Opportunities for Mitigating Soil Compaction in Europe—Case Studies from the SoilCare Project Using Soil-Improving Cropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Norway
2.1.1. Experimental Design
2.1.2. Soil Sampling, Field Measurements, and Laboratory Analysis
2.2. Sweden
2.2.1. Experimental Design
2.2.2. Soil Sampling, Field Measurements, and Laboratory Analysis
2.3. United Kingdom
2.3.1. Experimental Design
2.3.2. Soil Sampling, Field Measurements, and Laboratory Analysis
2.4. Italy
2.4.1. Experimental Design
2.4.2. Soil Sampling, Field Measurements and Laboratory Analysis
2.5. Romania
2.5.1. Experimental Design
2.5.2. Soil Sampling, Field Measurements and Laboratory Analysis
2.6. Soil Compactions Indices
3. Results and Discussion
3.1. Norway
3.2. Sweden
3.3. United Kingdom
3.4. Italy
3.5. Romania
3.6. Soil Compaction Indices and Crop Yield
3.7. Soil Compaction and SICS with Tillage
3.8. Soil Compaction and SICS with Deep-Rooted Bio-Drilling Crops
4. Future Prospects and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, A.; Panagos, P.; Barcelo, S.; Bouraoui, F.; Bosco, C.; Dewitte, O.; Gardi, C.; Hervás, J.; Hiederer, R.; Jeffery, S.; et al. The State of Soil in Europe: A Contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report—SOER 2010; Europeran Union: Luxembourg, 2012. [Google Scholar]
- Crescimanno, G.; Lane, M.; Owens, P.; Rydel, B.; Jacobsen, O.; Düwel, O.; Böken, H.; Berényi Üveges, J.; Castillo, V.; Imeson, A. Final Report, Working Group on Soil Erosion, Task Group 5: Links with Organic Matter and Contamination Working Group and Secondary Soil Threats; European Commission: Brussels, Belgium, 2004. [Google Scholar]
- Van Camp, L.; Bujarrabal, B.; Gentile, A.; Jones, R.J.A.; Montanarella, L.; Olazábal, C.; Selvaradjou, S. Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. Vol. IV: Contamination and Land Management; Office for Official Publications of the European Communities: Luxembourg, 2004. [Google Scholar]
- Lipiec, J.; Hatano, R. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 2003, 116, 107–136. [Google Scholar] [CrossRef]
- Lipiec, J.; Simota, C. Role of soil and climate factors in influencing crop responses to soil compaction in Central and Eastern Europe. Dev. Agric. Eng. 1994, 11, 365–390. [Google Scholar]
- Arvidsson, J.; Håkansson, I. Response of different crops to soil compaction-Short-term effects in Swedish field experiments. Soil Tillage Res. 2014, 138, 56–63. [Google Scholar] [CrossRef]
- Horn, R.; Fleige, H. Risk assessment of subsoil compaction for arable soils in Northwest Germany at farm scale. Soil Tillage Res. 2009, 102, 201–208. [Google Scholar] [CrossRef]
- Håkansson, I. A method for characterizing the state of compactness of the plough layer. Soil Tillage Res. 1990, 16, 105–120. [Google Scholar] [CrossRef]
- Hartmann, P.; Zink, A.; Fleige, H.; Horn, R. Effect of compaction, tillage and climate change on soil water balance of Arable Luvisols in Northwest Germany. Soil Tillage Res. 2012, 124, 211–218. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; et al. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res. 2017, 53, 5209–5219. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Colombi, T.; Keller, T. Developing strategies to recover crop productivity after soil compaction—A plant eco-physiological perspective. Soil Tillage Res. 2019, 191, 156–161. [Google Scholar] [CrossRef]
