rammig, A.; Reyer, C.P.O.; Staver, A.C.; Seidl, R. Global forests are influenced by the legacies of past inter-annual temperature variability. Environ. Res. Ecol. 2022, 1, 011001. [Google Scholar] [CrossRef]
- White, E.E.; Ury, E.A.; Bernhardt, E.S.; Yang, X. Climate Change Driving Widespread Loss of Coastal Forested Wetlands Throughout the North American Coastal Plain. Ecosystems 2022, 25, 812–827. [Google Scholar] [CrossRef]
- Anaya-Romero, M.; Muñoz-Rojas, M.; Ibáñez, B.; Marañón, T. Evaluation of forest ecosystem services in Mediterranean areas. A regional case study in South Spain. Ecosyst. Serv. 2016, 20, 82–90. [Google Scholar] [CrossRef]
- Tammi, I.; Mustajärvi, K.; Rasinmäki, J. Integrating spatial valuation of ecosystem services into regional planning and development. Ecosyst. Serv. 2017, 26 Pt B, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Inostroza, L.; König, H.J.; Pickard, B.; Zhen, L. Putting ecosystem services into practice: Trade-off assessment tools, indicators and decision support systems. Ecosyst. Serv. 2017, 26 Pt B, 303–305. [Google Scholar] [CrossRef]
- Mann, C.; Loft, L.; Hansjürgens, B. Governance of Ecosystem Services: Lessons learned for sustainable institutions. Ecosyst. Serv. 2015, 16, 275–281. [Google Scholar] [CrossRef]
- De Stefano, L.; Hernández-Mora, N.; Iglesias, A.; Sánchez, B. Water for rice farming and biodiversity: Exploring choices for adaptation to climate change in Doñana, southern Spain. In Adaptation to Climate Change through Water Resources Management: Capacity, Equity, and Sustainability, 1st ed.; Stucker, D., Lopez-Gunn, E., Eds.; Routledge/Earthscan: Oxford, UK, 2014; Volume 1, pp. 1–22. Available online: https://www.researchgate.net/publication/264991601_Water_for_rice_farming_and_biodiversity_Exploring_choices_for_adaptation_to_climate_change_in_Donana_southern_Spain (accessed on 25 November 2022).
- Regos, A.; Tapia, L.; Arenas-Castro, S.; Domínguez, J. Ecosystem Functioning Influences Species Fitness at Upper Trophic Levels. Ecosystems 2022, 25, 1037–1051. [Google Scholar] [CrossRef]
- Sumner, G.; Homar, V.; Ramis, C. Precipitation seasonality in eastern and southern coastal Spain. Int. J. of Climatol. 2001, 21, 219–247. [Google Scholar] [CrossRef]
- Ruiz-Sinoga, J.D.; Garcia-Marín, R.; Martínez-Murillo, J.F.; Gabarron-Galeote, M.A. Precipitation dynamics in southern Spain: Trends and cycles. Int. J. Climatol. 2011, 35, 2281–2289. [Google Scholar] [CrossRef]
- Brown, C.L.; Coe, P.K.; Clark, D.A.; Wisdom, M.J.; Rowland, M.M.; Averett, J.P.; Johnson, B.K. Climate change effects on understory plant phenology: Implications for large herbivore forage availability. Environ. Res. Ecol. 2022, 1, 011002. [Google Scholar] [CrossRef]
- Yeakley, J.A.; Moen, R.A.; Breshears, D.D.; Nungesser, M.K. Response of North American ecosystem models to multi-annual periodicities in temperature and precipitation. Landsc. Ecol. 1994, 9, 249–260. [Google Scholar] [CrossRef]
- Loehle, C. Disequilibrium and relaxation times for species responses to climate change. Ecol. Model. 2018, 384, 23–29. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, J.; Liang, T.; Feng, Q. Grassland vegetation phenological variations and responses to climate change in the Xinjiang region, China. Quat. Int. 2019, 513, 56–65. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, X. Exploration of global spatiotemporal changes of fall foliage coloration in deciduous forests and shrubs using the VIIRS land surface phenology product. Sci. Remote Sens. 2021, 4, 100030. [Google Scholar] [CrossRef]
- Mulomba-Mukadi, P.; González-García, C. Time Series Analysis of Climatic Variables in Peninsular Spain. Trends and Forecasting Models for Data between 20th and 21st Centuries. Climate 2021, 9, 119. [Google Scholar] [CrossRef]
- Bohn, F.J.; Frank, K.; Huth, A. Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecol. Model. 2014, 278, 9–17. [Google Scholar] [CrossRef]
- Vinnikov, K.Y.; Groisman, P.Y.; Lugina, K.M. Empirical Data on Contemporary Global Climate Changes (Temperature and Precipitation). J. Clim. 1990, 3, 662–677. [Google Scholar] [CrossRef]
- Wanishsakpong, W.; Owusu, B.E. Optimal Time Series Model for Forecasting Monthly Temperature in the Southwestern Region of Thailand. Model. Earth Syst. Environ. 2020, 6, 525–532. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Lopez-Bustins, J.A.; Stepánek, P.; Martin-Vide, J.; De Luis, M. Monthly Precipitation Trends on the Mediterranean Fringe of the Iberian Peninsula during the Second Half of the Twentieth Century (1951–2000). Int. J. Climatol. 2009, 29, 1415–1429. [Google Scholar] [CrossRef]
- Romero, R.; Guijarro, J.A.; Alonso, S. A 30-Year (1964–1993) Daily Rainfall Data Base for the Spanish Mediterranean Regions: First Exploratory Study. Int. J. Climatol. 1998, 18, 541–560. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, W.; Qin, Y.; Lai, L.; Guan, T.; Zhang, X.; Jiang, L.; Du, H.; Yang, D.; Cong, Z.; et al. Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China. Sci. Total Environ. 2016, 572, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Ayuga, E.; González, C.; Montero, M.J.; Robredo, J.C. Statistical Models of ARIMA Prediction of Precipitation in Two Spanish Stations Representative of two Groups with Different Climatic Characteristics. In Regional Climate Change and Its Impacts, 1st ed.; Rodríguez, J.S., India, M.B., Anfrons, E.A., Eds.; Spanish Society of Climatology: Tarragona, Spain, 2008; Volume 6 (Serie A), pp. 15–24. Available online: http://hdl.handle.net/20.500.11765/8544 (accessed on 25 November 2022).
- Del Río, S.; Herrero, L.; Pinto-Gomes, C.; Penas, A. Spatial Analysis of Mean Temperature Trends in Spain over the Period 1961–2006. Glob. Planet. Chang. 2011, 78, 65–75. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought monitoring with multiple time scales. In Proceedings of the Ninth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 233–236. Available online: https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf (accessed on 25 November 2022).
- Moreira, E.E.; Martins, D.S.; Pereira, L.S. Assessing drought cycles in SPI time series using a Fourier analysis. Nat. Hazards Earth Syst. Sci. 2015, 15, 571–585. [Google Scholar] [CrossRef] [Green Version]
- Hosseinizadeh, A.; Seyedkaboli, H.; Zarei, H.; Akhoond-ali, A.-M.; Farjad, B. Impact of climate change on the severity, duration, and frequency of drought in a semi–arid agricultural basin. Geoenviron. Disasters 2015, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought characterisation based on an agriculture-oriented standardised precipitation index. Theor. Appl. Climatol. 2019, 135, 1435–1447. [Google Scholar] [CrossRef]
- MODIS (Moderate Resolution Imaging Spectroradiometer). Available online: https://modis.gsfc.nasa.gov/ (accessed on 4 October 2022).
