The Effect of Pelletized Lime Kiln Dust Combined with Biomass Combustion Ash on Soil Properties and Plant Yield in a Three-Year Field Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Field Experiments
2.3. Soil and Plant Sampling and Chemical Analyses
2.4. Meteorological Conditions
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Liming Materials
3.2. Measured Soil Chemical Composition after the Liming Material Application
3.3. Grain Yield and Yield-Related Parameters
3.4. Heavy Metals in the Soil
4. Conclusions
- Application of 2000 kg/ha Ca of PLKD 0.1–2 and PLKDWA increased soil pHKCl 0.58 and 0.50 pH units after three years of liming.
- Moreover, increased soil soluble Ca, Mg, P2O5, and K2O contents and reduced soluble Al concentration in soil.
- After two years of application, PLKD (0.1–2; 2–5) and PLKDWA statistically significantly increased spring wheat grain yield by 33.6%, 32.1%, and 40.4%, respectively. After three years of liming, peas yield increased in all treatments ~4.5% compared to the control.
- Usage of these liming materials also decreased heavy metal concentration in soil. Liming reduced total Cd, Ni, and Pb contents in soil by 3, 1.5, and 1.3 times compared to unlimed treatment. However, liming did not reduce the total Cr content in the soil.
- Due to high alkalinity, carbonate content, easy handling, and the transportation of pelletized lime kiln dust and pelletized lime kiln dust with wood ash, the materials have the potential to be used in agriculture as liming materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sumner, M.E.; Noble, A.D. Soil Acidification: The World Story. In Handbook of Soil Acidity; Rengel, Z., Ed.; Mercel Dekker: New York, NY, USA, 2003; pp. 1–28. [Google Scholar]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulding, K.W.T. Soil Acidification and the Importance of Liming Agricultural Soils with Particular Reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.S.; Adriano, D.C.; Curtin, D. Soil Acidification and Liming Interactions with Nutrient and Heavy Metal Transformation and Bioavailability. Adv. Agron. 2003, 78, 215–272. [Google Scholar] [CrossRef]
- Beeckman, F.; Motte, H.; Beeckman, T. Nitrification in Agricultural Soils: Impact, Actors and Mitigation. Curr. Opin. Biotechnol. 2018, 50, 166–173. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Xiao, Y.; Zhao, B.; Wang, C.; Li, B.; Gao, X.; Li, Y.; Bai, G.; Wang, Y.; et al. Soil Acidification and Its Influencing Factors in the Purple Hilly Area of Southwest China from 1981 to 2012. Catena 2019, 175, 278–285. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Modeling Global Annual N2O and NO Emissions from Fertilized Fields. Glob. Biogeochem. Cycles 2002, 16, 28-1–28-29. [Google Scholar] [CrossRef]
- Eidukeviciene, M.; Vasiliauskiene, V.; Misevicius, J. Lietuvos Dirvozemiai. Monografija; Lietuvos mokslo redakcija: Kaunas, Lithuania, 2001; pp. 210–213. [Google Scholar]
- Anikwe, M.A.N.; Eze, J.C.; Ibudialo, A.N. Influence of Lime and Gypsum Application on Soil Properties and Yield of Cassava (Manihot Esculenta Crantz.) in a Degraded Ultisol in Agbani, Enugu Southeastern Nigeria. Soil Tillage Res. 2016, 158, 32–38. [Google Scholar] [CrossRef]
- Sheinberg, I.; Sumner, M.E.; Miller, W.P.; Farina, M.P.W.; Pavan, M.A.; Fey, M.V. Use of Gypsum on Soils: A Review. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1989; pp. 1–111. [Google Scholar]