- Graves, A.R.; Morris, J.; Deeks, L.K.; Rickson, R.J.; Kibblewhite, M.G.; Harris, J.A.; Farewell, T.S.; Truckle, I. The total costs of soil degradation in England and Wales. Ecol. Econ. 2015, 119, 399–413. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Berisso, F.E.; Schjønning, P.; Keller, T.; Lamandé, M.; Etana, A.; De Jonge, L.W.; Iversen, B.V.; Arvidsson, J.; Forkman, J. Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil. Soil Tillage Res. 2012, 122, 42–51. [Google Scholar] [CrossRef]
- Schjønning, P.; Lamandé, M.; Berisso, F.E.; Simojoki, A.; Alakukku, L.; Andreasen, R.R. Gas Diffusion, non-Darcy air permeability, and computed tomography images of a clay subsoil affected by compaction. Soil Sci. Soc. Am. J. 2013, 77, 1977. [Google Scholar] [CrossRef]
- Ruser, R.; Flessa, H.; Russow, R.; Schmidt, G.; Buegger, F.; Munch, J.C. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting. Soil Biol. Biochem. 2006, 38, 263–274. [Google Scholar] [CrossRef]
- Bamgbopa, O.S. Investigation of shrinkage and cracking in clay soils under wetting and drying cycles. Int. J. Eng. Res. Technol. 2016, 5, 283–320. [Google Scholar]
- Seehusen, T.; Mordhorst, A.; Riggert, R.; Fleige, H.; Horn, R.; Riley, H. Subsoil compaction of a clay soil in South-East Norway and its amelioration after 5 years. Int. Agrophys. 2021, 35, 145–157. [Google Scholar] [CrossRef]
- Horn, R.; Domzzał, H.; Słowińska-Jurkiewicz, A.; van Ouwerkerk, C. Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Tillage Res. 1995, 35, 23–36. [Google Scholar] [CrossRef]
- Lebert, M.; Böken, H.; Glante, F. Soil compaction—Indicators for the assessment of harmful changes to the soil in the context of the German Federal Soil Protection Act. J. Environ. Manag. 2007, 82, 388–397. [Google Scholar] [CrossRef]
- Löfkvist, J.; Whalley, W.R.; Clark, L.J. A rapid screening method for good root-penetration ability: Comparison of species with very different root morphology. Acta Agric. Scand. Sect. B-Soil Plant 2007, 55, 120–124. [Google Scholar] [CrossRef]
- Uteau, D.; Pagenkemper, S.K.; Peth, S.; Horn, R. Root and time dependent soil structure formation and its influence on gas transport in the subsoil. Soil Tillage Res. 2013, 132, 69–76. [Google Scholar] [CrossRef]
- Colombi, T.; Braun, S.; Keller, T.; Walter, A. Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Sci. Total Environ. 2017, 574, 1283–1293. [Google Scholar] [CrossRef] [Green Version]
- Kautz, T.; Lüsebrink, M.; Pätzold, S.; Vetterlein, D.; Pude, R.; Athmann, M.; Küpper, P.M.; Perkons, U.; Köpke, U. Contribution of anecic earthworms to biopore formation during cultivation of perennial ley crops. Pedobiologia 2014, 57, 47–52. [Google Scholar] [CrossRef]
- Cresswell, H.P.; Kirkegaard, J.A. Subsoil amelioration by plant-roots—The process and the evidence. Soil Res. 1995, 33, 221–239. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Penetration of cover crop roots through compacted soils. Plant Soil 2010, 331, 31–43. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, X. Bio-tillage: A new perspective for sustainable agriculture. Soil Tillage Res. 2021, 206, 104844. [Google Scholar] [CrossRef]
- Abadi Ghadim, A.; Kingwell, R.; Pannell, D. An economic evaluation of deep tillage to reduce soil compaction on crop-livestock farms in Western Australia. Agric. Syst. 1991, 37, 291–307. [Google Scholar] [CrossRef]
