Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental and Sampling Design
2.2. Chemical Analysis, Soil OC Stocks and Soil N Stocks
2.3. Statistical Analysis
3. Results
3.1. Pre-Experiment Soil Characteristics
3.2. Soil Property Changes in the Field Experimental Plots
3.3. Soil OC and N Stocks in Three Experimental Treatments in 2013, 2016 and 2020
3.4. Evolution of Soil Variables as a Function of Time and Depth
4. Discussion
4.1. Physico-Chemical Variables
4.2. Soil OC and N Stocks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallali, T. Clés des Sols; Centre de Publication Universitaire: Manouba, Tunis, 2004. [Google Scholar]
- Food and Agriculture Organization. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2005. [Google Scholar]
- Renevot, G.; Bouaziz, A.; Ruf, T.; Raki, R. Pratiques d’Irrigation du Palmier Dattier dans les Systèmes Oasiens du Tafi Lalet, Maroc. In Proceedings of the International Agriculture Durable en Région Méditerranéenne (AGDUMED), Rabat, Morocco, 14–16 May 2009; pp. 196–211. [Google Scholar]
- Alizadeh, S.; Prasher, S.O.; ElSayed, E.; Qi, Z.; Patel, R.M. Effect of biochar on fate and transport of manure-borne estrogens in sandy soil. J. Environ. Sci. 2018, 73, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, W.; Fu, L. Soil macropore characteristics following conversion of native desert soils to irrigated croplands in a desert-oasis ecotone, Northwest China. Soil Tillage Res. 2017, 168, 176–186. [Google Scholar] [CrossRef]
- The World Bank. Oases Ecosystems and Livelihoods Project (TOLEP); World Bank: Washington, DC, USA, 2014; p. 114. [Google Scholar]
- Ministère de l’Environnement et de Développement Durable. Stratégie de développement durable des oasis en Tunisie; Ministère de l’Environnement et de Développement Durable: Tunis, Tunisie, 2015.
- Chebbi, H.E. Compétences pour le Commerce et la Diversification Economique (STED) en Tunisie: Cas du Secteur de l’Agroalimentaire; Organisation Internationale du Travail, Ministère de l’Industrie et du Commerce: Tunis, Tunisie, 2016. [Google Scholar]
- Toutain, G. Le palmier dattier. Cuture et production. Al Awamia 1967, 25, 83–151. [Google Scholar]
- Ben Abdallah, A. La phoeniciculture. CIHEAM Options Mediterr. 1990, A, 105–120. [Google Scholar]
- El Khoumsi, W.; Hammani, A.; Bouarfa, S.; Bouaziz, A.; Ben Aïssa, I. Contribution de la nappe phréatique à l’alimentation hydrique du palmier dattier (Phoenix dactylifera) dans les zones oasiennes. Cah. Agric. 2017, 26, 45005. [Google Scholar] [CrossRef] [Green Version]
- Mlih, R.; Bol, R.; Amelung, W.; Brahim, N. Soil organic matter amendments in date palm groves of the Middle Eastern and North African region: A mini-review. J. Arid Land 2016, 8, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Battesti, V. Les Oasis du Jérid: Des Révolutions Permanentes? Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut national de la recherche agronomique de Tunisie: Tunis, Tunisia, 1997. [Google Scholar]