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Rossini, M.; Migliavacca, M.; Galvagno, M.; Meroni, M.; Cogliati, S.; Cremonese, E.; Fava, F.; Gitelson, A.; Julitta, T.; Morra di Cella, U. Remote estimation of grassland gross primary production during extreme meteorological seasons. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 1–10. [Google Scholar] [CrossRef]
- Vijith, H.; Dodge-Wan, D. Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sens. Appl. Soc. Environ. 2020, 18, 100311. [Google Scholar] [CrossRef]
- Naghdizadegan-Jahromi, M.; Naghdyzadegan-Jahromi, M.; Pourghasemi, H.-M.; Zand-Parsa, S.; Jamshidi, S. Chapter 12—Accuracy assessment of forest mapping in MODIS land cover dataset using fuzzy set theory. In Forest Resources Resilience and Conflicts, 1st ed.; Pravat Kumar Shit, P.-K., Pourghasemi, H.-M., Adhikary, P.-P., Bhunia, G.-S., Sati, V.-P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 165–183. [Google Scholar] [CrossRef]
- Izadi, S.; Sohrabi, H. Chapter 14—Using Bayesian kriging and satellite images to estimate above-ground biomass of Zagros mountainous forests. In Forest Resources Resilience and Conflicts, 1st ed.; Pravat Kumar Shit, P.-K., Pourghasemi, H.-M., Adhikary, P.-P., Bhunia, G.-S., Sati, V.-P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–201. [Google Scholar] [CrossRef]
- Cui, B.; Zhao, Q.; Huang, W.; Song, X.; Ye, H.; Zhou, X. A New Integrated Vegetation Index for the Estimation of Winter Wheat Leaf Chlorophyll Content. Remote Sens. 2019, 11, 974. [Google Scholar] [CrossRef] [Green Version]
- Kira, O.; Linker, R.; Gitelson, A. No destructive estimation of foliar chlorophyll and carotenoid contents Focus on informative spectral bands. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 251–260. [Google Scholar] [CrossRef]
- Gallardo, J.L.; Pompa, M. Detecting Individual Tree Attributes and Multispectral Indices Using Unmanned Aerial Vehicles: Applications in a Pine Clonal Orchard. Remote Sens. 2020, 12, 4144. [Google Scholar] [CrossRef]
- Dennison, P.E. Corresponding author, Roberts, D.A.; Peterson, S.H.; Rechel, J. Use of Normalized Difference Water Index for monitoring live fuel moisture. Int. J. Remote Sens. 2005, 26, 1035–1042. [Google Scholar] [CrossRef]
- Hardy, C.C.; Burgan, R.E. Evaluation of NDVI for monitoring live moisture in three vegetation types of the Western U.S. Photogramm. Eng. Remote Sens. 1999, 65, 603–610. Available online: https://www.asprs.org/wp-content/uploads/pers/1999journal/may/1999_may_603-610.pdf (accessed on 20 August 2022).
- Chuvieco, E.; Riaño, D.; Aguado, I.; Cocero, D. Estimation offuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectancedata: Applications in fire danger assessment. Int. J. Remote Sens. 2002, 23, 2145–2162. [Google Scholar] [CrossRef]
- Ren, H.; Zhoub, G. Estimating green biomass ratio with remote sensing in arid grasslands. Ecol. Indic. 2019, 98, 568–574. [Google Scholar] [CrossRef]
- Ullah, S.; Si, Y.; Schlerf, M.; Skidmore, A.K.; Shafique, M.; Iqbal, I.A. Estimation of grassland biomass and nitrogen using MERIS data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 196–204. [Google Scholar] [CrossRef]
- Peñuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Baret, F.; Clevers, J.G.P.W.; Steven, M.D. The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches. Remote Sens. Environ. 1995, 54, 141–151. [Google Scholar] [CrossRef]
- Yang, F.; Sun, J.; Fang, H.; Yao, Z.; Zhang, J.; Zhu, Y.; Song, K.; Wang, Z.; Hu, M. Comparison of different methods for corn LAI estimation over northeastern China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 462–471. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192–193, 140–148. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Feng, W.; Wu, Y.; He, L.; Ren, X.; Wang, Y.; Hou, G.; Wang, Y.; Liu, W.; Guo, T. An optimized non-linear vegetation index for estimating leaf area index in winter wheat. Precision Agric. 2019, 20, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhou, G. Estimation of Canopy Water Content by Means of Hyperspectral Indices Based on Drought Stress Gradient Experiments of Maize in the North Plain China. Remote Sens. 2015, 7, 15203–15223. [Google Scholar] [CrossRef] [Green Version]
- Granero-Belinchón, C.; Adeline, K.; Lemonsu, A.; Briottet, X. Phenological Dynamics Characterization of Alignment Trees with Sentinel-2 Imagery: A Vegetation Indices Time Series Reconstruction Methodology Adapted to Urban Areas. Remote Sens. 2020, 12, 639. [Google Scholar] [CrossRef] [Green Version]
- Di Bella, C.M.; Paruelo, J.M.; Becerra, J.E.; Bacour, C.; Baret, F. Effect of senescent leaves on NDVI-based estimates of APAR: Experimental and modelling evidence. Int. J. Remote Sens. 2004, 25, 5415–5427. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Jin, C.; Dong, J.; Zhou, Z.; Wagle, P.; Joiner, J.; Guanter, L.; Zhang, Y.; Zhang, G.; et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sens. Environ. 2016, 183, 154–169. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Ju, W.; Zhou, Y.; Chen, J.; He, H.; Wang, S.; Wang, H.; Guan, D.; Yan, Y.; Li, Y.; et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agric. For. Meteorol. 2013, 173, 28–39. [Google Scholar] [CrossRef]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Bastin, G.; Scarth, P.; Chewings, V.; Sparrow, A.; Denham, R.; Schmidt, M.; O’Reagain, P.; Shepherd, R.; Abbott, B. Separating grazing and rainfall effects at regional scale using remote sensing imagery: A dynamic reference-cover method. Remote Sens. Environ. 2012, 121, 443–457. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Zarco-Tejada, P.J. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT+DART simulations. Remote Sens. Environ. 2012, 127, 298–315. [Google Scholar] [CrossRef]
- Cui, F.; Wang, B.; Zhang, Q.; Tang, H.; De Maeyer, P.H.; Hamdi, R.; Dai, L. Climate change versus land-use change—What affects the ecosystem services more in the forest-steppe ecotone? Sci. Total Environ. 2021, 759, 143525. [Google Scholar] [CrossRef]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Tomaz, C.; Alegria, C.; Massano, J.; Canavarro, M. Land cover change and afforestation of marginal and abandoned agricultural land: A 10 year analysis in a Mediterranean región. For. Ecol. Manag. 2013, 308, 40–49. [Google Scholar] [CrossRef]
- Ferrara, A.; Salvati, L.; Sabbi, A.; Colantoni, A. Soil resources, land cover changes and rural areas: Towards a spatial mismatch? Sci. Total Environ. 2014, 478, 116–122. [Google Scholar] [CrossRef]
- Luo, Y.; Lü, Y.; Liua, L.; Liang, H.; Li, T.; Ren, Y. Spatiotemporal scale and integrative methods matter for quantifying the driving forces of land cover change. Sci. Total Environ. 2020, 739, 139622. [Google Scholar] [CrossRef]
- De Luis, M.; Vicente, S.M.; González-Hidalgo, J.C.; Raventós, J. Application of Contingency Tables (Cross-Tab-Analysis) to the Spatial Analysis of Climate Trends in the Eastern Sector of the Iberian Peninsula. Cuad. Investig. Geogr. 2003, 29, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Requena-Mullor, J.M.; Quintas-Soriano, C.; Brandt, J.; Cabello, J.; Castro, A.J. Modeling how land use legacy affects the provision of ecosystem services in Mediterranean southern Spain. Environ. Res. Lett. 2018, 13, 114008. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, X.; Rodman, K. Land cover composition, climate, and topography drive land surface phenology in a recently burned landscape: An application of machine learning in phenological modeling. Agric. For. Meteorol. 2021, 304–305, 108432. [Google Scholar] [CrossRef]