- Díaz-Zorita, M. Effect of deep-tillage and nitrogen fertilization interactions on dryland corn (Zea mays L.) productivity. Soil Tillage Res. 2000, 54, 11–19. [Google Scholar] [CrossRef]
- Varsa, E.G.; Chong, S.K.; Abolaji, J.O.; Farquhar, D.A.; Olsen, F.J. Effect of deep tillage on soil physical characteristics and corn (Zea mays L.) root growth and production. Soil Tillage Res. 1997, 43, 219–228. [Google Scholar] [CrossRef]
- Raper, R.L.; Bergtold, J.S. In-row subsoiling: A review and suggestions for reducing cost of this conservation tillage operation. Appl. Eng. Agric. 2007, 23, 463–471. [Google Scholar] [CrossRef]
- Getahun, G.T.; Kätterer, T.; Munkholm, L.J.; Parvage, M.M.; Keller, T.; Rychel, K.; Kirchmann, H. Short-term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield. Soil Tillage Res. 2018, 184, 62–67. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 2003, 54, 273–282. [Google Scholar] [CrossRef]
- Adcock, D.; McNeill, A.M.; McDonald, G.K.; Armstrong, R.D.; Adcock, D.; McNeill, A.M.; McDonald, G.K.; Armstrong, R.D. Subsoil constraints to crop production on neutral and alkaline soils in south-eastern Australia: A review of current knowledge and management strategies. Aust. J. Exp. Agric. 2007, 47, 1245–1261. [Google Scholar] [CrossRef]
- Jakobs, I.; Schmittmann, O.; Schulze Lammers, P. Short-term effects of in-row subsoiling and simultaneous admixing of organic material on growth of spring barley (H. vulgare). Soil Use Manag. 2017, 33, 620–630. [Google Scholar] [CrossRef]
- Soane, G.C.; Godwin, R.J.; Marks, M.; Spoor, G. Crop and soil response to subsoil loosening, deep incorporation of phosphorus and potassium fertilizer and subsequent soil management on a range of soil types: Part 2: Soil structural conditions. Soil Use Manag. 1987, 3, 123–130. [Google Scholar] [CrossRef]
- Schulte-Karring, H.; Haubold-Rosar, M. Subsoiling and deep fertilizing with new technique as a measure of soil conservation in ag agriculture, viniculture and forestry. Soil Technol. 1993, 6, 225–237. [Google Scholar] [CrossRef]
- Larney, F.J.; Fortune, R.A. Recompaction effects of mouldboard ploughing and seedbed cultivations on four deep loosened soils. Soil Tillage Res. 1986, 8, 77–87. [Google Scholar] [CrossRef]
- Johnson, B.S.; Erickson, A.E.; Voorhees, W.B. Physical conditions of a lake plain soil as affected by deep tillage and wheel traffic. Soil Sci. Soc. Am. J. 1989, 53, 1545–1551. [Google Scholar] [CrossRef]
- Håkansson, I.; Grath, T.; Olsen, H. Influence of machinery traffic in Swedish farm fields on penetration resistance in the subsoil. Swedish J. Agric. Res. 1996, 26, 181–187. [Google Scholar]
- Gill, J.S.; Clark, G.J.; Sale, P.W.; Peries, R.R.; Tang, C. Deep placement of organic amendments in dense sodic subsoil increases summer fallow efficiency and the use of deep soil water by crops. Plant Soil 2012, 359, 57–69. [Google Scholar] [CrossRef]
- Gill, J.S.; Sale, P.W.G.; Peries, R.R.; Tang, C. Changes in soil physical properties and crop root growth in dense sodic subsoil following incorporation of organic amendments. Field Crop. Res. 2009, 114, 137–146. [Google Scholar] [CrossRef]
- Huber, S.; Prokop, G.; Arrouays, D.; Banko, G.; Bispo, A.; Jones, R.J.A.; Kibblewhite, M.G.; Lexer, W.; Möller, A.; Rickson, R.J.; et al. Environmental Assessment of Soil for Monitoring: Volume I Indicators and Criteria; OPOCE: Luxembourg, 2008; ISBN 9789279097089. [Google Scholar]
