Impact of Land Use Change and Afforestation on Soil Properties in a Mediterranean Mountain Area of Central Spain
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Field Sampling and Laboratory Work
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Infiltration and Runoff
4.2. Water Repellency
4.3. Chemical Soil Properties
4.4. Global Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Becker, A.; Bugman, H. (Eds.) Global Change and Mountain Regions. In The Mountain Research Initiative; Global Terrestrial Observing System: Stockholm, Sweden, 1999. [Google Scholar]
- Mongil-Manso, J.; Navarro-Hevia, J.; San Martín, R. Does forest restoration influence soil infiltrability? A case study in the restored woodland of Sierra de Ávila (Central Spain). J. Mt. Sci. 2021, 18, 1778–1793. [Google Scholar] [CrossRef]
- Locatelli, B. Ecosystem Services and Climate Change. In Routledge Handbook of Ecosystem Services; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: London, UK, 2016. [Google Scholar]
- Johnson, A.I. A Field Method for Measurement of Infiltration; Paper 1544-F; Geological Survey Water-Supply: Washington, DC, USA, 1963.
- Perkins, K.S.; Nimmo, J.R.; Medeiros, A.C. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands. Geophys. Res. Lett. 2012, 39, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mapa, R.B. Effect of reforestation using Tectona grandis on infiltration and soil water retention. Forest. Ecol. Manag. 1995, 77, 119–125. [Google Scholar] [CrossRef]
- Zhang, J.; Bruijnzeel, L.A.; Quiñones, C.M.; Tripoli, R.; Asio, V.B.; van Meerveld, H.J. Soil physical characteristics of a degraded tropical grassland and a ‘reforest’: Implications for runoff generation. Geoderma 2019, 333, 163–177. [Google Scholar] [CrossRef]
- Hayati, E.; Abdi, E.; Mohseni Saravi, M.; Nieber, J.L.; Majnounian, B.; Chirico, G.B.; Wilson, B.; Nazarirad, M. Soil water dynamics under different forest vegetation cover: Implications for hillslope stability. Earth Surf. Process. Landforms 2018, 43, 2106–2120. [Google Scholar] [CrossRef]
- Zwartendijk, B.W.; van Meerveld, H.J.; Ghimire, C.P.; Bruijnzeel, L.A.; Ravelona, M.; Jones, J.P.G. Rebuilding soil hydrological functioning after swidden agriculture in eastern Madagascar. Agric. Ecosyst. Environ. 2017, 239, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Hrabovský, A.; Dlapa, P.; Cerdà, A.; Kollár, J. The impacts of vineyard afforestation on soil properties, water repellency and near-saturated infiltration in the Little Carpathians Mountains. Water 2020, 12, 2550. [Google Scholar] [CrossRef]
- Rahmati, M.; Weihermüller, L.; Vanderborght, J.; Pachepsky, Y.A.; Mao, L.; Sadeghi, S.H.; Moosavi, N.; Kheirfam, H.; Montzka, C.; Van Looy, K.; et al. Development and analysis of the Soil Water Infiltration Global database. Earth Syst Sci. Data 2018, 10, 1237–1263. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yan, Z.; Qiu, Z.; Wang, X.; Li, J. Stability analysis of an unsaturated soil slope considering rainfall infiltration based on the Green-Ampt model. J. Mt. Sci. 2020, 17, 2577–2590. [Google Scholar] [CrossRef]
- Cerdá, A. Factors and Spatio-Temporal Variations of Infiltration in Mediterranean Ecosystems. In Scientific Monographs n. 5; Geoforma Editions: Logroño, Spain, 1995. (In Spanish) [Google Scholar]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO: Rome, Italy, 2005. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Alaoui, A. Modelling susceptibility of grassland soil to macropore flow. J. Hydrol. 2015, 525, 536–546. [Google Scholar] [CrossRef]
- Touma, J.; Albergel, J. Determining soil hydrologic properties from rain simulator or double ring infiltrometer experiments: A comparison. J. Hydrol. 1992, 135, 73–86. [Google Scholar] [CrossRef]
- Rodrigues, R.; da Silva, J.E.; Barbosa, H.; Carbone, M.A.; Gomes, C.A.; Batista, M. Impact of an agricultural chronosequence in recharge areas of aquifers in the Brazilian savannah. Afr. J. Agric. Res. 2014, 9, 3267–3275. [Google Scholar]