- Li, C.; Li, Y.; Xie, J.; Liu, Y.; Wang, Y.; Liu, X. Accumulation of organic carbon and its association with macro-aggregates during 100 years of oasis formation. Catena 2019, 172, 770–780. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, H.; Xu, Y. Exploring land reclamation history: Soil organic carbon sequestration due to dramatic oasis agriculture expansion in arid region of Northwest China. Ecol. Indic. 2020, 108, 105746. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. 3 Chem. Methods 1996, 5, 961–1010. [Google Scholar]
- Association Française de Normalisation. Qualité du Sol—Dosage de l’Azote Total—Méthode de Kjeldahl Modifiée; Association Française de Normalisation: Paris, France, 1995. [Google Scholar]
- Association Française de Normalisation. Qualité du Sol—Détermination de la Distribution Granulométrique des Particules du Sol—Méthode à la Pipette; Association Française de Normalisation: Paris, France, 2003. [Google Scholar]
- Vieillefon, J. Contribution à l’amélioration de l’étude des sols gypseux. Cah. ORSTOM Sér. Pédol. 1979, 17, 195–223. [Google Scholar]
- Sherrod, L.A.; Dunn, G.; Peterson, G.A.; Kolberg, R.L. Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- Association Française de Normalisation. Qualité du Sol—Détermination de la Conductivité Electrique Spécifique; Association Française de Normalisation: Paris, France, 1994. [Google Scholar]
- Brahim, N.; Ibrahim, H.; Hatira, A. Tunisian soil organic carbon stock—Spatial and vertical variation. Procedia Eng. 2014, 69, 1549–1555. [Google Scholar] [CrossRef]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Boulbaba, A.; Marzouk, L.; ben Rabah, R.; Najet, S. Variations of Natural Soil Salinity in an Arid Environment Using Underground Watertable Effects on Salinization of Soils in Irrigated Perimeters in South Tunisia. Int. J. Geosci. 2012, 3, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Brahim, N.; Blavet, D.; Gallali, T.; Bernoux, M. Application of structural equation modeling for assessing relationships between organic carbon and soil properties in semiarid Mediterranean region. Int. J. Environ. Sci. Technol. 2011, 8, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Slama, A. Répartition Spatiale de la Matière Organique dans les Sols de l’Oasis Continentale Guettaya (Kébili); Université de Tunis El Manar: Tunis, Tunisia, 2014. [Google Scholar]
- El Fekih, M.; Pouget, M. Les Sols des Oasis Anciennes du Sud Tunisien. In Proceedings of the Conference sur les Sols Mediterranen, Madrid, Spain, 12–17 September 1966; p. 12. [Google Scholar]