- Senf, C. Seeing the System from Above: The Use and Potential of Remote Sensing for Studying Ecosystem Dynamics. Ecosystems 2022, 25, 1719–1737. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, W.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Novillo, C.J.; Arrogante-Funes, P.; Vázquez-Jiménez, R.; Maestre, F.T. Albedo estimated from remote sensing correlates with ecosystem multifunctionality in global drylands. J. Arid. Environ. 2018, 157, 116–123. [Google Scholar] [CrossRef]
- Qader, S.H.; Atkinson, P.M.; Dash, J. Spatiotemporal variation in the terrestrial vegetation phenology of Iraq and its relation with elevation. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 107–117. [Google Scholar] [CrossRef]
- Shtiliyanova, A.; Bellocchi, G.; Borras, D.; Eza, U.; Martin, R.; Carrère, P. Kriging-based approach to predict missing air temperature data. Comput. Electron. Agric. 2017, 142 Pt A, 440–449. [Google Scholar] [CrossRef]
- Nistor, M.-M. Groundwater vulnerability in Europe under climate change. Quat. Int. 2020, 547, 185–196. [Google Scholar] [CrossRef]
- Swetnam, R.D.; Harrison-Curran, S.K.; Smith, G.R. Quantifying visual landscape quality in rural Wales: A GIS-enabled method for extensive monitoring of a valued cultural ecosystem service. Ecosyst. Serv. 2017, 26 Pt B, 451–464. [Google Scholar] [CrossRef]
- Domingo-Marimon, C.; Masó, J.; Prat, E.; Zabala, A.; Serral, I.; Batalla, M.; Ninyerola, M.; Cristóbal, J. Aligning citizen science and remote sensing phenology observations to characterize climate change impact on vegetation. Environ. Res. Lett. 2022, 17, 085007. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.H.; Davis, K.; Evans, R.; et al. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densitie. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Vacchiano, G.; Lines, E.M.; Reyer, C.P.O.; Ratcliffe, S.; Morin, X.; Hartig, F.; Mäkelä, A.; Yousefpour, R.; Chaves, J.E.; et al. Available and missing data to model impact of climate change on European forests. Ecol. Model. 2020, 416, 108870. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J.; Liu, Q.; Huang, Q. A cloud-enabled remote visualization tool for time-varying climate data analytics. Environ. Model. Softw. 2016, 75, 513–518. [Google Scholar] [CrossRef]
- Harris, R.; Baumann, I. Open data policies and satellite Earth observation. Space Policy 2015, 32, 44–53. [Google Scholar] [CrossRef]
- Donager, J.; Sankey, T.T.; Sánchez-Meador, A.J.; Sankey, J.B.; Springer, A. Integrating airborne and mobile lidar data with UAV photogrammetry for rapid assessment of changing forest snow depth and cover. Sci. Remote Sens. 2021, 4, 100029. [Google Scholar] [CrossRef]
- Del Río, S.; Herrero, L.; Fraile, R.; Penas, A. Spatial distribution of recent rainfall trends in Spain (1961–2006). Int. J. Climatol. 2011, 31, 656–667. [Google Scholar] [CrossRef]
- Martínez-Artigas, J.; Lemus-Canovas, M.; López-Bustins, J.A. Precipitation in peninsular Spain: Influence of teleconnection indices and spatial regionalization. Int. J. Climatol. 2021, 41, E1320–E1335. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Vicente-Serrano, S.M.; Peña-Angulo, D.; Salinas, C.; Tomas-Burguera, M.; Beguerıía, S. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys. 2018, 66, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Vélez-Nicolás, M.; García-López, S.; Ruiz-Ortiz, V.; Zazo, S.; Molina, J.L. Precipitation Variability and Drought Assessment Using the SPI: Application to Long-Term Series in the Strait of Gibraltar Area. Water 2022, 14, 884. [Google Scholar] [CrossRef]
- Guttman, N.B. On the sensitivity of sample L moments to sample size. J. Clim. 1994, 7, 1026–1029. [Google Scholar] [CrossRef]
- Guttman, N.B. Comparing the Palmer drought index and the Standardized Precipitation Index. J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A calculation algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Tomas-Burguera, M.; Beguería, S.; Reig, F.; Latorre, B.; Peña-Gallardo, M.; Luna, M.Y.; Morata, A.; González-Hidalgo, J.C. A High Resolution Dataset of Drought Indices for Spain. Data 2017, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Yaffee, S.L. Three Faces of Ecosystem Management. Conserv. Biol. 1998, 13, 713–725. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Tongway, D.J.; Bastin, G.N.; James, C.D. Monitoring ecological indicators of rangeland functional integrity and their relation to biodiversity at local to regional scales. Austral Ecol. 2004, 29, 108–120. [Google Scholar] [CrossRef]
- Constanza, R.; d’Arge, R.; Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Grumbine, R.E. What is ecosystem management? Conserv. Biol. 1994, 8, 27–38. [Google Scholar] [CrossRef]
- Halpin, P.N. Global climate change and natural-area protection: Management responses and research directions. Ecol. Appl. 1997, 3, 828–843. [Google Scholar] [CrossRef]
- Grantham, H.S.; Bode, M.; McDonald-Madden, E.; Game, E.T.; Knight, A.T.; Possingham, H.P. Effective conservation planning requires learning and adaptation. Front. Ecol. Environ. 2010, 8, 431–437. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Likens, G.E. The science and application of ecological monitoring. Biol. Conserv. 2010, 143, 1317–1328. [Google Scholar] [CrossRef]
- Wenzel, B. Organizing coordination for an ecosystem approach to marine research and management advice: The case of ICES. Mar. Policy 2017, 82, 138–146. [Google Scholar] [CrossRef]
- Martínez-Murillo, J.F.; Senciales González, J.M. Morphogenesis and soil processes. The case of the Montes de Málaga. Baetica 2003, 25, 219–258. [Google Scholar] [CrossRef]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Climatology Report 97-2, 1997, Department of Atmospheric Science, Colorado State University, Fort Collins. Available online: https://mountainscholar.org/handle/10217/170176?show=full (accessed on 5 October 2022).
- Karanja, A.; Ondimu, K.; Recha, C. Analysis of Temporal Drought Characteristic Using SPI Drought Index Based on Rainfall Data in Laikipia West Sub-County, Kenya. Open Access Libr. J. 2017, 4, e3765. [Google Scholar] [CrossRef]
- Gumus, V.; Simsek, O.; Avsaroglu, Y.; Agun, B. Spatio-temporal trend analysis of drought in the GAP Region, Turkey. Nat. Hazards 2021, 109, 1759–1776. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Murphy, C.; Hannaford, J.; Reig, F.; Peña-Angulo, D.; Tramblay, Y.; Trigo, R.M.; Mac Donald, N.; Luna, M.Y.; et al. Long-term variability and trends in meteorological droughts in Western Europe (1851–2018). Int. J. Climatol. 2021, 41 (Suppl. 1), E690–E717. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachane, I.A. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Schlemmer, M.; Gitelsonb, A.; Schepers, J.; Fergusona, R.; Peng, Y.; Shanahana, J.; Rundquist, R. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Marino, S.; Alvino, A. Vegetation Indices Data Clustering for Dynamic Monitoring and Classification of Wheat Yield Crop Traits. Remote Sens. 2021, 13, 541. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation; Final Report; NASA/GSFC: Greenbelt, MD, USA, 1973; pp. 1–137. Available online: https://www.semanticscholar.org/paper/Monitoring-the-Vernal-Advancement-and-Green-Wave-Rouse-Haas/c3a30c40d304a7a312942c0c243f5033b8c3fd3f (accessed on 29 August 2022).
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf–Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS, Third ERTS Symposium; NASA: Washington, DC, USA, 1973; pp. 309–317. Available online: https://books.google.es/books?hl=es&lr=&id=bn_xAAAAMAAJ&oi=fnd&pg=PA309&dq=Rouse,+J.+W.%3B+Haas,+R.+H.%3B+Schell,+J.+A.%3B+Deering,+D.+W.+Monitoring+Vegetation+Systems+in+the+Great+Plains+with+ERTS,+Third+ERTS+Symposium+(Washinton,+DC:+NASA),+1973,+pp.+309%E2%80%93317.&ots=YTLsLGBUKJ&sig=fjUfMVyayU88xSOn5KZuavcqQk0#v=onepage&q&f=false (accessed on 26 August 2022).
