Half-Century of Forest Change in a Neotropical Peri-Urban Landscape: Drivers and Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover Maps (LULC)
2.3. Analysis of Forest Cover Change
2.4. Potential Drivers of Forest Change
3. Results
3.1. LULC and Analysis of Forest Cover Change
3.2. Potential Drivers of Forest Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. El Estado de los Bosques Del Mundo 2020: Los Bosques, La Biodiversidad Y Las Personas; FAO: Roma, Italy, 2020. [Google Scholar]
- Daily, G.C. Nature’s services: Societal dependence on natural ecosystems. In Introduction: What Are Ecosystem Services; Yale University Press: New Haven, CT, USA, 1997. [Google Scholar]
- IUCN. Policy Brief on the Economics of Forest Landscape Restoration; International Union for Conservation of Nature: Gland, Switzerland, 2020. [Google Scholar]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest Biodiversity, Ecosystem Functioning and the Provision of Ecosystem Services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlamini, C.S. Contribution of Forest Ecosystem Services toward Food Security and Nutrition; Walter, L.F., Anabela, M.A., Luciana, B.P., Gökçin, Ö., Tony, W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 179–196. [Google Scholar]
- FAO. State of the World’s Forests 2016. Forests and Agriculture: Land-Use Challenges and Opportunities; FAO: Roma, Italy, 2016. [Google Scholar]
- Dudley, N.; Sue, S. Running Pure: The Importance of Forest Protected Areas to Drinking Water; World Bank/WWF Alliance for Forest Conservation and Sustainable Use: Washington, DC, USA, 2003. [Google Scholar]
- Austin, K.G.; Baker, J.S.; Sohngen, B.L.; Wade, C.M.; Daigneault, A.; Ohrel, S.B.; Ragnauth, S.; Bean, A. The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat. Commun. 2020, 11, 5946. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- De Fries, R.; Achard, F.; Brown, S.; Herold, M.; Murdiyarso, D.; Schlamadinger, B.; de Souza, C. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ. Sci. Policy 2007, 10, 385–394. [Google Scholar] [CrossRef]
- UN. Decade on Restoration. Available online: https://www.decadeonrestoration.org/strategy (accessed on 27 February 2022).
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation: Tropical Forests Are Disappearing as the Result of Many Pressures, Both Local and Regional, Acting in Various Combinations in Different Geographical Locations. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Von Thaden, J.J.; Laborde, J.; Guevara, S.; Venegas-Barrera, C.S. Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: The contribution of the 1998 protected natural area decree. Land Use Policy 2018, 72, 443–450. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Rosero-Bixby, L.; Palloni, A.; Poblacion, Y. Deforestacion En Costa Rica, Conservacion Del Bosque En Costa Rica; Academia Nacional de Ciencias: San Jose, CA, USA, 1998. [Google Scholar]
- Leguía Aliaga, J.D.; Villegas Quino, H.; Aliaga Lordemann, J. Deforestación En Bolivia: Una Apro-ximación Espacial. Rev. Latinoam. Desarro. Económico 2011, 15, 7–44. [Google Scholar]
- Osorio, L.P.; Mas, J.F.; Guerra, F.; Maass, M. Análisis Y Modelación de Los Procesos de Deforestación: Un Caso de Estudio En La Cuenca Del Río Coyuquilla, Guerrero, México. Investig. Geográficas 2015, 88, 60–74. [Google Scholar]
- Yackulic, C.B.; Fagan, M.; Jain, M.; Jina, A.; Lim, Y.; Marlier, M.; Muscarella, R.; Adame, P.; DeFries, R.; Uriarte, M. Biophysical and Socioeconomic Factors Associated with Forest Transitions at Multiple Spatial and Temporal Scales. Ecol. Soc. 2011, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Bonilla-Moheno, M.; Aide, T.M.; Clark, M.L. The influence of socioeconomic, environmental, and demographic factors on municipality-scale land-cover change in Mexico. Reg. Environ. Chang. 2011, 12, 543–557. [Google Scholar] [CrossRef]