- Bonneau, M.; Souchier, B. Constituants et propriétés du sol. Rev. Géogr. Alp. 1980, 68, 202–203. [Google Scholar]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Siebert, S. Analysis of Arid Agricultural Systems Using Quantitative Image Analysis, Modeling and Geographical Information Systems; Kassel University Press: Kassel, Germany, 2005. [Google Scholar]
- Omrani, N. Dilemma of Fossil Water Management within Southern Tunisia Oases: Vulnerability to Salt under Intensive Use Context. In Proceedings of the 8th edition of the World Wide Workshop for Young Environmental Scientists, Arcueil, France, 2–5 June 2011; p. 8. [Google Scholar]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Pang, G.; Han, F. The estimation of soil organic carbon distribution and storage in a small catchment area of the Loess Plateau. Catena 2013, 101, 11–16. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Liang, A.; Zhang, Y.; Zhang, X.; Yang, X.; McLaughlin, N.; Chen, X.; Guo, Y.; Jia, S.; Zhang, S.; Wang, L.; et al. Investigations of relationships among aggregate pore structure, microbial biomass, and soil organic carbon in a Mollisol using combined non-destructive measurements and phospholipid fatty acid analysis. Soil Tillage Res. 2018, 185, 94–101. [Google Scholar] [CrossRef]
- Schomberg, H.H.; Jones, O.R. Carbon and Nitrogen Conservation in Dryland Tillage and Cropping Systems. Soil Sci. Soc. Am. J. 1999, 63, 1359–1366. [Google Scholar] [CrossRef]
- Liu, Z.P.; Shao, M.A.; Wang, Y.Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 2013, 197–198, 67–78. [Google Scholar] [CrossRef]
- Gao, X.; Xiao, Y.; Deng, L.; Li, Q.; Wang, C.; Li, B.; Deng, O.; Zeng, M. Spatial variability of soil total nitrogen, phosphorus and potassium in Renshou County of Sichuan Basin, China. J. Integr. Agric. 2019, 18, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Dregne, H.E. Land degradation in the drylands. Arid Land Res. Manag. 2002, 16, 99–132. [Google Scholar] [CrossRef]
- Wang, C.; Wan, S.; Xing, X.; Zhang, L.; Han, X. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol. Biochem. 2006, 38, 1101–1110. [Google Scholar] [CrossRef]
- Flavel, T.C.; Murphy, D.V. Carbon and Nitrogen Mineralization Rates after Application of Organic Amendments to Soil. J. Environ. Qual. 2006, 35, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, Y.; Tang, L. Soil organic carbon stock and carbon efflux in deep soils of desert and oasis. Environ. Earth Sci. 2010, 60, 549–557. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W. Effects of variability in land surface characteristics on the summer radiation budget across desert-oasis region in Northwestern China. Theor. Appl. Climatol. 2014, 119, 771–780. [Google Scholar] [CrossRef]
- Abdelbaki, A.M. Evaluation of pedotransfer functions for predicting soil bulk density for U.S. soils. Ain Shams Eng. J. 2018, 9, 1611–1619. [Google Scholar] [CrossRef]