- Bolan, N.S.; Rowarth, J.; de la Luz Mora, M.; Adriano, D.; Curtin, D. Biological Transformation and Bioavailability of Nutrient Elements in Acid Soils as Affected by Liming. Dev. Soil Sci. 2008, 32, 413–446. [Google Scholar] [CrossRef]
- Anderson, T.H. The Influence of Acid Irrigation and Liming on the Soil Microbial Biomass in a Norway Spruce (Picea Abies [L.] K.) Stand. Plant Soil 1998, 199, 117–122. [Google Scholar] [CrossRef]
- Haynes, R.J.; Swift, R.S. Effects of Lime and Phosphate Additions on Changes in Enzyme Activities, Microbial Biomass and Levels of Extractable Nitrogen, Sulphur and Phosphorus in an Acid Soil. Biol. Fertil. Soils 1988, 6, 153–158. [Google Scholar] [CrossRef]
- Tang, X.Y.; Katou, H.; Suzuki, K.; Ohtani, T. Air-Drying and Liming Effects on Exchangeable Cadmium Mobilization in Contaminated Soils: A Repeated Batch Extraction Study. Geoderma 2011, 161, 18–29. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Huang, Q.; Tang, S.; Wang, J.; Hu, P.; Shao, G. Can Liming Reduce Cadmium (Cd) Accumulation in Rice (Oryza sativa) in Slightly Acidic Soils? A Contradictory Dynamic Equilibrium between Cd Uptake Capacity of Roots and Cd Immobilisation in Soils. Chemosphere 2018, 193, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Trasar-Cepeda, M.C.; Carballas, T.; Gil-Sotres, F.; de Blas, E. Liming and the Phosphatase Activity and Mineralization of Phosphorus in an Andic Soil. Soil Biol. Biochem. 1991, 23, 209–215. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Esteban, E.; Carpena-Ruiz, R.O.; Lobo, M.C.; Peñalosa, J.M. Phytostabilisation with Mediterranean Shrubs and Liming Improved Soil Quality in a Pot Experiment with a Pyrite Mine Soil. J. Hazard. Mater. 2012, 201–202, 52–59. [Google Scholar] [CrossRef]
- Khaliq, M.A.; Khan Tarin, M.W.; Jingxia, G.; Yanhui, C.; Guo, W. Soil Liming Effects on CH4, N2O Emission and Cd, Pb Accumulation in Upland and Paddy Rice. Environ. Pollut. 2019, 248, 408–420. [Google Scholar] [CrossRef]
- McMillan, A.M.S.; Pal, P.; Phillips, R.L.; Palmada, T.; Berben, P.H.; Jha, N.; Saggar, S.; Luo, J. Can PH Amendments in Grazed Pastures Help Reduce N2O Emissions from Denitrification?—The Effects of Liming and Urine Addition on the Completion of Denitrification in Fluvial and Volcanic Soils. Soil Biol. Biochem. 2016, 93, 90–104. [Google Scholar] [CrossRef]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming Impacts on Soils, Crops and Biodiversity in the UK: A Review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef]
- Castro, G.S.A.; Crusciol, C.A.C.; da Costa, C.H.M.; Ferrari Neto, J.; Mancuso, M.A.C. Surface Application of Limestone and Calcium-Magnesium Silicate in a Tropical No-Tillage System. J. Soil Sci. Plant Nutr. 2016, 16, 362–379. [Google Scholar] [CrossRef] [Green Version]
- Basak, B.B.; Biswas, D.R. Potentiality of Indian Rock Phosphate as Liming Material in Acid Soil. Geoderma 2016, 263, 104–109. [Google Scholar] [CrossRef]
- Sreekrishnavilasam, A.; King, S.; Santagata, M. Characterization of Fresh and Landfilled Cement Kiln Dust for Reuse in Construction Applications. Eng. Geol. 2006, 85, 165–173. [Google Scholar] [CrossRef]