- Colombi, T.; Herrmann, A.M.; Vallenback, P.; Keller, T. Cortical cell diameter is key to energy costs of root growth in wheat. Plant Physiol. 2019, 180, 2049–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchar, R.W.; Edmonds, C.R.; Bradford, J.M. Root growth in cores formed from fragipan and B2 horizons of hobson soil. Soil Sci. Soc. Am. J. 1978, 42, 437–440. [Google Scholar] [CrossRef]
- Cockroft, B.; Barley, K.; Greacen, E. The penetration of clays by fine probes and root tips. Soil Res. 1969, 7, 333–348. [Google Scholar] [CrossRef]
- de Moraes, M.T.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; da Silva, V.R. Critical limits of soil penetration resistance in a rhodic Eutrudox. Rev. Bras. Ciência Do Solo 2014, 38, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, W.; Köpke, U.; Hesse, F.; Böhm, W. Penetration resistance and root growth of oats in tilled and untilled loess soil. Soil Tillage Res. 1983, 3, 261–275. [Google Scholar] [CrossRef]
- Imhoff, S.; Kay, B.D.; da Silva, A.P.; Hajabbasi, M.A. Evaluating responses of maize (Zea mays L.) to soil physical conditions using a boundary line approach. Soil Tillage Res. 2010, 106, 303–310. [Google Scholar] [CrossRef]
- Kay, B.D.; Hajabbasi, M.A.; Ying, J.; Tollenaar, M. Optimum versus non-limiting water contents for root growth, biomass accumulation, gas exchange and the rate of development of maize (Zea mays L.). Soil Tillage Res. 2006, 8, 42–54. [Google Scholar] [CrossRef]
- Taylor, H.M.; Roberson, G.M.; Parker, J.J. Soil strength-root penetration relations for medium- to coarse-textured soil materials. Soil Sci. 1966, 102, 18–22. [Google Scholar] [CrossRef]
- Groenevelt, P.H.; Grant, C.D.; Semetsa, S. A new procedure to determine soil water availability. Aust. J. Soil Res. 2001, 39, 577–598. [Google Scholar] [CrossRef]
- Piccoli, I.; Lazzaro, B.; Furlan, L.; Berti, A.; Morari, F. Examining crop root apparatus traits in a maize-soybean-winter wheat rotation under conservation agriculture management. Eur. J. Agron. 2021, 122, 126171. [Google Scholar] [CrossRef]
- Seehusen, T.; Riggert, R.; Fleige, H.; Horn, R.; Riley, H. Soil compaction and stress propagation after different wheeling intensities on a silt soil in South-East Norway. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 343–355. [Google Scholar] [CrossRef]
- Riley, H. Estimation of physical properties of cultivated soils in south east Norway from readily available information, no. 25. Norw. J. Agric. Sci. 1996, 25–51. [Google Scholar]
- Green, R.D.; Fordham, S.J. A Field Method for Determining Air Permeability in Soil; Ministry of Agriculture, Fisheries and Food: London, UK, 1975.
- Hartge, K.H. Saturated hydraulic conductivity measurement at soil core samples and its evaluation. Soil Technol. 1993, 6, 115–121. [Google Scholar]
- Seehusen, T.; Børresen, T.; Rostad, B.I.; Fleige, H.; Zink, A.; Riley, H. Verification of traffic-induced soil compaction after long-term ploughing and 10 years minimum tillage on clay loam soil in South-East Norway. Acta Agric. Scand. Sect. B 2014, 64, 312–328. [Google Scholar] [CrossRef]
- Carlgren, K.; Mattsson, L. Swedish soil fertility experiments. Acta Agric. Scand. Sect. B Soil Plant Sci. 2001, 51, 49–76. [Google Scholar] [CrossRef]