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Chang, A.; Yeom, J.; Jung, J.; Landivar, J. Comparison of Canopy Shape and Vegetation Indices of Citrus Trees Derived from UAV Multispectral Images for Characterization of Citrus Greening Disease. Remote Sens. 2020, 12, 4122. [Google Scholar] [CrossRef]
- Modica, G.; Messina, C.; De Luca, G.; Fiozzo, V.; Praticò, S. Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Comput. Electron. Agric. 2020, 175, 105500. [Google Scholar] [CrossRef]
- Viskovic, L.; Kosovic, I.N.; Mastelic, T. Crop Classification using Multi-spectral and Multitemporal Satellite Imagery with Machine Learning. In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 19–21 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Costa, L.; Nunes, L.; Ampatzidis, Y. A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms. Comput. Electron. Agric. 2020, 172, 105334. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Campos, J.C.; Sillero, N.; Brito, J.C. Normalized difference water indexes have dissimilar performances in detecting seasonal and permanent water in the Sahara-Sahel transition zone. J. Hydrol. 2012, 464–465, 438–446. [Google Scholar] [CrossRef]
- Doña, C.; Morant, D.; Picazo, A.; Rochera, C.; Sánchez, J.M.; Camacho, A. Estimation of Water Coverage in Permanent and Temporary Shallow Lakes and Wetlands by Combining Remote Sensing Techniques and Genetic Programming: Application to the Mediterranean Basin of the Iberian Peninsula. Remote Sens. 2021, 13, 652. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Phompila, C.; Lewis, M.; Ostendorf, B.; Clarke, K. MODIS EVI and LST Temporal Response for Discrimination of Tropical Land Covers. Remote Sens. 2015, 7, 6026–6040. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villamuelas, M.; Fernández, N.; Albanell, E.; Gálvez-Cerón, A.; Bartolomé, J.; Mentaberre, G.; López-Olvera, J.R.; Fernández-Aguilar, X.; Colom-Cadena, A.; López-Martín, J.M.; et al. The Enhanced Vegetation Index (EVI) as a proxy for diet quality and composition in a mountain ungulate. Ecol. Indic. 2016, 61 Pt 2, 658–666. [Google Scholar] [CrossRef]
- Gurung, R.B.; Breidt, F.J.; Dutin, A.; Ogle, E.M. Predicting Enhanced Vegetation Index (EVI) curves for ecosystem modeling applications. Remote Sens. Environ. 2009, 113, 2186–2193. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.M.; Huang, N. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sens. Environ. 2011, 115, 3424–3435. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Michalak, W.Z. GIS in land use change analysis: Integration of remotely sensed data into GIS. Appl. Geogr. 1993, 13, 28–44. [Google Scholar] [CrossRef]
- Nagendra, H.; Munroe, D.K.; Southworth, J. From pattern to process: Landscape fragmentation and the analysis of land use/land cover change. Agric. Ecosyst. Environ. 2004, 101, 111–115. [Google Scholar] [CrossRef]
- Humacata, L. Análisis espacial de los cambios de usos del suelo. Aplicación con Sistemas de Información Geográfica. Rev. Cart. 2019, 98, 239–257. [Google Scholar] [CrossRef]
- Tadese, M.; Kumar, L.; Koech, R.; Kogo, B.K. Mapping of land-use/land-cover changes and its dynamics in Awash River Basin using remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 2020, 19, 100352. [Google Scholar] [CrossRef]
- Pontius, R.G.; Shusas, E.; McEchern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Pontius, R.G.; Malizia, N.R. Effect of Category Aggregation on Map Comparison. In GISciense 2004, LNCS 3234, 1st ed.; Egenhofer, M.J., Freksa, C., Miller, H.J., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2004; pp. 251–268. [Google Scholar] [CrossRef]
- Farfán, M.; Rodríguez-Tapia, G.; Mas, J.F. Hierarchical analysis of the intensity of land cover/land use change and deforestation (2000–2008) in the Sierra de Manantlán Biosphere Reserve, México. Investig. Geográficas 2016, 90, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Damián, D.A.; Márquez, C.O.; García, V.J.; Rodríguez, M.V.; Recalde, C.G. Systematic transitions in land use and land cover in a high Andean micro-basin, Ecuador 1991–2011. Rev. Espac. 2018, 39, 8–20. Available online: https://www.revistaespacios.com/a18v39n32/18393208.html (accessed on 5 August 2022).
- Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Díez, Y. Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Climatol. 1998, 18, 1557–1574. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 9499. [Google Scholar] [CrossRef] [Green Version]
- Novillo, C.J.; Arrogante-Funes, P.; Romero-Calcerrada, R. Recent NDVI Trends in Mainland Spain: Land-Cover and Phytoclimatic-Type Implications. ISPRS Int. J. Geo-Inf. 2019, 8, 43. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Ruiz-Benito, P.; Zavala, M.A. Recent land cover changes in Spain across biogeographical regions and protection levels: Implications for conservation policies. Land Use Policy 2015, 44, 62–75. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Khorchani, M.; Romero-Díaz, A. A review of abandoned lands in Spain: From local landscapes to global management strategies. CIG 2021, 47, 477–521. [Google Scholar] [CrossRef]
- De Luis, M.; González-Hidalgo, J.C.; Longares, L.A.; Štepánek, P. Seasonal precipitation trends in the Mediterranean Iberian Peninsula in second half of 20th century. Int. J. Climatol. 2009, 29, 1312–1323. [Google Scholar] [CrossRef]
- Merino, A.; López, L.; Hermida, L.; Sánchez, J.L.; García-Ortega, E.; Gascón, E.; Fernández-González, S. Identification of drought phases in a 110-year record from Western Mediterranean basin: Trends, anomalies, and periodicity analysis for Iberian Peninsula. Glob. Planet. Chang. 2015, 133, 96–108. [Google Scholar] [CrossRef]
- Llasat, M.C.; Quintas, L. Stationarity of monthly rainfall series since the middle of the XIXth Century. Application to the case of Peninsular Spain. Nat. Hazards 2004, 31, 613–622. [Google Scholar] [CrossRef]
- Peña-Gallardo, M.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Esteban-Parra, M.J. Comparative analysis of drought indices in Andalusia for the period 1901–2012. Cuad. Investig. Geogr. 2016, 42, 67–88. [Google Scholar] [CrossRef] [Green Version]
- García-Barrón, L.; Aguilar, M.; Sousa, A. Evolution of annual rainfall irregularity in the southwest of the Iberian Peninsula. Theor. Appl. Climatol. 2011, 103, 13–26. [Google Scholar] [CrossRef]
- Sousa, P.M.; Trigo, R.M.; Aizpurua, P.; Nieto, R.; Gimeno, L.; Garcia-Herrera, R. Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat. Hazards Earth Syst. Sci. 2011, 11, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Paredes, D.; Trigo, R.M.; Garcia-Herrera, R.; Franco-Trigo, I. Understanding Precipitation Changes in Iberia in Early Spring: Weather Typing and Storm-Tracking Approaches. J. Hydrometeorolgy 2006, 7, 101–113. Available online: https://eprints.ucm.es/id/eprint/34761/1/garciaherrera52libre.pdf (accessed on 24 November 2022). [CrossRef] [Green Version]
- Aguilar-Alba, M. Recent changes and tendencies in precipitation in Andalusia. In Climate Change in Andalusia: Evolution and Environmental Consequences; Ministry of Environment (Junta de Andalucía): Sevilla, Spain, 2007; Volume 1, pp. 99–116. Available online: https://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Educacion_Y_Participacion_Ambiental/Educacion_Ambiental/el_cambio_climatico_en_andalucia/capitulo5.pdf (accessed on 24 November 2022).
- Regos, A.; Ninyerola, M.; Moré, G.; Pons, X. Linking land cover dynamics with driving forces in mountain landscape of the Northwestern Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 1–14. [Google Scholar] [CrossRef]
- Palombo, C.; Chirici, G.; Marchetti, M.; Tognetti, R. Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosyst. 2013, 147, 1–11. [Google Scholar] [CrossRef]
- IPCC Assessment Reports. Available online: https://www.miteco.gob.es/es/ceneam/recursos/mini-portales-tematicos/Cclimatico/informe_ipcc.aspx (accessed on 25 November 2022).
- Impacts and Risks Derived from Climate Change in Spain. Available online: https://transparencia.gob.es/transparencia/transparencia_Home/index/MasInformacion/Informes-de-interes/Medio_ambiente/CambioClimatico.html (accessed on 25 November 2022).
- Local Climate Change Scenarios in Andalusia. Available online: https://www.juntadeandalucia.es/medioambiente/portal/web/cambio-climatico/indice/-/asset_publisher/hdxWUGtQGkX8/content/resultados-de-los-escenarios-locales-cambio-clim-c3-a1tico-actualizados-al-5-c2-ba-informe-ipcc-evoluci-c3-b3n-de-los-grupos-clim-c3-a1ticos-y-la-temp/20151 (accessed on 25 November 2022).