- Aide, T.M.; Clark, M.L.; Grau, H.R.; López-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Núñez, M.J.; Muñiz, M. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
- Abadie, J.; Dupouey, J.-L.; Avon, C.; Rochel, X.; Tatoni, T.; Bergès, L. Forest recovery since 1860 in a Mediterranean region: Drivers and implications for land use and land cover spatial distribution. Landsc. Ecol. 2017, 33, 289–305. [Google Scholar] [CrossRef]
- Honey-Rosés, J.; Maurer, M.; Ramírez, M.I.; Corbera, E. Quantifying active and passive restoration in Central Mexico from 1986–2012: Assessing the evidence of a forest transition. Restor. Ecol. 2018, 26, 1180–1189. [Google Scholar] [CrossRef]
- Ellis, E.A.; Romero Montero, A.; Hernández Gómez, I.U. Evaluación Y Mapeo de los Determinantes de Deforestación En La Pe-nínsula Yucatán; Agencia de los Estados Unidos para el Desarrollo Internacional, The Nature Conservancy, Alianza México REDD+, México; Distrito Federal: Mexico City, México, 2015. [Google Scholar]
- García-Ayllón, S. Rapid development as a factor of imbalance in urban growth of cities in Latin America: A perspective based on territorial indicators. Habitat Int. 2016, 58, 127–142. [Google Scholar] [CrossRef]
- Schumacher, M.; Durán-Díaz, P.; Kurjenoja, A.K.; Gutiérrez-Juárez, E.; González-Rivas, D.A. Evolution and Collapse of Ejidos in Mexico—To What Extent Is Communal Land Used for Urban Development? Land 2019, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Tellman, B.; Eakin, H.; Janssen, M.A.; de Alba, F.; Ii, B.T. The role of institutional entrepreneurs and informal land transactions in Mexico City’s urban expansion. World Dev. 2021, 140, 105374. [Google Scholar] [CrossRef]
- Bertzky, B.; Shi, Y.; Hughes, A.; Engels, B.; Ali, M.K.; Badman, T. Terrestrial Biodiversity and the World Heritage List: Identifying Broad Gaps and Potential Candidate Sites for Inclusion in the Natural World Heritage Network; Unep-Wcmc: Cambridge, UK, 2013. [Google Scholar]
- Gámez, N.; Escalante, T.; Rodríguez, G.; Linaje, M.; Morrone, J.J. Caracterización Biogeográfica de la Faja Volcánica Transmexicana Y Análisis de Los Patrones de Distribución de Su Mastofauna. Rev. Mex. Biodivers. 2012, 83, 258–272. [Google Scholar] [CrossRef] [Green Version]
- Morrone, J.J. Fundamental biogeographic patterns across the Mexican Transition Zone: An evolutionary approach. Ecography 2010, 33, 355–361. [Google Scholar] [CrossRef]
- Arriaga-Jiménez, A.; Rös, M.; Halffter, G. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt. PeerJ 2018, 6, e4468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SEMARNAT. Informe De La Situación Del Medio Ambiente En México; Compendio De Estadísticas Ambientales; SE-MARNAT and PNUD: Mexico City, Mexico, 2005. [Google Scholar]
- SEDATU. Reglas De Operación Del Programa De Mejoramiento Urbano, Para El Ejercicio Fiscal 2019; Diario Oficial de la Federación: Mexico City, Mexico, 2019. [Google Scholar]
- Benítez, G.; Pérez-Vázquez, A.; Nava-Tablada, M.; Equihua, M.; Álvarez-Palacios, J.L. Urban Expansion and the Environmental Effects of Informal Settlements on the Outskirts of Xalapa City, Veracruz, Mexico. Environ. Urban 2012, 24, 149–166. [Google Scholar] [CrossRef]
- Balderas Torres, A.; Angón Rodríguez, S.; Sudmant, A.; Gouldson, A. Adapting to Climate Change in Mountain Cities: Lessons from Xalapa, Mexico; Coalition for Urban Transitions: Xalapa, Mexico, 2021. [Google Scholar]
- Lemoine-Rodríguez, R.; MacGregor-Fors, I.; Muñoz-Robles, C. Six decades of urban green change in a neotropical city: A case study of Xalapa, Veracruz, Mexico. Urban Ecosyst. 2019, 22, 609–618. [Google Scholar] [CrossRef]
- INEGI. Continuo De Elevaciones Mexicano (Cem); INEGI: Mexico City, Mexico, 2013. [Google Scholar]