- Kirchmann, H.; Eriksson, J. Properties and Classification of Soils of the Swedish Long-Term Fertility Experiments II. Sites at Örja and Orup. Acta Agric. Scand. Sect. B Soil Plant Sci. 1993, 43, 193–205. [Google Scholar] [CrossRef]
- Grossman, R.B.; Reinsch, T.G. 2.1 Bulk density and linear extensibility. In Methods of Soil Analysis: Part 4 Physical Methods; Dane, J.H., Topp, C.G., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 201–228. [Google Scholar]
- Bittelli, M.; Andrenelli, M.C.; Simonetti, G.; Pellegrini, S.; Artioli, G.; Piccoli, I.; Morari, F. Shall we abandon sedimentation methods for particle size analysis in soils? Soil Tillage Res. 2019, 185, 36–46. [Google Scholar] [CrossRef]
- Parr, J.F.; Bertrand, A.R. Water infiltration into soils. Adv. Agron. 1960, 12, 311–363. [Google Scholar]
- Philip, J.R. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci. 1957, 84, 257–264. [Google Scholar] [CrossRef]
- Keller, T.; Håkansson, I. Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 2010, 154, 398–406. [Google Scholar] [CrossRef]
- van den Akker, J.J.H.; Hoogland, T. Comparison of risk assessment methods to determine the subsoil compaction risk of agricultural soils in the Netherlands. Soil Tillage Res. 2011, 114, 146–154. [Google Scholar] [CrossRef]
- Poeplau, C.; Reiter, L.; Berti, A.; Kätterer, T. Qualitative and quantitative response of soil organic carbon to 40 years of crop residue incorporation under contrasting nitrogen fertilisation regimes. Soil Res. 2017, 55, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Arvidsson, J.; Håkansson, I. A model for estimating crop yield losses caused by soil compaction. Soil Tillage Res. 1991, 20, 319–332. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Hansen, E.M.; Olesen, J.E. The effect of tillage intensity on soil structure and winter wheat root/shoot growth. Soil Use Manag. 2008, 24, 392–400. [Google Scholar] [CrossRef]
- Whiteley, G.M.; Dexter, A.R. The behaviour of roots encountering cracks in soil. Plant Soil 1984, 77, 141–149. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Kooistra, M.J.; Boone, F.R.; Veen, B.W.; Schoonderbeek, D. Root-soil contact of maize, as measured by a thin-section technique—I. Validity of the method. Plant Soil 1992, 139, 109–118. [Google Scholar] [CrossRef]
- Lipiec, J.; Håkansson, I. Influences of degree of compactness and matric water tension on some important plant growth factors. Soil Tillage Res. 2000, 53, 87–94. [Google Scholar] [CrossRef]
- McKenzie, B.M.; Bengough, A.G.; Hallett, P.D.; Thomas, W.T.B.; Forster, B.; McNicol, J.W. Deep rooting and drought screening of cereal crops: A novel field-based method and its application. Field Crop. Res. 2009, 54, 165–171. [Google Scholar] [CrossRef]
- Hirth, J.R.; McKenzie, B.M.; Tisdall, J.M. Ability of seedling roots of Lolium perenne L. to penetrate soil from artificial biopores is modified by soil bulk density, biopore angle and biopore relief. Plant Soil 2005, 272, 327–336. [Google Scholar] [CrossRef]
- Håkansson, I.; Lipiec, J. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil Tillage Res. 2000, 53, 71–85. [Google Scholar] [CrossRef]
- Lamandé, M.; Schjønning, P. Transmission of vertical stress in a real soil profile. Part I: Site description, evaluation of the Söhne model, and the effect of topsoil tillage. Soil Tillage Res. 2011, 114, 57–70. [Google Scholar] [CrossRef]
- Schjønning, P.; Thomsen, I.K. Shallow tillage effects on soil properties for temperate-region hard-setting soils. Soil Tillage Res. 2013, 132, 12–20. [Google Scholar] [CrossRef]