- Water Accounts. Environment 2011, Number 65. Available online: https://dialnet.unirioja.es/revista/7639/A/2011 (accessed on 25 November 2022).
Natural Areas | Area (km2) | Average Height (m) | Max. Height (m) | Min. Height (m) |
---|---|---|---|---|
Sierra de Grazalema (SG) | 530.4 | 745.6 | 1626.2 | 215.4 |
Sierras Bermeja and Real (SBR) | 289.2 | 662.6 | 1475.9 | 77.6 |
Sierra de las Nieves (SN) | 183.9 | 1018.8 | 1901.4 | 236.7 |
Sierra Blanca, Canucha, and Alpujata (SBCA) | 121.8 | 639.2 | 1265.4 | 118.4 |
Sierra de Mijas (SM) | 78.0 | 531.1 | 1139.6 | 63.0 |
Montes de Málaga (MM) | 49.9 | 647.4 | 1028.5 | 120.2 |
Sierras de Tejeda, Almijara, and Alhama (STAA) | 400.7 | 1094.7 | 2066.6 | 53.6 |
Sierra de Lújar, Jolúcar, and El Conjuro (SLJC) | 127.1 | 927.8 | 1869.0 | 227.4 |
Sierra de Gádor and Enix (SGE) | 503.1 | 1186.8 | 2243.2 | 51.2 |
Sierra de Filabres (SF) | 716.6 | 1336.4 | 2159.3 | 349.6 |
Sierra de Cabrera and Bédar (SCB) | 337.0 | 397.4 | 950.3 | 2.9 |
Total Area | 3338.1 | – | – | – |
Natural Areas | Forest | ASHV | Crops | Wetlands | Artificial | Other | Total |
---|---|---|---|---|---|---|---|
SG | 29,062.20 | 15,674.74 | 5570.21 | 781.61 | 1001.32 | 951.11 | 53,041.19 |
SBR | 13,812.73 | 13,167.17 | 266.74 | 462.96 | 1139.98 | 79.13 | 28,928.70 |
SN | 10,098.47 | 7804.50 | 75.39 | 172.08 | 223.36 | 20.50 | 18,394.30 |
SBCA | 4327.81 | 6872.73 | 476.30 | 67.04 | 250.84 | 187.33 | 12,182.06 |
SM | 4449.76 | 2183.33 | 151.81 | 81.11 | 419.59 | 518.85 | 7804.46 |
MM | 4354.75 | 288.40 | 176.17 | 61.44 | 94.99 | 19.86 | 4995.60 |
STAA | 18,697.38 | 20,242.87 | 412.95 | 287.20 | 316.84 | 120.91 | 40,078.15 |
SLJC | 2294.74 | 8793.98 | 1167.81 | 75.11 | 246.36 | 131.90 | 12,709.90 |
SGE | 17,069.00 | 31,375.39 | 906.61 | 312.97 | 551.22 | 97.74 | 50,312.93 |
SF | 33,794.20 | 29,879.95 | 5798.09 | 383.11 | 1120.61 | 689.40 | 71,665.37 |
SCB | 1366.84 | 24,552.86 | 5127.36 | 397.25 | 1370.12 | 889.06 | 33,703.49 |
TOTAL | 139,327.87 | 160,835.92 | 20,129.44 | 3081.89 | 6735.22 | 3705.79 | 333,816.15 |
Years | Natural Areas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SG | SBR | SN | SBCA | SM | MM | STAA | SLJC | SGE | SF | SCB | |
1997 | 1080.87 | 1134.45 | 908.34 | 891.25 | 651.08 | 723.41 | 648.89 | 528.86 | 313.24 | 376.91 | 248.58 |
1998 | 632.17 | 683.83 | 596.94 | 597.40 | 355.88 | 396.49 | 353.80 | 303.14 | 162.36 | 185.50 | 157.24 |
1999 | 654.93 | 683.28 | 455.24 | 383.60 | 246.65 | 348.93 | 398.16 | 391.44 | 260.67 | 219.12 | 194.06 |
2000 | 998.33 | 1140.05 | 816.72 | 748.18 | 469.43 | 506.31 | 517.16 | 523.73 | 304.57 | 248.29 | 230.68 |
2001 | 904.63 | 861.58 | 738.61 | 680.83 | 407.18 | 546.69 | 486.44 | 397.49 | 261.92 | 269.39 | 183.76 |
2002 | 843.87 | 857.10 | 588.85 | 574.23 | 365.75 | 466.66 | 515.00 | 399.45 | 240.07 | 250.52 | 215.10 |
2003 | 1044.77 | 1107.83 | 912.30 | 854.53 | 533.63 | 736.96 | 640.38 | 499.63 | 319.47 | 291.06 | 278.54 |
2004 | 647.30 | 685.00 | 606.70 | 611.30 | 448.63 | 645.99 | 499.51 | 321.11 | 310.14 | 331.41 | 264.76 |
2005 | 433.50 | 494.37 | 334.51 | 360.05 | 202.75 | 276.97 | 239.99 | 181.39 | 150.86 | 126.43 | 166.46 |
2006 | 841.57 | 890.67 | 712.60 | 751.33 | 469.05 | 551.66 | 470.96 | 340.74 | 292.71 | 341.04 | 315.30 |
2007 | 746.90 | 792.08 | 603.37 | 626.13 | 351.25 | 368.20 | 372.27 | 262.38 | 240.83 | 254.40 | 283.12 |
2008 | 928.70 | 979.88 | 788.18 | 772.98 | 439.18 | 530.40 | 539.93 | 433.99 | 330.46 | 309.59 | 250.90 |
2009 | 1083.57 | 1006.35 | 761.10 | 726.78 | 453.13 | 585.71 | 658.72 | 595.96 | 395.53 | 293.91 | 238.12 |
2010 | 1533.93 | 1688.93 | 1334.25 | 1434.45 | 1011.00 | 876.69 | 911.83 | 830.51 | 554.24 | 387.31 | 360.54 |
2011 | 859.33 | 889.58 | 708.85 | 769.93 | 496.58 | 549.53 | 520.24 | 429.64 | 295.03 | 272.20 | 256.12 |
2012 | 842.60 | 795.00 | 647.54 | 589.25 | 554.13 | 633.13 | 521.21 | 387.24 | 246.33 | 217.61 | 312.56 |
2013 | 1001.00 | 912.70 | 609.01 | 489.50 | 328.58 | 452.83 | 417.95 | 354.31 | 205.72 | 204.37 | 156.90 |
2014 | 962.30 | 876.22 | 630.48 | 558.63 | 332.00 | 444.24 | 403.89 | 323.20 | 194.82 | 155.36 | 111.72 |
2015 | 582.43 | 659.30 | 481.02 | 434.33 | 344.83 | 368.66 | 323.28 | 320.07 | 256.19 | 242.96 | 213.78 |
2016 | 937.30 | 1021.48 | 729.27 | 721.10 | 622.33 | 539.53 | 403.44 | 370.00 | 285.89 | 262.64 | 253.12 |
2017 | 536.20 | 572.50 | 430.08 | 402.15 | 337.23 | 339.77 | 271.51 | 260.08 | 169.01 | 157.57 | 186.00 |
2018 | 1204.43 | 1316.48 | 1041.62 | 906.43 | 594.15 | 661.11 | 718.55 | 613.25 | 374.34 | 312.26 | 192.12 |
2019 | 568.13 | 591.17 | 432.08 | 389.10 | 236.48 | 270.14 | 294.35 | 291.00 | 211.22 | 273.16 | 209.38 |
2020 | 725.73 | 658.63 | 579.95 | 590.38 | 562.38 | 600.99 | 377.65 | 292.73 | 193.83 | 207.19 | 191.20 |
2021 | 652.87 | 690.47 | 390.94 | 403.25 | 379.08 | 371.31 | 349.54 | 286.43 | 256.98 | 255.37 | 276.82 |
Mean | 858.15 | 885.79 | 673.54 | 654.31 | 451.76 | 514.70 | 475.17 | 396.11 | 276.83 | 257.46 | 233.95 |
STD | 247.64 | 269.49 | 220.84 | 234.42 | 166.41 | 149.85 | 158.15 | 145.39 | 88.07 | 62.86 | 58.71 |
Natural Areas | Very Wet | Wet | Mean | Dry | Very Dry |
---|---|---|---|---|---|
Sierra de Grazalema | >1215.80 | 1215.80−971.86 | 971.86−727.92 | 727.92−483.99 | <483.99 |