- Vereecken, H.; Maes, J.; Feyen, J.; Darius, P. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 1989, 148, 389–403. [Google Scholar] [CrossRef]
- Da Silva, A.P.; Kay, B.D.; Perfect, E. Management versus inherent soil properties effects on bulk density and relative compaction. Soil Tillage Res. 1997, 44, 81–93. [Google Scholar] [CrossRef]
- Brahim, N.; Ibrahim, H. Effect of Land Use on Organic Carbon Distribution in a North African region: Tunisia Case Study. In Soil Management and Climate Change, 1st ed.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Gobat, J.M.; Aragno, M.; Matthey, W. Le Sol Vivant: Bases de Pédologie Biologie des Sols; Presses Polytechniques et Universitaires Romandes: Laussane, Switzerland, 1998. [Google Scholar]
- Omar, Z.; Bouajila, A.; Brahim, N.; Grira, M. Soil property and soil organic carbon pools and stocks of soil under oases in arid regions of Tunisia. Environ. Earth Sci. 2017, 76, 415. [Google Scholar] [CrossRef]
- Brahim, N.; Gallali, T.; Bernoux, M. Carbon stock by soils and departments in Tunisia. J. Appl. Sci. 2011, 11, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Fusillier, J.; Hacib, A.; Le Gal, P.Y. Stratégies des Agriculteurs des Oasis du Nefzaoua. Entre Logique Patrimoniale et Productive, une Mise en Valeur Agricole Orientée vers l’Extension des Palmeraies, Malgré les Risques pour la Durabilité des Oasis. In Proceedings of the Gestion des Ressources Naturelles et Développement Durable des Systèmes Oasiens du Nefzaoua, Douz, Tunis, 25–27 February 2009. [Google Scholar]
- Munoz-Rojas, M.; Jordan, A.; Zavala, L.M.; De La Rosa, D.; Abd-Elmabod, S.K.; Anaya-Romero, M. Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain). Solid Earth 2012, 3, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, C.; Feng, Q.; Wei, Y.; Zhao, Y.; Zhu, M.; Deo, R.C. Direct and indirect impacts of ionic components of saline water on irrigated soil chemical and microbial processes. Catena 2019, 172, 581–589. [Google Scholar] [CrossRef]
- Rietz, D.N.; Haynes, R.J. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Wichern, J.; Wichern, F.; Joergensen, R.G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 2006, 137, 100–108. [Google Scholar] [CrossRef]
- Gros, R.; Poly, F.; Monrozier, L.J.; Faivre, P. Plant and soil microbial community responses to solid waste leachates diffusion on grassland. Plant Soil 2003, 255, 445–455. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Merloti, L.F.; Moretti, L.G.; Costa, N.R.; Tsai, S.M.; Kuramae, E.E. Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system. Geoderma 2020, 375, 114476. [Google Scholar] [CrossRef]
- Carter, M.R. Microbial biomass and mineralizable nitrogen in solonetzic soils: Influence of gypsum and lime amendments. Soil Biol. Biochem. 1986, 18, 531–537. [Google Scholar] [CrossRef]