- Romero-Ruiz, A.; Linde, N.; Baron, L.; Solazzi, S.G.; Keller, T.; Or, D. Seismic signatures reveal persistence of soil compaction. Vadose Zone J. 2021, 20, e20140. [Google Scholar] [CrossRef]
- Piccoli, I.; Furlan, L.; Lazzaro, B.; Morari, F. Examining conservation agriculture soil profiles: Outcomes from northeastern Italian silty soils combining indirect geophysical and direct assessment methods. Eur. J. Soil Sci. 2020, 71, 1064–1075. [Google Scholar] [CrossRef]
- Schjønning, P.; van den Akker, J.J.H.; Keller, T.; Greve, M.H.; Lamandé, M.; Simojoki, A.; Stettler, M.; Arvidsson, J.; Breuning-Madsen, H. Driver-Pressure-State-Impact-Response (DPSIR) analysis and risk assessment for soil compaction-A European perspective. Adv. Agron. 2015, 133, 183–237. [Google Scholar]
- Chamen, T.; Alakukku, L.; Pires, S.; Sommer, C.; Spoor, G.; Tijink, F.; Weisskopf, P. Prevention strategies for field traffic-induced subsoil compaction: A review: Part 2. Equipment and field practices. Soil Tillage Res. 2003, 73, 161–174. [Google Scholar] [CrossRef]
- Barzegar, A.R.; Hashemi, A.M.; Herbert, S.J.; Asoodar, M.A. Interactive effects of tillage system and soil water content on aggregate size distribution for seedbed preparation in Fluvisols in southwest Iran. Soil Tillage Res. 2004, 78, 45–52. [Google Scholar] [CrossRef]
- Pirmoradian, N.; Sepaskhah, A.R.; Hajabbasi, M.A. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosyst. Eng. 2005, 90, 227–234. [Google Scholar] [CrossRef]
- Alcántara, V.; Don, A.; Well, R.; Nieder, R. Deep ploughing increases agricultural soil organic matter stocks. Glob. Chang. Biol. 2016, 22, 2939–2956. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Sartori, F.; Piccoli, I.; Polese, R.; Berti, A. A multivariate approach to evaluate reduced tillage systems and cover crop sustainability. Land 2021, 11, 55. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield—What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Mezzalama, M.; Wall, P.C.; Chocobar, A.; Deckers, J.; Sayre, K.D. Conservation agriculture, improving soil quality for sustainable production systems? In Advances in Soil Science: Food Security and Soil Quality; CRC Press: Boca Raton, FL, USA, 2010; pp. 137–208. ISBN 139781439800584. [Google Scholar]
- Derpsch, R. No-tillage and conservation agriculture: A progress report. In No-Till Farming Systems; Goddard, T., Zoebisch, M.A., Gan, Y.T., Ellis, W., Watson, A., Sombatpanit, S., Eds.; World Association of Soil and Water Conservation: Bangkok, Thailand, 2008; pp. 7–39. ISBN 9789748391601. [Google Scholar]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosiers, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Chang. Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Dal Ferro, N.; Cocco, E.; Lazzaro, B.; Berti, A.; Morari, F. Assessing the role of agri-environmental measures to enhance the environment in the Veneto Region, Italy, with a model-based approach. Agric. Ecosyst. Environ. 2016, 232, 312–325. [Google Scholar] [CrossRef]
- Piccoli, I.; Schjønning, P.; Lamandé, M.; Furlan, L.; Morari, F. Challenges of conservation agriculture practices on silty soils. Effects on soil pore and gas transport characteristics in North-eastern Italy. Soil Tillage Res. 2017, 172, 12–21. [Google Scholar] [CrossRef]