- Tang, P.; Brouwers, H.J.H. Integral Recycling of Municipal Solid Waste Incineration (MSWI) Bottom Ash Fines (0–2 Mm) and Industrial Powder Wastes by Cold-Bonding Pelletization. Waste Manag. 2017, 62, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Gesoĝlu, M.; Güneyisi, E.; Mahmood, S.F.; Öz, H.Ö.; Mermerdaş, K. Recycling Ground Granulated Blast Furnace Slag as Cold Bonded Artificial Aggregate Partially Used in Self-Compacting Concrete. J. Hazard. Mater. 2012, 235–236, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiao, F.; Zhang, L.; Amirkhanian, S.N. Life Cycle Assessment and Life Cycle Cost Analysis of Recycled Solid Waste Materials in Highway Pavement: A Review. J. Clean. Prod. 2019, 233, 1182–1206. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Potential of Industrial De-Dusting Residues as a Source of Potassium for Fertilizer Production—A Mini Review. Resour. Conserv. Recycl. 2019, 143, 68–76. [Google Scholar] [CrossRef]
- Holmberg, S.L.; Claesson, T. Mineralogy of Granulated Wood Ash from a Heating Plant in Kalmar, Sweden. Environ. Geol. 2001, 40, 820–828. [Google Scholar] [CrossRef]
- Pesonen, J.; Kuokkanen, V.; Kuokkanen, T.; Illikainen, M. Co-Granulation of Bio-Ash with Sewage Sludge and Lime for Fertilizer Use. J. Environ. Chem. Eng. 2016, 4, 4817–4821. [Google Scholar] [CrossRef]
- Holmberg, S.L.; Lind, B.B.; Claesson, T. Chemical Composition and Leaching Characteristics of Granules Made of Wood Ash and Dolomite. Environ. Geol. 2000, 40, 1–10. [Google Scholar] [CrossRef]
- Sell, N.J.; Flschbach, F.A. Pelletizing Waste Cement Kiln Dust for More Efficient Recycling. Ind. Eng. Chem. Process Des. Dev. 1978, 17, 468–473. [Google Scholar] [CrossRef]
- Yliniemi, J.; Nugteren, H.; Illikainen, M.; Tiainen, M.; Weststrate, R.; Niinimäki, J. Lightweight Aggregates Produced by Granulation of Peat-Wood Fly Ash with Alkali Activator. Int. J. Miner. Process. 2016, 149, 42–49. [Google Scholar] [CrossRef]
- Vincevica-Gaile, Z.; Stankevica, K.; Irtiseva, K.; Shishkin, A.; Obuka, V.; Celma, S.; Ozolins, J.; Klavins, M. Granulation of Fly Ash and Biochar with Organic Lake Sediments—A Way to Sustainable Utilization of Waste from Bioenergy Production. Biomass Bioenergy 2019, 125, 23–33. [Google Scholar] [CrossRef]
- WRB IUSS. Working Group World Reference Base for Soil Resources 2014; WEB IUSS: Rome, Italy, 2014. [Google Scholar]
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen Uber Die Chemische Bodenanalyse Als Grundlage Fur Die Beurteilung Des Nährstoffzustandes Der Böden. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- Sokolov, A.V. (Ed.) Agrochemical Methods of Soil Studies; Nauka: Moscow, Russia, 1975. [Google Scholar]
- SAS Institute. The SAS System for Windows, Version 9.4; SAS Institute: Cary, NC, USA, 2016. [Google Scholar]
- Hoşten, Ç.; Gülsün, M. Reactivity of Limestones from Different Sources in Turkey. Miner. Eng. 2004, 17, 97–99. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019, Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regul. 2019. Available online: https://www.legislation.gov.uk/eur/2019/1009/contents# (accessed on 1 April 2022).
- Chesner, W.H.; Collina, R.J.; MacKay, M.H. User Guidelines for Waste and By-Product Materials in Pavement Construction; Federal Highway Administration: Washington, DC, USA, 1998. [Google Scholar]
- Collins, R.J.; Emery, J.J. Kiln Dust-Fly Ash Systems for Highway Bases and Subbases; Federal Highway Administration: Washington, DC, USA, 1983. [Google Scholar]