- Ahirwal, J.; Kumari, S.; Singh, A.K.; Kumar, A.; Kumar, S. Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest. Ecol. Indic. 2021, 123, 107354. [Google Scholar] [CrossRef]
- Savadogo, P.; Sawadogo, L.; Tiveau, D. Effects of grazing intensity and prescribed fire on soil physical and hydrological properties and pasture yield in the savanna woodlands of Burkina Faso. Agric. Ecosyst. Environ. 2007, 118, 80–92. [Google Scholar] [CrossRef]
- Ramos, M.C.; Lizaga, I.; Gaspar, L.; Quijano, L.; Navas, A. Effects of rainfall intensity and slope on sediment, nitrogen and phosphorous losses in soils with different use and soil hydrological properties. Agric. Water Manag. 2019, 226, 105789. [Google Scholar] [CrossRef]
- Kato, H.; Onda, Y.; Tanaka, Y.; Asano, M. Field measurement of infiltration rate using an oscillating nozzle rainfall simulator in the cold, semiarid grassland of Mongolia. Catena 2009, 76, 173–181. [Google Scholar] [CrossRef]
- Saha, R.; Tomar, J.M.S.; Ghosh, P.K. Evaluation and selection of multipurpose tree for improving soil hydro-physical behavior under hilly ecosystem of north east India. Agrofor. Syst. 2007, 69, 239–247. [Google Scholar] [CrossRef]
- Greenwood, W.J.; Buttle, J.M. Effects of reforestation on near-surface saturated hydraulic conductivity in a managed forest landscape, southern Ontario, Canada. Ecohydrology 2014, 7, 45–55. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, L.; Xu, X.; Wang, Y.; Liu, W.; Schwärzel, K. Impact of land-use changes on soil hydraulic properties of Calcaric Regosols on the Loess Plateau, NW China. J. Plant Nutr. Soil Sci. 2015, 178, 486–498. [Google Scholar] [CrossRef]
- Mongil, J.; Navarro, J. Infiltration and hydrological groups of soils on the slopes of the páramos (Valladolid). Cuad. Investig. Geogr. 2012, 38, 131–153. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Mongil-Manso, J.; Navarro-Hevia, J.; Díaz-Gutiérrez, V.; Cruz, V.; Ramos-Diez, I. Badlands forest restoration in Central Spain after 50 years under a Mediterranean-continental climate. Ecol. Eng. 2016, 97, 313–326. [Google Scholar] [CrossRef]
- Lozano-Baez, S.E.; Cooper, M.; Meli, P.; Ferraz, S.F.B.; Rodrigues, R.R.; Sauer, T.J. Land restoration by tree planting in the tropics and subtropics improves soil infiltration, but some critical gaps still hinder conclusive results. For. Ecol. Manag. 2019, 444, 89–95. [Google Scholar] [CrossRef]
- Gilmour, D.A.; Bonell, M.; Cassells, D.S. The effects of forestation on soil hydraulic properties in the Middle Hills of Nepal: A Preliminary Assessment. Mt. Res. Dev. 1987, 7, 239–249. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Hüttl, R.F. Water infiltration and hydrophobicity in forest soils of a pine-beech transformation chronosequence. J. Hydrol. 2006, 331, 383–395. [Google Scholar] [CrossRef]
- Bens, O.; Wahl, N.A.; Fischer, H.; Hüttl, R. Water infiltration and hydraulic conductivity in sandy cambisols: Impacts of forest transformation on soil hydrological properties. Eur. J. For. Res. 2007, 126, 101–109. [Google Scholar] [CrossRef]
- Ilstedt, U.; Malmer, A.; Elke, V.; Murdiyarso, D. The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. For. Ecol. Manag. 2007, 251, 45–51. [Google Scholar] [CrossRef]
- Alaoui, A.; Caduff, U.; Gerke, H.H.; Weingartner, R. Preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone J. 2011, 10, 367–377. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, T.; Qu, L.; Chen, P.; Gao, X.; Chen, C.; Yuan, L.; Zhang, M.; Su, G. Method to measure soil matrix infiltration in forest soil. J. Hydrol. 2017, 552, 241–248. [Google Scholar] [CrossRef]
- van Meerveld, H.J.; Jones, J.P.G.; Ghimire, C.P.; Zwartendijk, B.W.; Lahitiana, J.; Ravelona, M.; Mulligan, M. Forest regeneration can positively contribute to local hydrological ecosystem services: Implications for forest landscape restoration. J. Appl. Ecol. 2021, 58, 755–765. [Google Scholar] [CrossRef]