Sierras Bermeja and Real | >1290.02 | 1290.00−1020.53 | 1020.53−751.05 | 751.05−481.56 | <481.56 |
Sierra de las Nieves | >1004.82 | 1004.82−783.97 | 783.97−563.12 | 563.12−342.27 | <342.27 |
Sierra Blanca, Canucha, and Alpujata | >997.94 | 997.94−766.44 | 766.44−534.93 | 534.93−303.42 | <303.42 |
Sierra de Mijas | >698.71 | 698.71−531.36 | 531.36−364.02 | 364.02−196.67 | <196.67 |
Montes de Málaga | >740.07 | 740.07−587.82 | 587.82−435.57 | 435.57−283.32 | <283.32 |
Sierras de Tejeda, Almijara, and Alhama | >706.58 | 706.58−551.65 | 551.65−396.72 | 396.72−241.79 | <241.79 |
Sierra de Lújar, Jolúcar, and El Conjuro | >607.46 | 607.46−467.49 | 467.49−327.53 | 327.53−187.56 | <187.56 |
Sierra de Gádor and Enix | >401.95 | 401.95−316.02 | 316.02−230.09 | 230.09−144.16 | <144.16 |
Sierra de Filabres | >356.52 | 356.52−290.72 | 290.72−224.92 | 224.92−159.13 | <159.13 |
Sierra de Cabrera and Bédar | >322.02 | 322.02−263.31 | 263.31−204.06 | 204.06−145.89 | <145.89 |
Natural Areas | Series 1 | Series 2 | Series 3 | Series 4 | Series 5 |
---|---|---|---|---|---|
Very Wet | Wet | Mean | Dry | Very Dry | |
Sierra de Grazalema | 2010 (1) | 1997/2000/2003/ 2009/2013/2018 (6) | 2001/2002/2006/2007/2008/2011/2012/2014/2016 (9) | 1998/1999/2004/ 2015/2017/2019/ 2020/2021 (8) | 2005 (1) |
Sierras Bermeja and Real | 2010/2018 (2) | 1997/2000/2003/ 2016 (4) | 2001/2002/2006/2007/2008/2009/2011/2012/2013/2014 (10) | 1998/1999/2004/ 2005/2015/2017/ 2019/2020/2021 (9) | − |
Sierra de las Nieves | 2010/2018 (2) | 1997/2000/2003/ 2008 (4) | 1998/2001/2002/2004/2006/2007/2009/2011/2012/2013/2014/2016/2020 (13) | 1999/2015/2017/ 2019/2021 (5) | 2005 (1) |
Sierra Blanca, Canucha, and Alpujata | 2010 (1) | 1997/2003/2008/ 2011/2018 (5) | 1998/2000/2001/2002/2004/2006/2007/2009/2012/2014/2016/2020 (12) | 1999/2005/2013/ 2015/2017/2019/ 2021 (7) | − |
Sierra de Mijas | 2010 (1) | 1997/2003/2012/ 2016/2018/2020 (6) | 2000/2001/2002/2004/2006/2008/2009/2011/2021 (9) | 1998/1999/2005/ 2007/2013/2014/ 2015/2017/2019 (9) | − |
Montes de Málaga | 2010 (1) | 1997/2003/2004/ 2012/2018/2020 (6) | 2000/2001/2002/2006/2008/2009/2011/2013/2014/2016 (10) | 1998/1999/2007/ 2015/2017/2021 (6) | 2005/2019 (2) |
Sierras de Tejeda, Almijara, and Alhama | 2010/2018 (2) | 1997/2003/2009 (3) | 1999/2000/2001/2002/2004/2006/2008/2011/2012/2013/2014/2016 (12) | 1998/2007/2015/ 2017/2019/2020/ 2021 (7) | 2005 (1) |
Sierra de Lújar, Jolúcar, and El Conjuro | 2010/2018 (2) | 1997/2000/2003/ 2009 (4) | 1999/2001/2002/2006/2008/2011/2012/2013/2016 (9) | 1998/2004/2007/ 2014/2015/2017/ 2019/2020/2021 (9) | 2005 (1) |
Sierra de Gádor and Enix | 2010 (1) | 2003/2008/2009/ 2018 (4) | 1997/1999/2000/2001/ 2002/2004/2006/2007/2011/2012/2015/2016/ 2021 (13) | 1998/2005/2013/ 2014/2017/ 2019/2020 (7) | − |
Sierra de Filabres | 1997/2010 (2) | 2003/2004/2006/ 2008/2009/2018 (6) | 2000/2001/2002/2007/2011/2015/2016/2019/2021 (9) | 1998/1999/2012/ 2013/2020 (5) | 2005/2014/2017 (3) |
Sierra de Cabrera and Bédar | 2010 (1) | 2003/2004/2006/ 2007/2012/2021 (6) | 1997/2000/2002/2008/2009/2011/2015/2016/2019 (9) | 1998/1999/2001/ 2005/2013/2017/ 2018/2020 (8) | 2014 (1) |
SPI Values | Category | Recurrence (1) | Severity of the Episode | Drought Class |
---|---|---|---|---|
≥2.0 SPI | Extremely wet | 0 | 0 | Wet |
1.99 to 1.5 | Very wet | 0 | 0 | Wet |
1.49 to 1.0 | Moderately wet | 0 | 0 | Wet |
0.99 to 0.0 | Normal wet | 33 | 1 in 3 years | Mild wet |
0.0 to −0.99 | Normal dry | 33 | 1 in 3 years | Mild drought |
−1.0 to −1.49 | Moderately dry | 10 | 1 in 10 years | Moderate drought |
−1.5 to −1.99 | Severely dry | 5 | 1 in 20 years | Severe drought |
≤−2.0 SPI | Extremely dry | 2.5 | 1 in 50 years | Extreme drought |
Natural Areas | Too Bad | Not Good | Acceptable | Good | Very Good |
---|---|---|---|---|---|
Sierra de Grazalema (SG) | −0.148–0.166 | 0.167–0.315 | 0.316–0.396 | 0.397–0.474 | 0.475–0.645 |
Sierras Bermeja and Real (SBR) | 0.129–0.308 | 0.309–0.393 | 0.394–0.454 | 0.455–0.514 | 0.515–0.643 |
Sierra de las Nieves (SN) | 0.118–0.234 | 0.235–0.309 | 0.310–0.384 | 0.385–0.459 | 0.460–0.577 |
Sierra Blanca, Canucha, and Alpujata (SBCA) | 0.177–0.281 | 0.282–0.345 | 0.346–0.396 | 0.397–0.455 | 0.456–0.575 |
Sierra de Mijas (SM) | 0.089–0.211 | 0.212–0.279 | 0.280–0.350 | 0.351–0.417 | 0.418–0.515 |
Montes de Málaga (MM) | 0.272–0.344 | 0.345–0.384 | 0.385–0.415 | 0.416–0.442 | 0.443–0.505 |
Sierras de Tejeda, Almijara, and Alhama (STAA) | 0.036–0.215 | 0.216–0.288 | 0.289–0.347 | 0.348–0.416 | 0.417–0.554 |
Sierra de Lújar, Jolúcar, and El Conjuro (SLJC) | 0.139–0.235 | 0.236–0.280 | 0.281–0.323 | 0.324–0.372 | 0.373–0.475 |
Sierra de Gádor and Enix (SGE) | −0.067–0.148 | 0.149–0.195 | 0.196–0.242 | 0.243–0.295 | 0.296–0.413 |
Sierra de Filabres (SF) | 0.087–0.213 | 0.214–0.259 | 0.260–0.308 | 0.309–0.370 | 0.371–0.504 |
Sierra de Cabrera and Bédar (SCB) | −0.010–0.172 | 0.173–0.211 | 0.212–0.252 | 0.253–0.299 | 0.300–0.405 |
Natural Areas | SG | SBR | SN | SBCA | SM | MM | STAA | SLJC | SGE | SF | SCB |
---|---|---|---|---|---|---|---|---|---|---|---|
SPI (1) | Number of months | ||||||||||
Extremely wet | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 11 | 11 | 0 | 0 |
Very wet | 23 | 19 | 11 | 13 | 14 | 9 | 22 | 18 | 15 | 15 | 8 |
Moderately wet | 30 | 25 | 31 | 24 | 21 | 33 | 27 | 25 | 24 | 31 | 43 |