- Morrissey, J.; Guerinot, M. Lou Iron Uptake and Transport in Plants: The Good, the Bad, and the Ionome. Chem. Rev. 2009, 109, 4553–4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolic, M.; Kastori, R. Effect of Bicarbonate and Fe Supply on Fe Nutrition of Grapevine. J. Plant Nutr. 2000, 23, 1619–1627. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Kobierski, M. Effect of Liming on the Change of Some Agrochemical Soil Properties in a Long-Term Fertilization Experiment. Plant Soil Environ. 2014, 60, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Laudelout, H. Chemical and Microbiological Effects of Soil Liming in a Broad-Leaved Forest Ecosystem. For. Ecol. Manag. 1993, 61, 247–261. [Google Scholar] [CrossRef]
- Repsiene, R.; Karcauskiene, D. Changes in the Chemical Properties of Acid Soil and Aggregate Stability in the Whole Profile under Long-Term Management History. Acta Agric. Scand. Sect. B Soil Plant Sci. 2016, 66, 671–676. [Google Scholar] [CrossRef]
- Puissant, J.; Jones, B.; Goodall, T.; Mang, D.; Blaud, A.; Gweon, H.S.; Malik, A.; Jones, D.L.; Clark, I.M.; Hirsch, P.R.; et al. The PH Optimum of Soil Exoenzymes Adapt to Long Term Changes in Soil PH. Soil Biol. Biochem. 2019, 138, 107601. [Google Scholar] [CrossRef]
- Islam, A.K.M.S.; Edwards, D.G.; Asher, C.J. PH Optima for Crop Growth—Results of a Flowing Solution Culture Experiment with Six Species. Plant Soil 1980, 54, 339–357. [Google Scholar] [CrossRef]
- Porebska, G.; Ostrowska, A.; Borzyszkowski, J. Changes in the Soil Sorption Complex of Forest Soils in Poland over the Past 27 Years. Sci. Total Environ. 2008, 399, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Park, N.D.; Michael Rutherford, P.; Thring, R.W.; Helle, S.S. Wood Pellet Fly Ash and Bottom Ash as an Effective Liming Agent and Nutrient Source for Rye Grass (Lolium Perenne L.) and Oats (Avena sativa). Chemosphere 2012, 86, 427–432. [Google Scholar] [CrossRef]
- Qin, J.; Hovmand, M.F.; Ekelund, F.; Rønn, R.; Christensen, S.; de Groot, G.A.; Mortensen, L.H.; Skov, S.; Krogh, P.H. Wood Ash Application Increases PH but Does Not Harm the Soil Mesofauna. Environ. Pollut. 2017, 224, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Kiani, D.; Silva, M.; Sheng, Y.; Baltrusaitis, J. Experimental Insights into the Genesis and Growth of Struvite Particles on Low-Solubility Dolomite Mineral Surfaces. J. Phys. Chem. C 2019, 123, 25135–25145. [Google Scholar] [CrossRef]
- Tate, M. Lime Kiln Dust: An Overlooked Resource. In Proceedings of the Lime: Building on the 100-Year Legacy of The ASTM Committee C07, San Diego, CA, USA, 28 June 2012; Thomson, M., Brisch, J., Eds.; ASTM International: West Conshohocken, PA, USA, 2012; pp. 135–144. [Google Scholar]
- de Vargas, J.P.R.; dos Santos, D.R.; Bastos, M.C.; Schaefer, G.; Parisi, P.B. Application Forms and Types of Soil Acidity Corrective: Changes in Depth Chemical Attributes in Long Term Period Experiment. Soil Tillage Res. 2019, 185, 47–60. [Google Scholar] [CrossRef]
- Zhang, X.; Glasser, F.P.; Scrivener, K.L. Reaction Kinetics of Dolomite and Portlandite. Cem. Concr. Res. 2014, 66, 11–18. [Google Scholar] [CrossRef]
- Marx, E.S.; Hart, J.; Stevens, R.G. Soil Test Interpretation Guide; Ministry of Agriculture: Corvallis, OR, USA, 1999. [Google Scholar]
- Lalande, R.; Gagnon, B.; Royer, I. Impact of Natural or Industrial Liming Materials on Soil Properties and Microbial Activity. Can. J. Soil Sci. 2009, 89, 209–222. [Google Scholar] [CrossRef]