- An, H.; Li, Q.L.; Yan, X.; Wu, X.Z.; Liu, R.; Fang, Y. Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia, northwest China. Ecol. Eng. 2019, 127, 348–355. [Google Scholar] [CrossRef]
- Ganuza, A.; Almendros, G. Organic carbon storage in soils of the Basque Country (Spain): The effect of climate, vegetation type and edaphic variables. Biol. Fertil. Soils 2003, 37, 154–162. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 2006, 135, 335–344. [Google Scholar] [CrossRef]
- Institut National de Météorologie de Tunisie. Données Météorologiques de la Ville de Kebili; Institut National de Météorologie de Tunisie: Tunis, Tunisia, 2020. [Google Scholar]
- Christensen, B.T. Matching Measurable Soil Organic Matter Fractions with Conceptual Pools in Simulation Models of Carbon Turnover: Revision of Model Structure. Eval. Soil Org. Matter. Models 1996, 1, 143–159. [Google Scholar] [CrossRef]
- Benoit, P.; Souiller, C.; Madrigal, I.; Pot, V.; Coquet, Y.; Margoum, C.; Laillet, B.; Dutertre, A.; Gril, J.J.; Barriuso, E. Fonctions environnementales des dispositifs enherbés en vue de la gestion et de la maîtrise des impacts d’origine agricole. Cas des pesticides. Étude Gest Sols 2003, 10, 299–312. [Google Scholar]
- Schmidt, M.W.I.; Knicker, H.; Kögel-Knabner, I. Organic matter accumulating in Aeh and Bh horizons of a Podzol—Chemical characterization in primary organo-mineral associations. Org. Geochem. 2000, 31, 727–734. [Google Scholar] [CrossRef]
- Njeru, C.M.; Ekesi, S.; Mohamed, S.A.; Kinyamario, J.I.; Kiboi, S.; Maeda, E.E. Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem. Geoderma Reg. 2017, 10, 29–38. [Google Scholar] [CrossRef]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Leifeld, J.; Bassin, S.; Fuhrer, J. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agric. Ecosyst. Environ. 2005, 105, 255–266. [Google Scholar] [CrossRef]
- Raju, G.; Zouggari, H. Influence du gypse sur la mineralisation de l’azote dans le sol. Ann. Inst. Natl. Agron. Harrach 1988, 12, 169–185. [Google Scholar]
- Murtaza, B.; Murtaza, G.; Sabir, M.; Owens, G.; Abbas, G.; Imran, M.; Mustafa Shah, G. Amelioration of saline-sodic soil with gypsum can increase yield and nitrogen use efficiency in rice-wheat cropping system. Arch. Agron. Soil Sci. 2017, 63, 1267–1280. [Google Scholar] [CrossRef]
Depth | Particle Size (%) | pH | Gypsum | CaCO3 | EC | SAR | ||||
---|---|---|---|---|---|---|---|---|---|---|
(cm) | CS | FS | CSi | FSi | C | (%) | (%) | (mS/cm) | ||
0–10 | 33.1 ± 0.2 | 17.5 ± 0.4 | 18.1 ± 0.1 | 29.10 ± 0.2 | 3.0 ± 0.1 | 7.51 ± 0.01 | 1.2 ± 0.2 | 8.0 ± 0.2 | 5.1 ± 0.1 | 1.1 ± 0.1 |
10–20 | 33.1 ± 0.1 | 12.8 ± 0.1 | 8.2 ± 0.0 | 36.0 ± 0.2 | 9.0 ± 0.1 | 7.61 ± 0.01 | 2.0 ± 0.1 | 15.7 ± 0.2 | 17.7 ± 0.1 | 3.1 ± 0.1 |