- Zheng, H.; Ouyang, Z.Y.; Wang, X.K.; Zhao, T.Q.; Peng, T.B. How different reforestation approaches affect red soil properties in Southern China. Land Degrad. Dev. 2005, 16, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Yüksek, T.; Yüksek, F. The effects of restoration on soil properties in degraded land in the semi-arid region of Turkey. Catena 2011, 84, 47–53. [Google Scholar] [CrossRef]
- Fields-Johnson, C.W.; Zipper, C.E.; Burger, J.A.; Evans, D.M. Forest restoration on steep slopes after coal surface mining in Appalachian USA: Soil grading and seeding effects. For. Ecol. Manag. 2012, 270, 126–134. [Google Scholar] [CrossRef]
- Navarro, J.; Araújo, J.C.; Mongil, J. Assessment of 80 years of ancient-badlands restoration in Saldaña, Spain. Earth. Surf. Process. Landf. 2014, 39, 1563–1575. [Google Scholar] [CrossRef]
- Sun, D.; Yang, H.; Guan, D.; Yang, M.; Wu, J.; Yuan, F.; Jin, C.; Wang, A.; Zhang, Y. The effects of land use change on soil infiltration capacity in China: A meta-analysis. Sci. Total Environ. 2018, 626, 1394–1401. [Google Scholar] [CrossRef]
- Bierbaß, P.; Wündsch, M.; Michalzik, B. The impact of vegetation on the stability of dispersive material forming biancane badlands in Val d’Orcia, Tuscany, Central Italy. Catena 2014, 113, 260–266. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Wilcox, B.P.; Breshears, D.D.; Tongway, D.J.; Imeson, A.C. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 2005, 86, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Leigh, D.S.; Gragson, T.L.; Coughlan, M.R. Chronology and pedogenic effects of mid-to late-Holocene conversion of forests to pastures in the French western Pyrenees. Z. Für Geomorphol. 2015, 59, 225–245. [Google Scholar] [CrossRef]
- Ceballos, A.; Ferreira, A.J.D.; Coelho, C.O.A.; Boulet, A.K. Analysis of water repellency in a small hydrographic basin affected by controlled fire in the central mountain area of Portugal. Pirineos 1999, 153–154, 123–143. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.H. Soil Hydrophobicity: A Review n° 5; Aveiro-Swansea Erosion Research Bulletin: Aveiro, Portugal, 1997. [Google Scholar]
- Bodí, M.B.; Cerdà, A.; Mataix-Solera, J.; Doerr, S.H. Water repellency in forest soils affected by fires and in agricultural soils under different management and abandonment. Cuad. Investig. Geogr. 2012, 38, 53–74. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Alagna, V.; Iovino, M.; Bagarello, V.; Mataix-Solera, J.; Lichner, L. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. J. Hydrol. Hydromech. 2017, 65, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.H.; Llewellyn, C.T.; Douglas, P.; Morley, C.P.; Mainwaring, K.A.; Haskins, C.; Johnsey, L.; Ritsema, C.J.; Stagnitti, F.; Allinson, G.; et al. Extraction of compounds associated with water repellency in sandy soils of different origin. Soil Res. 2005, 43, 225–237. [Google Scholar] [CrossRef]
- García, F.J.M.; Dekker, L.W.; Oostindie, K.; Ritsema, C.J. Water repellency under natural conditions in sandy soils of southern Spain. Soil Res. 2005, 43, 291–296. [Google Scholar] [CrossRef]
- York, C. Water repellent soils as they occur on UK golf greens. In International Workshop on Soil Water Repellency: Origins, Assessment, Occurrence, Consequences, Modelling and Amelioration; DLO Winand Staring Centre for Integrated Land Soil and Water Research: Wageningen, The Netherlands, 1998. [Google Scholar]
- Rodríguez-Alleres, M.; Varela, M.E.; Benito, E. Natural severity of water repellency in pine forest soils from NW Spain and influence of wildfire severity on its persistence. Geoderma 2012, 191, 125–131. [Google Scholar] [CrossRef]
- Imeson, A.C.; Verstraten, J.M.; van Mulligen, E.J.; Sevink, J. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forests. Catena 1992, 19, 345–361. [Google Scholar] [CrossRef]