- Ziadi, N.; Gagnon, B.; Nyiraneza, J. Crop Yield and Soil Fertility as Affected by Papermill Biosolids and Liming By-Products. Can. J. Soil Sci. 2013, 93, 319–328. [Google Scholar] [CrossRef]
- Gasser, J.K.R. Processes Causing Loss of Calcium from Agricultural Soils. Soil Use Manag. 1985, 1, 14–16. [Google Scholar] [CrossRef]
- Gunes, A.; Alpaslan, M.; Inal, A. Critical Nutrient Concentrations and Antagonistic and Synergistic Relationships among the Nutrients of NFT-Grown Young Tomato Plants. J. Plant Nutr. 1998, 21, 2035–2047. [Google Scholar] [CrossRef]
- Barrow, N.J. The Effects of PH on Phosphate Uptake from the Soil. Plant Soil 2017, 410, 401–410. [Google Scholar] [CrossRef]
- Özenç, N.; Özenç, D.B. Interaction between Available Phosphorus and Lime Treatments on Extremely Acid PH Soils of Hazelnut Orchards. Acta Hortic. 2009, 845, 379–386. [Google Scholar] [CrossRef]
- Demeyer, A.; Voundi Nkana, J.C.; Verloo, M.G. Characteristics of Wood Ash and Influence on Soil Properties and Nutrient Uptake: An Overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Mrvić, V.; Jakovljević, M.; Stevanović, D.; Cłakmak, D. The Forms of Aluminium in Stagnosols in Serbia. Plant Soil Environ. 2007, 53, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Moir, J.L.; Moot, D.J. Medium-Term Soil PH and Exchangeable Aluminium Response to Liming at Three High Country Locations. Proc. N. Z. Grassl. Assoc. 2014, 76, 41–45. [Google Scholar] [CrossRef]
- Patterson, S.J.; Acharya, S.N.; Thomas, J.E.; Bertschi, A.B.; Rothwell, R.L. Barley Biomass and Grain Yield and Canola Seed Yield Response to Land Application of Wood Ash. Agron. J. 2004, 96, 971–977. [Google Scholar] [CrossRef] [Green Version]
- Patterson, S.J.; Acharya, S.N.; Bertschi, A.B.; Thomas, J.E. Application of Wood Ash to Acidic Boralf Soils and Its Effect on Oilseed Quality of Canola. Agron. J. 2004, 96, 1344–1348. [Google Scholar] [CrossRef]
- Gentili, R.; Ambrosini, R.; Montagnani, C.; Caronni, S.; Citterio, S. Effect of Soil PH on the Growth, Reproductive Investment and Pollen Allergenicity of Ambrosia artemisiifolia L. Front. Plant Sci. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schuster, B.; Diekmann, M. Changes in Species Density along the Soil PH Gradient—Evidence from German Plant Communities. Folia Geobot. 2003, 38, 367–379. [Google Scholar] [CrossRef]
- Rahman, M.A.; Barma, N.; Sarker, M.; Sarker, M.; Nazrul, M. Adaptability of Wheat Varieties in Strongly Acidic Soils of Sylhet. Bangladesh J. Agric. Res. 2013, 38, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Shaheb, M.R.; Nazrul, M.I.; Ataur Rahman, M. Production Potential and Economics of Wheat as Influenced by Liming in North Eastern Region of Bangladesh. Asian J. Agric. Biol. 2014, 2, 152–160. [Google Scholar]
- Moges, T.; Melese, A.; Tadesse, G. Effects of Lime and Phosphorus Fertilizer Levels on Growth and Yield Components of Malt Barley (Hordeum distichum L.) in Angolelana Tera District, North Shewa Zone, Ethiopia. Adv. Plants Agric. Res. 2018, 8, 582–589. [Google Scholar] [CrossRef]
- Kirchev, H.; Delibaltova, V.; Yanchev, I.; Zheliazkov, I. Comparative Investigation of Rye Type Triticale Varieties, Grown in the Agroecological Conditions of Thrace Valley. Bulg. J. Agric. Sci. 2012, 18, 696–700. [Google Scholar]
- European Commission Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Off. J. Eur. Communities 1986, 4, 6–12.