20–30 | 30.1 ± 0.1 | 18.0 ± 0.1 | 5.0 ± 0.2 | 37.8 ± 0.1 | 9.0 ± 0.1 | 7.74 ± 0.09 | 12.1 ± 0.1 | 16.0 ± 0.4 | 15.5 ± 0.2 | 6.0 ± 0.2 |
30–50 | 31.2 ± 0.2 | 18.9 ± 0.1 | 6.0 ± 0.2 | 35.0 ± 0.1 | 5.1 ± 0.1 | 7.76 ± 0.01 | 24.3 ± 0.4 | 9.4 ± 0.4 | 25.7 ± 0.4 | 6.1 ± 0.0 |
Depth | OC (g C kg−1) | N (g N kg−1) | C/N | BD (g cm−3) | pH | |||
---|---|---|---|---|---|---|---|---|
2013 | CON | 0–10 | Mean | 4.12 | 0.29 | 14.01 | 1.54 | 7.50 |
St. Dev. | 0.38 | 0.00 | 1.05 | 0.01 | 0.01 | |||
10–20 | Mean | 3.35 | 0.38 | 8.96 | 1.54 | 7.47 | ||
St. Dev. | 1.29 | 0.01 | 3.54 | 0.01 | 0.07 | |||
20–30 | Mean | 1.80 | 0.86 | 2.07 | 1.62 | 7.43 | ||
St. Dev. | 0.43 | 0.04 | 0.41 | 0.01 | 0.02 | |||
30–50 | Mean | 1.00 | 0.63 | 1.61 | 1.70 | 7.44 | ||
St. Dev. | 0.06 | 0.06 | 0.26 | 0.01 | 0.01 | |||
CMP | 0–10 | Mean | 13.05 | 0.87 | 15.07 | 1.48 | 7.47 | |
St. Dev. | 0.37 | 0.01 | 0.37 | 0.04 | 0.02 | |||
10–20 | Mean | 9.66 | 0.75 | 12.96 | 1.53 | 7.50 | ||
St. Dev. | 2.11 | 0.00 | 2.89 | 0.02 | 0.07 | |||
20–30 | Mean | 7.38 | 0.75 | 9.87 | 1.65 | 7.57 | ||
St. Dev. | 0.95 | 0.00 | 1.23 | 0.03 | 0.09 | |||
30–50 | Mean | 4.20 | 0.42 | 9.90 | 1.74 | 7.62 | ||
St. Dev. | 0.41 | 0.00 | 1.02 | 0.03 | 0.05 | |||
MAN | 0–10 | Mean | 16.42 | 1.03 | 16.02 | 1.43 | 7.64 | |
St. Dev. | 0.53 | 0.00 | 0.52 | 0.04 | 0.04 | |||
10–20 | Mean | 11.54 | 0.88 | 13.10 | 1.51 | 7.68 | ||
St. Dev. | 0.18 | 0.00 | 0.17 | 0.05 | 0.02 | |||
20–30 | Mean | 9.47 | 0.96 | 9.96 | 1.58 | 7.64 | ||
St. Dev. | 0.42 | 0.08 | 1.19 | 0.08 | 0.04 | |||
30–50 | Mean | 6.36 | 0.69 | 9.14 | 1.73 | 7.67 | ||
St. Dev. | 1.45 | 0.03 | 1.82 | 0.03 | 0.05 | |||
2016 | CON | 0–10 | Mean | 3.06 | 0.24 | 12.86 | 1.53 | 7.51 |
St. Dev. | 0.10 | 0.00 | 0.45 | 0.01 | 0.03 | |||
10–20 | Mean | 4.59 | 0.85 | 5.48 | 1.49 | 7.48 | ||
St. Dev. | 2.30 | 0.05 | 2.97 | 0.02 | 0.04 | |||
20–30 | Mean | 1.57 | 0.76 | 2.08 | 1.61 | 7.50 | ||
St. Dev. | 0.80 | 0.05 | 1.11 | 0.01 | 0.04 | |||
30–50 | Mean | 1.06 | 0.58 | 1.88 | 1.70 | 7.52 | ||
St. Dev. | 0.33 | 0.07 | 0.75 | 0.01 | 0.06 | |||
CMP | 0–10 | Mean | 7.34 | 0.49 | 15.10 | 1.38 | 7.44 | |
St. Dev. | 0.35 | 0.00 | 0.80 | 0.02 | 0.01 | |||
10–20 | Mean | 6.41 | 0.58 | 11.02 | 1.45 | 7.46 | ||
St. Dev. | 0.79 | 0.00 | 1.36 | 0.04 | 0.03 | |||
20–30 | Mean | 4.59 | 0.74 | 6.28 | 1.64 | 7.50 | ||
St. Dev. | 0.55 | 0.08 | 1.27 | 0.04 | 0.05 | |||
30–50 | Mean | 2.16 | 0.67 | 3.24 | 1.71 | 7.59 | ||
St. Dev. | 0.14 | 0.04 | 0.38 | 0.03 | 0.03 | |||
MAN | 0–10 | Mean | 9.46 | 0.63 | 14.94 | 1.41 | 7.60 | |
St. Dev. | 0.37 | 0.00 | 0.54 | 0.04 | 0.01 | |||
10–20 | Mean | 6.68 | 0.68 | 9.88 | 1.50 | 7.59 | ||
St. Dev. | 0.42 | 0.00 | 0.67 | 0.05 | 0.03 | |||
20–30 | Mean | 5.85 | 0.78 | 7.53 | 1.55 | 7.59 | ||
St. Dev. | 0.28 | 0.03 | 0.38 | 0.01 | 0.04 | |||
30–50 | Mean | 3.88 | 0.67 | 5.80 | 1.73 | 7.64 | ||
St. Dev. | 0.45 | 0.05 | 0.83 | 0.03 | 0.04 | |||