- Alaoui, A.; Lipiec, J.; Gerke, H.H. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil Tillage Res. 2011, 115–116, 1–15. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Entrup, N.L.; Oehmchen, J. Lehrbuch des Pflanzenbaues. Band 2: Kulturpflanzen; Entrup, N.L., Oehmchen, J., Eds.; AgroCooncept GmbH: Bonn, Germany, 2000; ISBN 378620117X. [Google Scholar]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Etana, A.; Håkansson, I. Swedish experiments on the persistence of subsoil compaction caused by vehicles with high axle load. Soil Tillage Res. 1994, 29, 167–172. [Google Scholar] [CrossRef]
- Pagenkemper, S.K.; Puschmann, D.U.; Peth, S.; Horn, R. Investigation of time dependent development of soil structure and formation of macropore networks as affected by various precrop species. Int. Soil Water Conserv. Res. 2014, 2, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Wahlström, E.M.; Kristensen, H.L.; Thomsen, I.K.; Labouriau, R.; Pulido-Moncada, M.; Nielsen, J.A.; Munkholm, L.J. Subsoil compaction effect on spatio-temporal root growth, reuse of biopores and crop yield of spring barley. Eur. J. Agron. 2021, 123, 126225. [Google Scholar] [CrossRef]
- Piccoli, I.; Schjønning, P.; Lamandé, M.; Zanini, F.; Morari, F. Coupling gas transport measurements and X-ray tomography scans for multiscale analysis in silty soils. Geoderma 2019, 338, 576–584. [Google Scholar] [CrossRef]
- Williams, S.M.; Weil, R.R. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci. Soc. Am. J. 2004, 68, 1403–1409. [Google Scholar] [CrossRef]
- Çerçioğlu, M.; Anderson, S.H.; Udawatta, R.P.; Alagele, S. Effect of cover crop management on soil hydraulic properties. Geoderma 2019, 343, 247–253. [Google Scholar] [CrossRef]
- Calonego, J.C.; Raphael, J.P.A.; Rigon, J.P.G.; Oliveira Neto, L.d.; Rosolem, C.A. Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. Eur. J. Agron. 2017, 85, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, D.C.; Lyon, D.J.; Higgins, R.K.; Hergert, G.W.; Holman, J.D.; Vigil, M.F. Cover crop effect on subsequent wheat yield in the central great plains. Agron. J. 2016, 108, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Acuña, J.C.M.M.; Villamil, M.B. Short-term effects of cover crops and compaction on soil properties and soybean production in Illinois. Agron. J. 2014, 106, 860. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020, 256, 929–952. [Google Scholar] [CrossRef]
- Kätterer, T.; Bolinder, M.A.; Berglund, K.; Kirchmann, H. Strategies for carbon sequestration in agricultural soils in northern Europe. Acta Agric. Scand. Sect. A—Anim. Sci. 2012, 62, 181–198. [Google Scholar] [CrossRef]
- Smith, P. How long before a change in soil organic carbon can be detected? Glob. Chang. Biol. 2004, 10, 1878–1883. [Google Scholar] [CrossRef]
- Seehusen, T.; Waalen, W.; Hoel, B.; Uhlen, A.K.; Persson, T.; Strand, E. Landbruket i Møte Med Klimaendringen—Effekter av Endret Klima og Behov for Tilpasninger- Norsk Kornproduksjon—Vedlegg til Hovedrapporten: Utredninger om Landbrukets Utfordringer i Møte Med Klimaendringene—Fagnotater Som Underlag for Arbeidsgruppens; Landbruks og Matdepartement: Oslo, Norway, 2016. [Google Scholar]
- Alaoui, A.; Rogger, M.; Peth, S.; Blöschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642. [Google Scholar] [CrossRef]