- Ramtahal, G.; Chang Yen, I.; Hamid, A.; Bekele, I.; Bekele, F.; Maharaj, K.; Harrynanan, L. The Effect of Liming on the Availability of Cadmium in Soils and Its Uptake in Cacao (Theobroma c acao L.) In Trinidad & Tobago. Commun. Soil Sci. Plant Anal. 2018, 49, 2456–2464. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J. Impact of Emerging and Low Cost Alternative Amendments on the (Im)Mobilization and Phytoavailability of Cd and Pb in a Contaminated Floodplain Soil. Ecol. Eng. 2015, 74, 319–326. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J.; Selim, M.H. Impact of Various Amendments on Immobilization and Phytoavailability of Nickel and Zinc in a Contaminated Floodplain Soil. Int. J. Environ. Sci. Technol. 2015, 12, 2765–2776. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Ajwa, H.A. Trace Elements in Soils and Plants: An Overview. J. Environ. Sci. Health Part A 1999, 34, 951–974. [Google Scholar] [CrossRef]
- Carrillo-González, R.; Šimůnek, J.; Sauvé, S.; Adriano, D. Mechanisms and Pathways of Trace Element Mobility in Soils. Adv. Agron. 2006, 91, 111–178. [Google Scholar] [CrossRef]
- Tlustoš, P.; Száková, J.; Kořínek, K.; Pavlíková, D.; Hanč, A.; Balík, J. The Effect of Liming on Cadmium, Lead, and Zinc Uptake Reduction by Spring Wheat Grown in Contaminated Soil. Plant Soil Environ. 2006, 52, 16–24. [Google Scholar] [CrossRef] [Green Version]
Abbreviation | Sample Preparation |
---|---|
GC | Ground chalk |
CD | Crushed dolomite |
PLKD 0.1–2 | Pelletized LKD of 0.1–2 mm |
PLKD 2–5 | Pelletized LKD of 2–5 mm |
PLKDWA 2–5 | Pelletized LKD with wood ash of 2–5 mm |
CD | GC | PLKD 0.1–2 | PLKD 2–5 | PLKDWA 2–5 | LKD | WA | |
---|---|---|---|---|---|---|---|
pH | 9.3 ± 0.21 | 8.9 ± 0.07 | 12.8 ± 0.14 | 12.9 ± 0.07 | 12.8 ± 0.21 | 12.7 ± 0.07 | 12.9 ± 0.14 |
Water content, % | 4.52 ± 0.141 | 0.10 ± 0.081 | 9.66 ± 0.162 | 11.9 ± 0.13 | 6.36 ± 0.219 | 1.25 ± 0.007 | 0.04 ± 0.021 |
Reactivity, % | 10.0 ± 0.09 | 99.5 ± 0.49 | 24.8 ± 0.28 | 10.4 ± 0.42 | 19.3 ± 0.35 | 96.7 ± 0.35 | 42.2 ± 0.35 |
Neutralizing value, % | 50.3 ± 0.21 | 52.2 ± 0.35 | 44.6 ± 0.42 | 41.5 ± 0.28 | 18.0 ± 0.42 | 45.4 ± 0.28 | 32.9 ± 0.14 |
Pellet strength, N/pellet | - | - | 18 ± 7.5 | 37 ± 6.2 | 51 ± 13.1 | - | - |
Treatment | pHKCl Value ± SD |
---|---|
Control | 5.1 ± 0.42 a |
CD | 5.1 ± 0.53 ab |
GC | 5.8 ± 0.38 cd |
PLKD 0.1–2 | 5.7 ± 0.36 bcd |
PLKD 2–5 | 5.4 ± 0.35 abcd |
PLKDWA 2–5 | 6.0 ± 0.28 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drapanauskaitė, D.; Bunevičienė, K.; Repšienė, R.; Karčauskienė, D.; Mažeika, R.; Baltrusaitis, J. The Effect of Pelletized Lime Kiln Dust Combined with Biomass Combustion Ash on Soil Properties and Plant Yield in a Three-Year Field Study. Land 2022, 11, 521. https://doi.org/10.3390/land11040521
Drapanauskaitė D, Bunevičienė K, Repšienė R, Karčauskienė D, Mažeika R, Baltrusaitis J. The Effect of Pelletized Lime Kiln Dust Combined with Biomass Combustion Ash on Soil Properties and Plant Yield in a Three-Year Field Study. Land. 2022; 11(4):521. https://doi.org/10.3390/land11040521
Chicago/Turabian StyleDrapanauskaitė, Donata, Kristina Bunevičienė, Regina Repšienė, Danutė Karčauskienė, Romas Mažeika, and Jonas Baltrusaitis. 2022. "The Effect of Pelletized Lime Kiln Dust Combined with Biomass Combustion Ash on Soil Properties and Plant Yield in a Three-Year Field Study" Land 11, no. 4: 521. https://doi.org/10.3390/land11040521