Normal wet | 120 | 127 | 95 | 109 | 92 | 106 | 129 | 132 | 118 | 121 | 107 |
Normal dry | 88 | 99 | 125 | 118 | 129 | 116 | 92 | 87 | 99 | 91 | 112 |
Moderately dry | 19 | 10 | 15 | 24 | 32 | 28 | 15 | 12 | 22 | 24 | 28 |
Severely dry | 13 | 19 | 21 | 10 | 10 | 7 | 10 | 11 | 11 | 16 | 2 |
Extremely dry | 6 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 0 | 2 | 0 |
TOTAL, MONTHS | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Precipitation (2) | Number of years | ||||||||||
Very wet | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 |
Wet | 6 | 4 | 4 | 5 | 6 | 6 | 3 | 4 | 4 | 6 | 6 |
Mean | 9 | 10 | 11 | 12 | 9 | 10 | 12 | 9 | 13 | 9 | 9 |
Dry | 8 | 9 | 6 | 7 | 9 | 6 | 7 | 9 | 7 | 5 | 8 |
Very Dry | 1 | 0 | 2 | 0 | 0 | 2 | 1 | 1 | 0 | 3 | 1 |
TOTAL, YEARS | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
Natural Areas | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dynamic | SG | SBR | SN | SBCA | SM | MM | STAA | SLJC | SGE | SF | SCB | |
INCREASE | CA–ASHV | 972 | 87 | 66 | 194 | 56 | 89 | 416 | 781 | 583 | 3250 | 2097 |
CA–FOR | 660 | 70 | 186 | 179 | 21 | 277 | 487 | 62 | 258 | 1226 | 74 | |
OANOV–ASHV | 756 | 2940 | 1053 | 167 | 0 | 0 | 1774 | 0 | 81 | 7 | 147 | |
OANOV–FOR | 256 | 3059 | 1736 | 0 | 11 | 0 | 399 | 0 | 17 | 16 | 0 | |
SUBTOTAL | 2643 | 6156 | 3041 | 540 | 88 | 367 | 3076 | 843 | 939 | 4498 | 2317 | |
RMAINS | ART | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 34 |
ASHV | 8005 | 4683 | 3794 | 4044 | 1454 | 50 | 11,577 | 6090 | 26,491 | 19,216 | 22,125 | |
FOR–ASHV | 5006 | 2922 | 1707 | 604 | 299 | 105 | 3381 | 967 | 1414 | 3400 | 98 | |
OAV–ASHV | 936 | 2534 | 1184 | 1864 | 375 | 43 | 3095 | 957 | 2806 | 4007 | 86 | |
CROPS | 3275 | 74 | 17 | 257 | 85 | 62 | 188 | 615 | 237 | 2294 | 2203 | |
ASVH–FOR | 3071 | 2270 | 1530 | 734 | 588 | 134 | 6539 | 1162 | 10,346 | 7348 | 935 | |
FOR | 23,849 | 7136 | 4808 | 1791 | 3013 | 3433 | 5564 | 761 | 2325 | 15,819 | 211 | |
OAV–FOR | 1226 | 1278 | 1838 | 1624 | 818 | 510 | 5710 | 309 | 4123 | 9385 | 147 | |
WET | 782 | 463 | 172 | 67 | 81 | 61 | 287 | 75 | 313 | 383 | 397 | |
SUBTOTAL | 46,151 | 21,360 | 15,051 | 10,984 | 6712 | 4400 | 36,340 | 10,940 | 48,056 | 61,853 | 26,236 | |
DECREASE | ASHV–CA | 1068 | 40 | 22 | 105 | 27 | 44 | 117 | 492 | 564 | 2627 | 2906 |
FOR–CA | 882 | 131 | 14 | 90 | 23 | 48 | 76 | 45 | 45 | 417 | 2 | |
OANOV–CA | 31 | 12 | 5 | 3 | 0 | 0 | 2 | 0 | 0 | 0 | 9 | |
OAV–CA | 314 | 10 | 17 | 22 | 17 | 22 | 29 | 15 | 60 | 460 | 7 | |
ASHV–AA | 448 | 177 | 38 | 76 | 172 | 7 | 140 | 190 | 434 | 628 | 1257 | |
FOR–AA | 486 | 831 | 120 | 109 | 145 | 74 | 70 | 46 | 51 | 297 | 15 | |
OANOV–AA | 15 | 47 | 45 | 2 | 0 | 0 | 11 | 0 | 1 | 1 | 62 | |
OAV–AA | 53 | 85 | 21 | 64 | 103 | 14 | 96 | 6 | 66 | 194 | 2 | |
SUBTOTAL | 3296 | 1333 | 282 | 470 | 486 | 209 | 542 | 795 | 1220 | 4624 | 4261 | |
OT | ART | 951 | 79 | 20 | 187 | 519 | 20 | 121 | 132 | 98 | 689 | 889 |
TOTAL | 53,041 | 28,929 | 18,394 | 12,182 | 7804 | 4996 | 40,078 | 12,710 | 50,313 | 71,665 | 33,703 |
Changes | Acronym | Dynamic |
---|---|---|
INCRE-ASE | CA–ASHV | From cultivated areas to areas of shrub and herbaceous vegetation. |
CA–FOR | From cultivated areas to forest. | |
OANOV–ASHV | From open areas no vegetation to areas of shrub and herbaceous vegetation. | |
OANOV–FOR | From open areas no vegetation to forest. | |
REMAINS | ART | Facilities, buildings, and road network with connection to the natural areas. |
ASHV | areas of shrub and herbaceous vegetation. | |
FOR–ASHV | From forest to areas of shrub and herbaceous vegetation. | |
OAV–ASHV | From open areas with vegetation to areas of shrub and herbaceous vegetation. | |
CROPS | Cultivated areas. | |
ASHV–FOR | From areas of shrub and herbaceous vegetation to forest. | |
FOR | Forest. | |
OAV–FOR | From open areas with vegetation to forest. | |
WET | Wetlands, water channels, and sheets. | |
DECREASE | ASHV–CA | From areas of shrub and herbaceous vegetation to cultivated areas. |
FOR-CA | From forest to cultivated areas. | |
OANOV–CA | From open areas no vegetation to cultivated areas. | |
OAV–CA | From open areas with vegetation to cultivated areas. | |
ASHV–AA | From areas of shrub and herbaceous vegetation to artificial areas. | |
FOR–AA | From forest to artificial areas. | |
OANOV–AA | From open areas no vegetation to artificial areas. | |
OAV–AA | From open areas with vegetation to artificial areas. | |
OT (OTHER) | ART | Other areas not included in the above: network of unpaved roads, technical buildings, urban sprawl, etc. |
N.A. | Dynamic (1) | Too Bad | % | Not Good | % | Acceptable | % | Good | % | Very Good | % | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SG | Increase | 17.17 | 0.65 | 1001.53 | 37.89 | 809.60 | 30.63 | 686.99 | 25.99 | 128.10 | 4.85 | 2643.39 |
Remains | 97.15 | 0.23 | 6636.95 | 15.77 | 11,033.94 | 26.21 | 13,150.33 | 31.24 | 11,175.16 | 26.55 | 42,093.53 | |
Decrease | 1.86 | 0.08 | 225.71 | 9.83 | 1143.09 | 49.81 | 864.58 | 37.67 | 59.88 | 2.61 | 2295.12 | |
Nat. Area | 352.75 | 0.67 | 8920.01 | 16.82 | 15,361.59 | 28.96 | 15,820.08 | 29.83 | 11,635.62 | 21.94 | 53,041.16 | |
SBR | Increase | 51.33 | 0.83 | 1334.49 | 21.68 | 2440.79 | 39.65 | 1702.08 | 27.65 | 627.61 | 10.19 | 6156.29 |