- Doerr, S.H.; Ferreira, A.J.D.; Walsh, R.P.D. Soil water repellency as a potential parameter in rainfall-runoff modelling: Experimental evidence at point to catchment scales from Portugal. Hydrol. Process. 2003, 17, 363–377. [Google Scholar] [CrossRef]
- Lowe, M.A.; McGrath, G.; Leopold, M. The impact of soil water repellency and slope upon runoff and erosion. Soil Tillage Res. 2021, 205, 104756. [Google Scholar] [CrossRef]
- Löf, M.; Dey, D.C.; Navarro, R.M.; Jacobs, D.F. Mechanical site preparation for forest restoration. New For. 2012, 43, 825–848. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Cheng, J.; Zhang, H. Soil quality and plant diversity inmanaged forest in the hilly purple soil Southwestern China. J. Food Agric. Environ. 2013, 11, 945–951. [Google Scholar]
- Medeiros, P.H.A.; Güntner, A.; Franke, T.; Mamede, G.L.; de Araújo, J.C. Modelling spatio-temporal patterns of sediment yield and connectivity in a semi-arid catchment with the WASA-SED model. Hydrol. Sci. J. 2010, 55, 636–648. [Google Scholar] [CrossRef] [Green Version]
- Vallauri, D.R.; Aronson, J.; Barbero, M. An analysis of forest restoration 120 years after reforestation on badlands in the Southwestern Alps. Restor. Ecol. 2002, 10, 16–26. [Google Scholar] [CrossRef]
- Vallauri, D.; Grossi, J.L.; Brun, J.J. Les communautés lombriciennes 120 ans après la restauration forestière de sols érodés sur marnes. Life Sci. 1998, 321, 1023–1033. [Google Scholar] [CrossRef]
- Laudicina, V.A.; De Pasquale, C.; Conte, P.; Badalucco, L.; Alonzo, G.; Palazzolo, E. Effects of afforestation with four unmixed plant species on the soil-water interactions in a semiarid Mediterranean region (Sicily, Italy). J. Soils Sediments 2012, 12, 1222–1230. [Google Scholar] [CrossRef]
- Carter, C.T.; Ungar, I.A. Aboveground vegetation, seed bank and soil analysis of 31-year-ols forest restoration on coal mine spoil in Southeastern Ohio. Am. Midl. Nat. 2002, 147, 44–59. [Google Scholar] [CrossRef]
- Korenkova, L.; Simkovic, I.; Dlapa, P.; Urik, M. Statistical assessment of relationship between water repellency and selected properties of forest topsoil in the white Carpathian mts. Carpathian J. Earth Environ. Sci. 2016, 11, 405–414. [Google Scholar]
- Briggs, L.J.; Shantz, H.L. The Wilting Coefficient for Different Plants and Its Indirect Determination. In USDA Bureau of Plant Industry Bull 230; US Government Printing Office: Washington, DC, USA, 1912. [Google Scholar]
- NRCS. Hydrologic Soil Groups. In National Engineering Handbook, Part 630 Hydrology; Natural Resources Conservation Service: Washington, DC, USA, 2009; Chapter 7. [Google Scholar]
- NRCS. Hydrologic Soil-Cover Complexes. In National Engineering Handbook, Part 630 Hydrology; Natural Resources Conservation Service: Washington, DC, USA, 2004; Chapter 9. [Google Scholar]
- NRCS. Estimation of Direct Runoff from Storm Rainfall. In National Engineering Handbook, Part 630 Hydrology; Natural Resources Conservation Service: Washington, DC, USA, 2004; Chapter 10. [Google Scholar]
- Bessi, D.; Okamoto, M.; Aranha, L.; Correa, K.J.P.; Tonello, K.C. Forest restoration and hydrological parameters effects on soil water conditions: A structural equation modelling approach. Rev. Bras. Recur. Hidr. 2018, 23, 41. [Google Scholar] [CrossRef] [Green Version]
- Gajic, B.; Dugalic, G.; Sredojevic, Z.; Tomic, Z. Effect of different vegetation types on infiltration and soil water retention. Cereal. Res. Commun. 2008, 36, 991–994. [Google Scholar]
- Ghimire, C.P.; Bruijnzeel, L.A.; Bonell, M.; Coles, N.; Lubczynski, M.; Gilmour, D.A. The effects of sustained forest use on hillslope soil hydraulic conductivity in the Middle Mountains of Central Nepal. Ecohydrology 2014, 7, 478–495. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Daddow, R.L.; Warrington, G.E. Growth-Limiting Soil Bulk Densities as Influenced by Soil Texture; WSDG Report USDA Forest Service: Denver, CO, USA, 1993.