2020 | CON | 0–10 | Mean | 2.60 | 0.21 | 13.23 | 1.55 | 7.59 |
St. Dev. | 0.20 | 0.07 | 4.96 | 0.02 | 0.08 | |||
10–20 | Mean | 2.68 | 0.22 | 12.31 | 1.54 | 7.52 | ||
St. Dev. | 0.47 | 0.05 | 0.86 | 0.04 | 0.01 | |||
20–30 | Mean | 1.40 | 0.22 | 6.69 | 1.64 | 7.55 | ||
St. Dev. | 0.17 | 0.05 | 2.06 | 0.02 | 0.07 | |||
30–50 | Mean | 0.90 | 0.32 | 2.82 | 1.72 | 7.56 | ||
St. Dev. | 0.07 | 0.05 | 0.28 | 0.03 | 0.05 | |||
CMP | 0–10 | Mean | 3.32 | 0.20 | 17.02 | 1.53 | 7.58 | |
St. Dev. | 0.34 | 0.04 | 5.38 | 0.02 | 0.07 | |||
10–20 | Mean | 2.98 | 0.20 | 14.78 | 1.55 | 7.57 | ||
St. Dev. | 0.14 | 0.03 | 1.58 | 0.02 | 0.07 | |||
20–30 | Mean | 2.24 | 0.24 | 9.87 | 1.65 | 7.60 | ||
St. Dev. | 0.08 | 0.05 | 2.70 | 0.01 | 0.06 | |||
30–50 | Mean | 1.49 | 0.22 | 6.60 | 1.74 | 7.61 | ||
St. Dev. | 0.55 | 0.02 | 1.95 | 0.02 | 0.05 | |||
MAN | 0–10 | Mean | 6.58 | 0.46 | 14.27 | 1.49 | 7.58 | |
St. Dev. | 0.23 | 0.05 | 1.12 | 0.01 | 0.04 | |||
10–20 | Mean | 5.41 | 0.46 | 11.74 | 1.49 | 7.60 | ||
St. Dev. | 0.54 | 0.01 | 0.91 | 0.01 | 0.06 | |||
20–30 | Mean | 4.41 | 0.44 | 10.19 | 1.58 | 7.61 | ||
St. Dev. | 0.34 | 0.05 | 1.25 | 0.06 | 0.04 | |||
30–50 | Mean | 2.02 | 0.42 | 4.91 | 1.68 | 7.62 | ||
St. Dev. | 0.31 | 0.12 | 0.60 | 0.05 | 0.06 |
N Stock (kg N m−2) | ||||||
---|---|---|---|---|---|---|
Depth cm | 2013 | 2016 | 2020 | |||
Mean | St. Dev. | Mean | St. Dev. | Mean | St. Dev. | |
CON | ||||||
0–10 | 0.05 | 0.00 | 0.04 | 0.00 | 0.03 | 0.01 |
10–20 | 0.06 | 0.00 | 0.13 | 0.01 | 0.03 | 0.01 |
20–30 | 0.14 | 0.01 | 0.12 | 0.01 | 0.04 | 0.01 |
30–50 | 0.21 | 0.02 | 0.20 | 0.02 | 0.11 | 0.02 |
0–50 | 0.46 | 0.03 | 0.48 | 0.04 | 0.21 | 0.04 |
CMP | ||||||
0–10 | 0.13 | 0.00 | 0.07 | 0.00 | 0.03 | 0.01 |
10–20 | 0.11 | 0.00 | 0.08 | 0.00 | 0.03 | 0.00 |
20–30 | 0.12 | 0.00 | 0.12 | 0.01 | 0.04 | 0.01 |
30–50 | 0.15 | 0.00 | 0.23 | 0.02 | 0.08 | 0.00 |
0–50 | 0.51 | 0.01 | 0.50 | 0.03 | 0.18 | 0.02 |
MAN | ||||||
0–10 | 0.15 | 0.00 | 0.09 | 0.00 | 0.07 | 0.01 |
10–20 | 0.13 | 0.00 | 0.10 | 0.00 | 0.07 | 0.00 |
20–30 | 0.15 | 0.02 | 0.12 | 0.01 | 0.07 | 0.01 |
30–50 | 0.24 | 0.01 | 0.23 | 0.02 | 0.14 | 0.04 |
0–50 | 0.67 | 0.04 | 0.54 | 0.03 | 0.35 | 0.05 |
OC Stock (kg C m−2) | ||||||
CON | ||||||
0–10 | 0.63 | 0.06 | 0.47 | 0.01 | 0.40 | 0.03 |
10–20 | 0.52 | 0.20 | 0.68 | 0.34 | 0.41 | 0.08 |
20–30 | 0.29 | 0.07 | 0.25 | 0.13 | 0.23 | 0.03 |
30–50 | 0.34 | 0.02 | 0.36 | 0.11 | 0.31 | 0.03 |
0–50 | 1.78 | 0.35 | 1.77 | 0.59 | 1.36 | 0.16 |
CMP | ||||||
0–10 | 1.93 | 0.03 | 1.01 | 0.04 | 0.51 | 0.05 |
10–20 | 1.47 | 0.30 | 0.93 | 0.11 | 0.46 | 0.03 |
20–30 | 1.22 | 0.17 | 0.76 | 0.11 | 0.37 | 0.01 |
30–50 | 1.46 | 0.15 | 0.74 | 0.04 | 0.52 | 0.18 |
0–50 | 6.08 | 0.65 | 3.44 | 0.30 | 1.86 | 0.27 |
MAN | ||||||
0–10 | 2.35 | 0.10 | 1.33 | 0.07 | 0.98 | 0.03 |