- Campbell, M.; Congalton, R.G.; Hartter, J.; Ducey, M. Optimal Land Cover Mapping and Change Analysis in Northeastern Oregon Using Landsat Imagery. Photogramm. Eng. Remote Sens. 2015, 81, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Puyravaud, J.-P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- Ludeke, A.K.; Maggio, R.C.; Reid, L.M. An analysis of anthropogenic deforestation using logistic regression and GIS. J. Environ. Manag. 1990, 31, 247–259. [Google Scholar] [CrossRef]
- Echeverria, C.; Coomes, D.A.; Hall, M.; Newton, A.C. Spatially explicit models to analyze forest loss and frag-mentation between 1976 and 2020 in southern Chile. Ecol. Model. 2008, 212, 439–449. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Johnston, M.; A Foley, J.; Holloway, T.; Monfreda, C.; Ramankutty, N.; Zaks, D. Carbon payback times for crop-based biofuel expansion in the tropics: The effects of changing yield and technology. Environ. Res. Lett. 2008, 3, 034001. [Google Scholar] [CrossRef]
- Skole, D.; Tucker, C. Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988. Sci. 1993, 260, 1905–1910. [Google Scholar] [CrossRef] [Green Version]
- Ranta, P.; Blom, T.O.M.; Joensuu, E.; Siitonen, M. The Fragmented Atlantic Rain Forest of Brazil: Size, Shape and Distribution of Forest Fragments. Biodivers. Conserv. 1998, 7, 385–403. [Google Scholar] [CrossRef]
- Cochrane, M.A. Synergistic Interactions between Habitat Fragmentation and Fire in Evergreen Tropical Forests. Conserv. Biol. 2001, 15, 1515–1521. [Google Scholar] [CrossRef]
- Wandl, A.; Magoni, M. Sustainable Planning of Peri-Urban Areas: Introduction to the Special Issue. Plan. Pract. Res. 2017, 32, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Riveros, R.; Altamirano, A.; de La Barrera, F.; Rozas-Vásquez, D.; Vieli, L.; Meli, P. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- Salas-Morales, S.H.; Meave, J.A. Elevational patterns in the vascular flora of a highly diverse region in southern Mexico. Plant Ecol. 2012, 213, 1209–1220. [Google Scholar] [CrossRef]
- Williams-Linera, G.; Toledo-Garibaldi, M.; Hernández, C.G. How heterogeneous are the cloud forest communities in the mountains of central Veracruz, Mexico? Plant Ecol. 2013, 214, 685–701. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Corstanje, R.; Harris, J.; Grafius, D.; Siriwardena, G.M. Ecological connectivity networks in rapidly expanding cities. Heliyon 2017, 3, e00325. [Google Scholar] [CrossRef] [Green Version]
- Rudel, T.K.; Defries, R.; Asner, G.P.; Laurance, W.F. Changing Drivers of Deforestation and New Opportunities for Conservation. Conserv. Biol. 2009, 23, 1396–1405. [Google Scholar] [CrossRef]
- Rodriguez, A.; Gasc, A.; Pavoine, S.; Grandcolas, P.; Gaucher, P.; Sueur, J. Temporal and Spatial Variability of Animal Sound within a Neotropical Forest. Ecol. Inform. 2014, 21, 133–143. [Google Scholar] [CrossRef]
- Aukland, L.; Costa, P.M.; Brown, S. A conceptual framework and its application for addressing leakage: The case of avoided deforestation. Clim. Policy 2003, 3, 123–136. [Google Scholar] [CrossRef]
- Le Velly, G.; Dutilly, C. Evaluating Payments for Environmental Services: Methodological Challenges. PLoS ONE 2016, 11, e0149374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Source | Interpolation Method | |
---|---|---|---|
Socioeconomic | (1) Land tenure (ejido-private) | National Agrarian Registry | Inverse distance weighting (IDW) |
(2) Population density (hab/km²) | National Institute of Statistics, Geography and Informatics; (INEGI), census of 1970, 1980, 1990, and 2000 | Inverse distance weighting (IDW) | |
(3) Index of marginalization | CONABIO 1995, 2000, 2005, and 2010. Locality degrees of marginalization | Inverse distance weighting (IDW) | |
(4) Distances from the urban edge | Land Use Maps 1966, 1980, 1995, 2008, and 2018 | Euclidian distance | |
(5) Population growth | INEGI, census of 1970–1980, 1990–2000, 2000–2010, and 2010–2020 | Inverse distance weighting (IDW) | |