- Cerdà, A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur. J. Soil Sci. 2001, 52, 59–68. [Google Scholar] [CrossRef]
- Heydari, N.; Das Gupta, A.; Loof, R. Salinity and sodicity influences on infiltration during surge flow irrigation. Irrig. Sci. 2001, 20, 165–173. [Google Scholar] [CrossRef]
- Daly, E.; Porporato, A. A Review of soil moisture dynamics: From rainfall infiltration to ecosystem response. Environ. Eng. Sci. 2005, 22, 9–24. [Google Scholar] [CrossRef]
- Bisdom, E.B.A.; Dekker, L.W.; Schoute, J.F.T. Water repellent of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 1993, 56, 105–118. [Google Scholar] [CrossRef]
- Regalado, C.M.; Ritter, A. Characterizing water dependent soil repellency with minimal parameter requirement. Soil Sci. Soc. Am. J. 2005, 69, 1955–1966. [Google Scholar] [CrossRef]
- Tian, J.; He, N.; Hale, L.; Niu, S.; Yu, G.; Liu, Y.; Blagodatskaya, E.; Kuzyakov, Y.; Gao, Q.; Zhou, J. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Funct. Ecol. 2018, 32, 61–70. [Google Scholar] [CrossRef]
- Chirino, E.; Bonet, A.; Bellot, J.; Sánchez, J.R. Effects of 30-year-old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semi-arid landscape in south eastern Spain. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Mongil, J.; Martín, L.T.; Navarro, J.; Martínez de Azagra, A. Vegetation series, curve numbers and soil water availabilities. Application to forest restoration in drylands. For. Syst. 2012, 21, 53–63. [Google Scholar] [CrossRef] [Green Version]
Variable | Oak Forest | Pine Forest | Shrub | Grassland | Mean | Std Dev | Max | Min | n |
---|---|---|---|---|---|---|---|---|---|
Orientation | E, W | N, N | N, S | N | - | - | - | - | - |
SL (%) | 3.5 | 2.0 | 3.5 | 2.0 | - | - | - | - | - |
f0 (mm·h−1) | 1880.00 (1203.83) | 2365.00 (967.69) | 1435.00 (575.87) | 1740.00 (436.12) | 1855.00 | 935.92 | 4050.00 | 300.00 | 24 |
fc (mm·h−1) | 660.67 (374.96) | 857.67 (155.89) | 271.67 (119.12) | 289.00 (71.43) | 519.75 | 336.10 | 1266.00 | 106.00 | 24 |
R-WDPTO (s) | 229.75 (226.25) | 401.50 (103.50) | 33.25 (27.75) | −113.25 (109.75) | 194.44 | 198.74 | 505.00 | 3.50 | 80 |
R-WDPTE (s) | 4.00 (2.00) | 62.75 (55.25) | 313.50 (312.50) | 467.00 (459.00) | 211.81 | 343.48 | 926.00 | 1.00 | 80 |
R-MEDO (%) | 18.00 (18.00) | 30.00 (6.00) | 8.00 (5.00) | 13.50 (10.50) | 17.38 | 14.06 | 36.00 | 0.00 | 80 |
R-MEDE (%) | 2.50 (2.50) | 22.25 (13.75) | 6.50 (6.50) | 13.50 (10.50) | 11.19 | 12.23 | 36.00 | 0.00 | 80 |
HSG | A-B | A-B | A-B | A-B | - | - | - | - | - |
SCS CN | 25–55 | 26–52 | 35–56 | 49–69 | - | - | - | - | - |
IA (mm) | 76.2 | 79.5 | 60.9 | 35.3 | - | - | - | - | - |
Texture | Sandy-loam | Sandy-loam/loamy-sand | Sandy-loam | Sandy-loam | - | - | - | - | - |