Remains | 1624.67 | 7.80 | 3736.19 | 17.94 | 1429.29 | 6.86 | 6957.75 | 33.41 | 7075.70 | 33.98 | 20,823.60 | |
Decrease | 5.70 | 2.95 | 8.65 | 4.48 | 71.50 | 37.02 | 57.35 | 29.69 | 49.95 | 25.86 | 193.16 | |
Nat. Area | 1747.18 | 6.04 | 5445.88 | 18.83 | 4633.59 | 16.02 | 9091.08 | 31.43 | 8010.98 | 27.69 | 28,928.71 | |
SN | Increase | 219.24 | 7.21 | 330.45 | 10.87 | 1289.36 | 42.40 | 1052.70 | 34.62 | 149.28 | 4.91 | 3041.04 |
Remains | 2951.18 | 21.43 | 2348.86 | 17.06 | 2814.53 | 20.44 | 2941.51 | 21.36 | 2714.12 | 19.71 | 13,770.20 | |
Decrease | 3.08 | 5.23 | 9.10 | 15.46 | 10.41 | 17.68 | 29.48 | 50.06 | 6.82 | 11.58 | 58.89 | |
Nat. Area | 3206.75 | 17.43 | 3141.73 | 17.07 | 4550.67 | 24.74 | 4566.51 | 24.83 | 2928.64 | 15.92 | 18,394.30 | |
SBCA | Increase | 65.32 | 12.09 | 79.19 | 14.66 | 151.06 | 27.96 | 168.48 | 31.19 | 76.20 | 14.10 | 540.24 |
Remains | 700.01 | 6.57 | 2816.78 | 26.42 | 3348.58 | 31.41 | 2742.57 | 25.73 | 1052.31 | 9.87 | 10,660.24 | |
Decrease | 3.32 | 1.51 | 27.30 | 12.43 | 50.67 | 23.08 | 104.06 | 47.39 | 34.25 | 15.59 | 219.60 | |
Nat. Area | 827.19 | 6.79 | 3037.08 | 24.93 | 3669.55 | 30.12 | 3217.64 | 26.41 | 1243.19 | 10.21 | 12,181.99 | |
SM | Increase | 0.00 | 0.00 | 16.74 | 19.07 | 46.78 | 53.30 | 10.55 | 12.03 | 13.69 | 15.60 | 87.77 |
Remains | 381.10 | 5.82 | 1225.17 | 18.72 | 1655.63 | 25.29 | 1567.39 | 23.95 | 1716.10 | 26.22 | 6545.41 | |
Decrease | 1.56 | 2.35 | 13.76 | 20.72 | 29.84 | 44.93 | 16.35 | 24.62 | 4.90 | 7.38 | 66.41 | |
Nat. Area | 576.59 | 7.39 | 1427.04 | 18.28 | 1861.24 | 23.85 | 1647.08 | 21.10 | 1773.82 | 22.73 | 7804.62 | |
MM | Increase | 104.78 | 28.58 | 132.99 | 36.27 | 104.00 | 28.37 | 18.01 | 4.91 | 6.84 | 1.87 | 366.63 |
Remains | 192.09 | 4.49 | 602.25 | 14.08 | 1163.63 | 27.21 | 1622.26 | 37.93 | 696.26 | 16.28 | 4276.48 | |
Decrease | 17.53 | 15.41 | 44.62 | 39.23 | 34.40 | 30.25 | 16.66 | 14.65 | 0.52 | 0.46 | 113.73 | |
Nat. Area | 347.20 | 6.95 | 833.05 | 16.68 | 1364.93 | 27.32 | 1712.17 | 34.27 | 718.29 | 14.38 | 4995.49 | |
STAA | Increase | 382.02 | 12.42 | 450.48 | 14.65 | 1331.04 | 43.28 | 791.70 | 25.74 | 120.24 | 3.91 | 3075.49 |
Remains | 3094.98 | 8.63 | 8232.16 | 22.95 | 12,233.39 | 34.11 | 8504.62 | 23.71 | 3799.66 | 10.59 | 35,864.80 | |
Decrease | 0.00 | 0.00 | 31.10 | 13.81 | 92.59 | 41.13 | 93.05 | 41.33 | 8.39 | 3.73 | 225.13 | |
Nat. Area | 3497.34 | 8.73 | 8888.61 | 22.18 | 13,962.85 | 34.84 | 9629.02 | 24.03 | 3979.40 | 9.93 | 40,078.12 | |
SLJC | Increase | 72.08 | 8.56 | 359.82 | 42.71 | 251.06 | 29.80 | 146.20 | 17.35 | 13.36 | 1.59 | 842.51 |
Remains | 1518.70 | 14.82 | 2185.62 | 21.33 | 2480.43 | 24.21 | 2437.86 | 23.79 | 1623.60 | 15.85 | 10,246.20 | |
Decrease | 34.57 | 6.26 | 194.04 | 35.12 | 186.31 | 33.72 | 114.13 | 20.65 | 23.53 | 4.26 | 552.57 | |
Nat. Area | 1711.76 | 13.47 | 3108.54 | 24.46 | 3200.69 | 25.18 | 2838.33 | 22.33 | 1718.68 | 13.52 | 12,709.89 | |
SGE | Increase | 48.47 | 5.16 | 346.42 | 36.88 | 345.38 | 36.77 | 143.11 | 15.24 | 55.92 | 5.95 | 939.31 |
Remains | 4435.14 | 9.34 | 15,762.40 | 33.18 | 13,449.83 | 28.31 | 8972.38 | 18.89 | 4885.14 | 10.28 | 47,504.90 | |
Decrease | 39.24 | 5.86 | 306.86 | 45.86 | 198.10 | 29.60 | 91.66 | 13.70 | 33.30 | 4.98 | 669.17 | |
Nat. Area | 4716.91 | 9.38 | 16,751.90 | 33.30 | 14,282.58 | 28.39 | 9395.61 | 18.67 | 5067.96 | 10.07 | 50,312.70 | |
SF | Increase | 853.89 | 18.98 | 1865.58 | 41.47 | 1367.49 | 30.40 | 389.17 | 8.65 | 22.14 | 0.49 | 4498.27 |
Remains | 11,936.51 | 20.17 | 18,552.99 | 31.35 | 12,732.91 | 21.52 | 10,573.14 | 17.87 | 5380.20 | 9.09 | 59,175.75 | |
Decrease | 1047.73 | 29.90 | 1702.26 | 48.58 | 615.81 | 17.58 | 118.86 | 3.39 | 19.18 | 0.55 | 3503.84 | |
Nat. Area | 14,787.96 | 20.63 | 23,728.85 | 33.11 | 15,503.89 | 21.63 | 11,446.50 | 15.97 | 5508.58 | 7.69 | 71,665.18 | |
SCB | Increase | 1198.41 | 51.71 | 631.68 | 27.26 | 306.74 | 13.24 | 104.24 | 4.50 | 76.35 | 3.29 | 2317.42 |
Remains | 5439.88 | 23.05 | 5396.03 | 22.86 | 5538.51 | 23.47 | 5571.15 | 23.60 | 1656.62 | 7.02 | 23,602.20 | |
Decrease | 1224.05 | 41.85 | 839.77 | 28.71 | 528.51 | 18.07 | 254.27 | 8.69 | 77.96 | 2.67 | 2924.56 | |
Nat. Area | 9390.80 | 27.86 | 7937.11 | 23.55 | 7104.35 | 21.08 | 6402.89 | 19.00 | 1979.02 | 5.87 | 33,703.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galacho-Jiménez, F.B.; Quesada-Molina, P.; Carruana-Herrera, D.; Reyes-Corredera, S. Application of the Analysis Time Series and Multispectral Images for the Estimation of the Conditions of the Vegetation Covers of the Natural Areas of Southern Spain. Land 2023, 12, 42. https://doi.org/10.3390/land12010042
Galacho-Jiménez FB, Quesada-Molina P, Carruana-Herrera D, Reyes-Corredera S. Application of the Analysis Time Series and Multispectral Images for the Estimation of the Conditions of the Vegetation Covers of the Natural Areas of Southern Spain. Land. 2023; 12(1):42. https://doi.org/10.3390/land12010042
Chicago/Turabian StyleGalacho-Jiménez, Federico Benjamín, Pablo Quesada-Molina, David Carruana-Herrera, and Sergio Reyes-Corredera. 2023. "Application of the Analysis Time Series and Multispectral Images for the Estimation of the Conditions of the Vegetation Covers of the Natural Areas of Southern Spain" Land 12, no. 1: 42. https://doi.org/10.3390/land12010042