(6) Distance to roads (m; paved and unpaved) | INEGI 2000, Topographic map (1:50,000) | Euclidian distance | |
Biophysical | (7) Elevation (m.a.s.l.) | INEGI (2012). DEM of 15 m of resolution | * |
(8) Slope (degrees) | Derived from DEM of INEGI | * | |
(9) Aspect (degrees) | Derived of DEM of INEGI | * | |
(10) Distance from forest edge (m) | Land Use map, 1966, 1980, 1995, 2008, and 2018 | Euclidian distance | |
(11) Average annual rainfall (mm) | Weather station. CONAGUA | Inverse distance weighting (IDW) | |
(12) Distance to permanent rivers (m) | INEGI | Euclidian distance |
Period | Initial Forest Cover (A1) | Final Forest Cover (A2) | Cover Change (ha) | Years | % Lost | Annual Rate of Deforestation (r) |
---|---|---|---|---|---|---|
1966–1980 | 7307.05 | 7155.82 | −151.23 | 14 | 2.07 | −0.001 |
1980–1995 | 7235.82 | 6722.26 | −513.56 | 15 | 7.10 | −0.005 |
1995–2008 | 6722.26 | 6485.51 | −236.75 | 13 | 3.52 | −0.003 |
2008–2018 | 6485.51 | 6215.13 | −270.38 | 10 | 4.17 | −0.004 |
Forest Loss | Forest Recovery | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | Drivers | Parameter Estimate | Mean Model | Std. Deviation | p Value Model | AUC | Period | Drivers | Parameter Estimate | Mean Model | Std. Deviation | p Value Model | AUC |
1966–1980 | (Intercept) | −0.2591 | 0.00151 | 0.81 | 1966–1980 | Intercept | (0.2432) | 0.00004 | 0.83 | ||||
Elevation *** | −0.0057 | 1413 | 143 | Distance from forest edge (m) *** | 0.0921 | 68 | 17 | ||||||
Population density *** | 0.0024 | 481 | 68 | Urban distance ** | 0.0277 | 97 | 15 | ||||||
Distance from forest edge (m) *** | −0.0021 | 40 | 11 | Precipitation ** | 0.0228 | 1382 | 0.4 | ||||||
Urban distance *** | −0.0072 | 67 | 17 | ||||||||||
1980–1995 | (Intercept) | 0.3168 | 0.00007 | 0.86 | 1980–1995 | Intercept | (0.4034) | 0.00002 | 0.85 | ||||
Distance from forest edge (m) *** | −0.0453 | 33 | 13 | Distance from forest edge (m) *** | 0.0898 | 62 | 12 | ||||||
Urban distance ** | 0.0511 | 52 | 14 | Urban distance ** | 0.0610 | 93 | 18 | ||||||
Marginalization * | 0.3048 | −0.9 | 0.1 | Slope * | 0.0347 | 6 | 2 | ||||||
1995–2008 | (Intercept) | −0.4256 | 0.00004 | 0.84 | 1995–2008 | Intercept | (−0.4085) | 0.00003 | 0.83 | ||||
Distance from forest edge (m) *** | −0.0311 | 30 | 14 | Precipitation *** | 0.0269 | 1605 | 124 | ||||||
Population density ** | 0.0015 | 1291 | 0.3 | Urban distance *** | 0.0263 | 91 | 12 | ||||||
Urban distance ** | −0.0353 | 11 | 6 | Distance from forest edge (m) *** | 0.0018 | 60 | 8 | ||||||
Private/Ejido land * | 0.4005 | 1 | 0.2 | Elevation ** | −0.0025 | 1605 | 120 | ||||||
Elevation * | −0.0019 | 1407 | 52 | Population density ** | −0.0006 | 725 | 134 | ||||||
2008–2018 | (Intercept) | −0.5847 | 0.00002 | 0.87 | 2008–2018 | Intercept | (−0.3483) | 0.00002 | 0.85 | ||||
Population density *** | 0.0215 | 1875 | 0.5 | Urban distance *** | 0.2475 | 63 | 17 | ||||||
Distance from forest edge (m) *** | −0.0146 | 26 | 10 | Distance from forest edge (m) *** | −0.0215 | 45 | 4 | ||||||
Marginalization ** | 0.0003 | −0.4 | 0.1 | Population density ** | 0.0036 | 1435 | 101 | ||||||
Urban distance * | −0.3680 | 9 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Von Thaden, J.; Binnqüist-Cervantes, G.; Pérez-Maqueo, O.; Lithgow, D. Half-Century of Forest Change in a Neotropical Peri-Urban Landscape: Drivers and Trends. Land 2022, 11, 522. https://doi.org/10.3390/land11040522
Von Thaden J, Binnqüist-Cervantes G, Pérez-Maqueo O, Lithgow D. Half-Century of Forest Change in a Neotropical Peri-Urban Landscape: Drivers and Trends. Land. 2022; 11(4):522. https://doi.org/10.3390/land11040522
Chicago/Turabian StyleVon Thaden, Juan, Gilberto Binnqüist-Cervantes, Octavio Pérez-Maqueo, and Debora Lithgow. 2022. "Half-Century of Forest Change in a Neotropical Peri-Urban Landscape: Drivers and Trends" Land 11, no. 4: 522. https://doi.org/10.3390/land11040522