SD USDA (%) | 67.0 (3.00) | 73.00 (12.00) | 61.00 (1.00) | 62.50 (2.50) | 65.88 | 8.03 | 85.00 | 60.00 | 8 |
ST USDA (%) | 20.92 (0.92) | 16.42 (16.42) | 24.84 (1.00) | 26.34 (0.50) | 22.13 | 5.17 | 26.84 | 10.00 | 8 |
CL USDA (%) | 12.08 (2.08) | 10.58 (5.58) | 14.16 (1.00) | 11.16 (3.00) | 12.00 | 3.68 | 16.16 | 5.00 | 8 |
BD (g·cm−3) | 0.77 (0.13) | 1.06 (0.10) | 1.04 (0.13) | 1.07 (0.11) | 0.99 | 0.17 | 1.23 | 0.56 | 24 |
MC (%) | 0.06 (0.00) | 0.07 (0.01) | 0.09 (0.01) | 0.10 (0.02) | 0.08 | 0.02 | 0.13 | 0.06 | 80 |
EP (%) | 52.51 (3.71) | 43.51 (4.99) | 39.63 (5.34) | 39.64 (3.24) | 43.83 | 7.01 | 59.24 | 31.59 | 8 |
OM (%) | 8.82 (0.55) | 5.79 (1.07) | 7.52 (0.64) | 6.43 (3.14) | 7.14 | 2.11 | 9.57 | 3.29 | 8 |
pH | 6.03 (0.05) | 4.99 (0.11) | 5.16 (0.40) | 5.40 (0.33) | 5.40 | 0.49 | 6.08 | 4.76 | 8 |
EC (µS cm−1) | 0.14 (0.07) | 0.14 (0.01) | 0.12 (0.03) | 0.07 (0.02) | 0.12 | 0.05 | 0.21 | 0.05 | 8 |
P (mg·kg−1) | 59.83 (17.03) | 8.35 (1.36) | 12.05 (2.05) | 18.20 (8.10) | 24.61 | 23.21 | 76.85 | 6.99 | 8 |
K (mg·kg−1) | 692.64 (29.64) | 242.78 (67.78) | 396.00 (260.00) | 284.00 (51.00) | 403.85 | 228.10 | 722.28 | 136.00 | 8 |
Ca (meq·100 g) | 10.73 (4.47) | 2.67 (0.33) | 1.95 (1.05) | 3.85 (1.15) | 4.80 | 4.31 | 15.20 | 0.90 | 8 |
Mg (meq·100 g) | 2.43 (0.19) | 1.10 (056) | 0.48 (0.24) | 0.93 (0.20) | 1.23 | 0.82 | 2.62 | 0.24 | 8 |
Na (meq·100 g) | 0.91 (0.89) | 0.63 (0.63) | 0.11 (0.11) | 0.01 (0.01) | 0.41 | 0.68 | 1.80 | 0.00 | 8 |
N (%) | 0.47 (0.20) | 0.24 (0.11) | 0.38 (0.03) | 0.31 (0.09) | 0.35 | 0.15 | 0.67 | 0.13 | 8 |
MFI (mg·kg) | 5452.47 (1953.34) | 3361.80 (1255.37) | 3357.20 (1230.42) | 3327.87 (866.91) | 3874.83 | 1692.14 | 7405.80 | 1617.54 | 8 |
SB (meq·100 g) | 15.85 (3.31) | 6.58 (4.13) | 5.13 (0.94) | 5.13 (0.94) | 7.81 | 5.71 | 19.16 | 1.49 | 8 |
MC | pH | OM | P | K | Ca | Mg | Na | N | EP | MFS | SB | PC1 | PC2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD | ns | −0.535 | −0.593 | −0.491 | −0.637 | −0.812 | −0.589 | ns | −0.667 | ns | −0.733 | −0.808 | −0.830 | −0.420 |
MC | −0.598 | ns | −0.604 | −0.624 | ns | −0.484 | −0.417 | ns | ns | ns | −0.486 | −0.630 | 0.402 | |
pH | ns | 0.834 | 0.893 | 0.632 | 0.716 | ns | ns | ns | ns | 0.749 | 0.841 | −0.254 | ||
OM | ns | Ns | 0.523 | 0.292 | ns | 0.753 | 0.620 | 0.750 | 0.469 | 0.404 | 0.703 | |||
P | 0.740 | 0.528 | ns | 0.580 | ns | ns | ns | 0.689 | 0.829 | −0.292 | ||||
K | 0.597 | 0.708 | 0.432 | ns | ns | ns | 0.742 | 0.874 | 0.182 | |||||
Ca | 0.688 | ns | 0.749 | ns | 0.806 | 0.958 | 0.832 | 0.433 | ||||||
Mg | 0.693 | ns | ns | ns | 0.859 | 0.883 | −0.229 | |||||||
Na | −0.512 | −0.682 | −0.419 | ns | 0.432 | −0.738 | ||||||||
N | 0.702 | 0.989 | 0.575 | 0.425 | 0.87 | |||||||||
EP | 0.654 | ns | 0.868 | 0.031 | ||||||||||
MFS | 0.663 | 0.540 | 0.800 | |||||||||||
SB | 0.940 | 0.198 |