- Liu, H.; Colombi, T.; Jäck, O.; Keller, T.; Weih, M. Effects of soil compaction on grain yield of wheat depend on weather conditions. Sci. Total Environ. 2022, 807, 150763. [Google Scholar] [CrossRef] [PubMed]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Country | Institution | SICS | Standard Practice |
---|---|---|---|
Norway | NIBIO | Bio-drilling crop roots | Conventional tillage |
Sweden | SLU | Loosening of subsoil with and without straw incorporation | Conventional tillage |
United Kingdom | GWCT | Ploughing | Direct drilling |
Italy | UNIPD | No-tillage with deep-rooted cover crop | Conventional tillage with bare soil between the main crops |
Romania | ICPA | Ploughing, subsoiling, chisel | Disking as main soil tillage |
BD (g cm−3) | TPV (%) | AC (%) | Ks (m day−1) | Air Perm (um2) | |
---|---|---|---|---|---|
2015 | |||||
Reference plot | 1.59 ± 0.04 a | 46.1 ± 1.3 a | 3.42 ± 0.82 ns | 7.56 × 10−2 ± 1.02 × 10−1 ns | 11.9 ± 13.32 ns |
Compacted plot | 1.69 ± 0.04 b | 40.0 ± 1.7 b | 3.38 ± 1.03 ns | 7.30 × 10−3 ± 5.1 × 10−3 ns | 26.1 ± 20.90 ns |
2020 | |||||
Reference plot | |||||
Treatment 1 | 1.44 ± 0.06 ns¶ | 48.2 ± 5.5 ns | 6.31 ± 1.06 ns¶ | 9.68 × 10−2 ± 1.24 × 10−1 ns | 1.1 ± 1.30 ns |
Treatment 2 | 1.45 ± 0.05 ns¶ | 47.0 ± 1.5 ns | 6.41 ± 0.53 ns¶ | 3.00 × 10−3 ± 2.7 × 10−3 ns | 0.1 ± 0.06 ns |
Treatment 3 | 1.48 ± 0.04 ns¶ | 45.2 ± 2.5 ns | 5.19 ± 1.78 ns | 1.5 × 10−3 ± 8.00 × 10−4 ns | 0.1 ± 0.02 ns |
Treatment 4 | 1.44 ± 0.03 ns¶ | 46.7 ± 1.3 ns | 5.33 ± 1.12 ns¶ | 1.46 × 10−1 ± 2.18× 10−1 ns | 1.5 ± 1.97 ns |
Compacted plot | |||||
Treatment 1 | 1.63 ± 0.07 a | 45.1 ± 3.3 ns¶ | 9.68 ± 5.36 a | 1.48 × 10−2 ± 1.71 × 10−2 ns | 0.3 ± 0.27 ns¶ |
Treatment 2 | 1.55 ± 0.16 ab | 42.5 ± 5.1 ns | 6.58 ± 1.06 ab¶ | 3.13 × 10−1 ± 3.76 × 10−1 ns | 2.7 ± 3.16 ns¶ |
Treatment 3 | 1.68 ± 0.05 a | 42.4 ± 1.7 ns | 5.26 ± 0.86 b¶ | 1.90 × 10−3 ± 1.00 × 10−3 ns¶ | 0.1 ± 0.02 ns¶ |
Treatment 4 | 1.45 ± 0.07 b¶ | 47.0 ± 1.8 ns¶ | 5.71 ± 1.12 ab¶ | 60.1× 10−1 ± 1.20 ns | 3.8 ± 7.49 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccoli, I.; Seehusen, T.; Bussell, J.; Vizitu, O.; Calciu, I.; Berti, A.; Börjesson, G.; Kirchmann, H.; Kätterer, T.; Sartori, F.; et al. Opportunities for Mitigating Soil Compaction in Europe—Case Studies from the SoilCare Project Using Soil-Improving Cropping Systems. Land 2022, 11, 223. https://doi.org/10.3390/land11020223
Piccoli I, Seehusen T, Bussell J, Vizitu O, Calciu I, Berti A, Börjesson G, Kirchmann H, Kätterer T, Sartori F, et al. Opportunities for Mitigating Soil Compaction in Europe—Case Studies from the SoilCare Project Using Soil-Improving Cropping Systems. Land. 2022; 11(2):223. https://doi.org/10.3390/land11020223
Chicago/Turabian StylePiccoli, Ilaria, Till Seehusen, Jenny Bussell, Olga Vizitu, Irina Calciu, Antonio Berti, Gunnar Börjesson, Holger Kirchmann, Thomas Kätterer, Felice Sartori, and et al. 2022. "Opportunities for Mitigating Soil Compaction in Europe—Case Studies from the SoilCare Project Using Soil-Improving Cropping Systems" Land 11, no. 2: 223. https://doi.org/10.3390/land11020223
APA StylePiccoli, I., Seehusen, T., Bussell, J., Vizitu, O., Calciu, I., Berti, A., Börjesson, G., Kirchmann, H., Kätterer, T., Sartori, F., Stoate, C., Crotty, F., Panagea, I. S., Alaoui, A., & Bolinder, M. A. (2022). Opportunities for Mitigating Soil Compaction in Europe—Case Studies from the SoilCare Project Using Soil-Improving Cropping Systems. Land, 11(2), 223. https://doi.org/10.3390/land11020223