10–20 | 1.75 | 0.08 | 1.00 | 0.06 | 0.81 | 0.07 |
20–30 | 1.49 | 0.05 | 0.91 | 0.05 | 0.70 | 0.05 |
30–50 | 2.20 | 0.51 | 1.35 | 0.14 | 0.68 | 0.10 |
0–50 | 7.79 | 0.73 | 4.59 | 0.31 | 3.16 | 0.26 |
Depth (0–50 cm) | OC Stock (kg C m−2) | N Stock (kg N m−2) | ||||
---|---|---|---|---|---|---|
Year | 2013 | 2016 | 2020 | 2013 | 2016 | 2020 |
CON | 1.78 ± 0.20 | 1.76 ± 0.34 | 1.36 ± 0.09 | 0.46 ± 0.02 | 0.48 ± 0.02 | 0.22 ± 0.03 |
CMP | 6.08 ± 0.38 | 3.44 ± 0.17 | 1.86 ± 0.16 | 0.51 ± 0.01 | 0.50 ± 0.02 | 0.18 ± 0.01 |
MAN | 7.79 ± 0.42 | 4.59 ± 0.18 | 3.16 ± 0.15 | 0.67 ± 0.02 | 0.55 ± 0.02 | 0.35± 0.03 |
CMP 2013-CON2013 | 4.30 (+241%) | 0.06 (+12%) | ||||
MAN 2013-CON2013 | 6.00 (+337%) | 0.21 (+47%) | ||||
CMP 2016-CON2016 | 1.67 (+95%) | 0.02 (+4%) | ||||
MAN 2016-CON2016 | 2.83 (+ 160%) | 0.06 (+ 13%) | ||||
CMP 2020-CON2020 | 0.50 (+37%) | −0.04 (−18%) | ||||
MAN2020-CON2020 | 1.80 (+133%) | 0.13 (+62%) | ||||
CMP 2016-CMP2013 | −2.65 (−43%) | −0.01 (−2%) | ||||
MAN 2016-MAN2013 | −3.20 (−41%) | −0.13 (−19%) | ||||
CMP 2020-CMP2013 | −4.23 (−69%) | −0.33 (−65%) | ||||
MAN 2020-MAN2013 | −4.62 (−59%) | −0.32 (−48%) |
Fixed Factor | Dependent Variable | p-Value | Wilks’ Lambda | |
---|---|---|---|---|
Year | OC | 0.00 *** | 0.41 | |
N | 0.00 *** | |||
Depth | OC | 0.00 *** | 0.52 | |
N | 0.91 | |||
Mode of treatment | OC | 0.00 *** | 0.67 | |
N | 0.00 *** | |||
Depth × Mode of treatment | OC | 0.63 | 0.93 | |
N | 0.87 | |||
R2 = 0.63 | ||||
Year | N stock | 0.00 *** | 0.42 | |
OC stock | 0.00 *** | |||
Depth | N stock | 0.00 *** | 0.51 | |
OC stock | 0.16 | |||
Mode of treatment | N stock | 0.00 *** | 0.67 | |
OC stock | 0.00 *** | |||
Depth × Mode of treatment | N stock | 0.93 | 0.9 | |
OC stock | 0.97 | |||
R2 = 0.63 | ||||
Year | BD | 0.26 | 0.94 | |
pH | 0.01 ** | |||
Depth | BD | 0.00 *** | 0.12 | |
pH | 0.01 ** | |||
Mode of use | BD | 0.00 *** | 0.37 | |
pH | 0.00 *** | |||
Depth × Mode of treatment | BD | 0.00 *** | 0.69 | |
pH | 0.01 ** | |||
R2 = 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahim, N.; Ibrahim, H.; Mlih, R.; Bouajila, A.; Karbout, N.; Bol, R. Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost. Land 2022, 11, 442. https://doi.org/10.3390/land11030442
Brahim N, Ibrahim H, Mlih R, Bouajila A, Karbout N, Bol R. Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost. Land. 2022; 11(3):442. https://doi.org/10.3390/land11030442
Chicago/Turabian StyleBrahim, Nadhem, Hatem Ibrahim, Rawan Mlih, Abdelhakim Bouajila, Nissaf Karbout, and Roland Bol. 2022. "Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost" Land 11, no. 3: 442. https://doi.org/10.3390/land11030442
APA StyleBrahim, N., Ibrahim, H., Mlih, R., Bouajila, A., Karbout, N., & Bol, R. (2022). Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost. Land, 11(3), 442. https://doi.org/10.3390/land11030442