Variable | Factor | p-Value | AIC | |
---|---|---|---|---|
f0 | Bulk density | ns | ||
Effective porosity | ns | |||
Silt | ns | |||
Clay | ns | |||
Sand | ns | |||
Organic matter | ns | |||
fC | Bulk density | ns | ||
Effective porosity | fC = −186.24 + 12.1947·EP | 0.0433 | 302.2 | |
Silt | ns | |||
Clay | ns | |||
Sand | fC = −1189.61 + 24.0957·SD | 0.0049 | 297.9 | |
Organic matter | ns | |||
R-WDPTO | Bulk density | R-WDPTO = 902.62 − 765.18·BD | <0.0001 | 879.3 |
Effective porosity | R-WDPTO = −664.19 + 18.8959·EP | <0.0001 | 897.5 | |
Silt | R-WDPTO = 526.92 − 16.9679·ST | 0.0022 | 907.9 | |
Clay | R-WDPTO = −157.78 + 54.934·CL | <0.0001 | 901.0 | |
Sand | ns | |||
Organic matter | R-WDPTO = −69.0776 + 25.3167·OM | <0.0001 | 897.9 | |
R-WDPTE | Bulk density | R-WDPTE = 17.8031 − 17.6356·BD | <0.0001 | 850.1 |
Effective porosity | R-WDPTE = −32.9819 + 0.7075·EP | <0.0001 | 859.8 | |
Silt | R-WDPTE = −39.572 + 2.0913·ST | <0.0001 | 853.4 | |
Clay | R-WDPTE = −7.2388 + 0.0945·CL | <0.0001 | 854.6 | |
Sand | R-WDPTE = 47.7396 − 0.6501·SD | <0.0001 | 856.7 | |
Organic matter | R-WDPTE = −25.2834 + 3.3404·OM | 0.0001 | 854.4 | |
R-MEDO | Bulk density | R-MEDO = 67.374 − 56.0803·BD | <0.0001 | 587.4 |
Effective porosity | R-MEDO = −42.4025 + 1.2968·EP | <0.0001 | 600.4 | |
Silt | R-MEDO = 49.3203 − 1.5770·ST | <0.0001 | 627.5 | |
Clay | R-MEDO = −26.517 + 3.5607·CL | <0.0001 | 583.1 | |
Sand | R-MEDO = −18.9945 + 0.487·SD | 0.0410 | 642.0 | |
Organic matter | R-MEDO = −8.6634 + 3.3989·OM | <0.0001 | 580.3 | |
R-MEDE | Bulk density | ns | ||
Effective porosity | ns | |||
Silt | R-MEDE = −26.4638 + 1.3860·ST | <0.0001 | 581.5 | |
Clay | R-MEDE = −11.7966 + 1.2090·CL | <0.0001 | 572.9 | |
Sand | R-MEDE = −56.8719 − 0.8101·SD | <0.0001 | 571.7 | |
Organic matter | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mongil-Manso, J.; Navarro-Hevia, J.; San Martín, R. Impact of Land Use Change and Afforestation on Soil Properties in a Mediterranean Mountain Area of Central Spain. Land 2022, 11, 1043. https://doi.org/10.3390/land11071043
Mongil-Manso J, Navarro-Hevia J, San Martín R. Impact of Land Use Change and Afforestation on Soil Properties in a Mediterranean Mountain Area of Central Spain. Land. 2022; 11(7):1043. https://doi.org/10.3390/land11071043
Chicago/Turabian StyleMongil-Manso, Jorge, Joaquín Navarro-Hevia, and Roberto San Martín. 2022. "Impact of Land Use Change and Afforestation on Soil Properties in a Mediterranean Mountain Area of Central Spain" Land 11, no. 7: 1043. https://doi.org/10.3390/land11071043
APA StyleMongil-Manso, J., Navarro-Hevia, J., & San Martín, R. (2022). Impact of Land Use Change and Afforestation on Soil Properties in a Mediterranean Mountain Area of Central Spain. Land, 11(7), 1043. https://doi.org/10.3390/land11071043