Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Sampling and Analytical Determination
2.4. Data Analysis
3. Results and Discussion
3.1. Total Soil Organic Carbon Content
3.2. Mineral and Particulate Organic Carbon
3.3. Isotopic Determination
3.3.1. Total Soil Organic Carbon
3.3.2. Mineral and Particulate Organic Carbon
3.4. General Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Climate Smart Agriculture Sourcebook; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Lemaire, G.; Franzluebbers, A.J.; De Fassio Carvalho, P.C.; Debieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Sanderson, M.; Archer, D.; Hendrickson, J.; Kronberg, S.; Liebig, M.; Nichols, K.; Schmer, M.; Tanaka, D.; Aguilar, J. Diversification and ecosystem services for conservation agriculture: Outcomes from pastures and integrated crop–livestock systems. Renew. Agric. Food Syst. 2013, 28, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.A.; Asai, M.; Sarthou, J.P.; Duru, M.; Therond, O. Crop-livestock integration beyond the farm level: A review. Agron. Sustain. Dev. 2016, 36, 53. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J.; Lemaire, G.; De Fassio Carvalho, P.C.; Sulc, R.M.; Debieu, B. Toward agricultural sustainability through integrated crop-livestock systems: Environmental outcomes. Agric. Ecosyst. Environ. 2014, 29, 192–194. [Google Scholar] [CrossRef]
- Tanaka, D.; Karn, J.F.; Schilljegerdes, E.J. Integrated crop/livestock systems research: Practical research considerations. Renew. Agric. Food Syst. 2007, 23, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Kyeryga, P. On-Farm Research: Experimental Approaches, Analytical Frameworks, Case Studies, and Impact. Agron. J. 2019, 111, 2633–2635. [Google Scholar] [CrossRef] [Green Version]
- Buck, H.J.; Palumbo-Compton, A. Soil carbon sequestration as a climate strategy: What do farmers think? Biogeochemistry 2022, 161, 59–70. [Google Scholar] [CrossRef]
- Viglizzo, F.E.; Carreño, L.V.; Pereyra, H.; Ricard, F.; Clatt, J.; Pincén, D. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob. Chang. Biol. 2011, 17, 959–973. [Google Scholar] [CrossRef]
- Villarino, S.H.; Studdert, G.A.; Laterra, P.; Cendoya, M.G. Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale. Agric. Ecosyst. Environ. 2014, 185, 118–132. [Google Scholar] [CrossRef]
- Colazo, J.C.; Carfagno, P.F.; Gvozdenovich, J.; Buschiazzo, D.E. Soil erosion. In The Soils of Argentina; Rubio, G., Lavado, R., Pereyra, F., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 118–132. [Google Scholar]
- Peiretti, R.; Dumanski, J. The transformation of agriculture in Argentina through soil conservation. Int. Soil Water Conserv. Res. 2014, 2, 14–20. [Google Scholar] [CrossRef]
- Borelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schutt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commum. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Carbon Sequestration in Agricultural Ecosystems; Springer Nature: Cham, Switzerland, 2018; pp. 137–173. [Google Scholar]
- Hendrickson, J.; Colazo, J.C. Using crop diversity and conservation cropping to develop more sustainable arable cropping systems. In Agroecosystem Diversity: Reconciling Contemporary Agriculture and Environmental Quality; Lemaire, G., de Faccio Carvalho, P., Kronberg, S., Recous, S., Eds.; Elsevier: London, UK, 2019; pp. 93–108. [Google Scholar]
- Witzgall, K.; Vidal, A.; Schubert, D.I.; Höschen, C.; Schweizer, S.; Buegger, F.; Pouteau, V.; Chenu, C.; Mueller, C. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 2021, 12, 4115. [Google Scholar] [CrossRef] [PubMed]
- Franzluebbers, A.J.; Stuedemann, J. Early Response of Soil Organic Fractions to Tillage and Integrated Crop-Livestock Production. Soil Sci. Soc. Am. J. 2008, 72, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Loss, A.; Pereira, M.G.; Perin, A.; Silva Coutinho, F.; Cunha Dos Anjos, L.H. Particulate organic matter in soil under different management systems in the Brazilian Cerrado. Soil Res. 2012, 50, 685–693. [Google Scholar] [CrossRef]
- Zhu, X.; Di, D.; Ma, M.; Shi, W. Stable Isotopes in Greenhouse Gases from Soil: A Review of Theory and Application. Atmosphere 2019, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- De Ruyver, R.; Di Bella, C. Climate. In The Soils of Argentina; Rubio, G., Lavado, R., Pereyra, F., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 27–48. [Google Scholar]
- Rubio, G.; Pereyra, F.X.; Taboada, M. Soils of the Pampean region. In The Soils of Argentina; Rubio, G., Lavado, R., Pereyra, F., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 82–100. [Google Scholar]
- Dominguez, J.; Rubio, G. Agriculture. In The Soils of Argentina; Rubio, G., Lavado, R., Pereyra, F., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 209–238. [Google Scholar]
- Garbulsky, M.; Deregibus, A. Argentina. In Country Pasture/Forage Resources Profiles; Suttie, J.M., Reynolds, S.G., Eds.; FAO: Rome, Italy, 2004; p. 28. [Google Scholar]
- GEOINTA. Available online: http://visor.geointa.inta.gob.ar/ (accessed on 2 September 2022).
- Soil survey staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA–NRCS: Washinton, DC, USA, 1999; pp. 235–287. [Google Scholar]
- INTA. Soil Series. Available online: http://rafaela.inta.gov.ar/maps/suelos/__series/mg/ (accessed on 2 September 2022).
- Cambardella, C.A.; Elliot, E.T. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Chemical Methods. Methods of Soil Analysis. Part 3; Bigham, J.M., Ed.; SSSA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Grossman, R.B.; Reinsch, T.G. Bulk density and linear extensibility: Core method. In Methods of Soil Analysis Part 4, Physical Methods; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002; pp. 201–228. [Google Scholar]
- Coplen, T.B.; Brand, W.A.; Gehre, M.; Gröning, M.; Meijer, H.; Toman, B.; Verkouteren, R.M. New Guidelines for δ13C Measurements. Anal. Chem. 2006, 78, 2439–2441. [Google Scholar] [CrossRef] [Green Version]
- Pennock, D.J. Designing field studies in soil science. Can. J. Soil Sci. 2004, 84, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat, v. 2017; Universidad Nacional de Córdoba: Córdoba, Argentina, 2017. Available online: http://www.infostat.com.ar/(accessed on 2 September 2022).
- Berhongaray, G.; Álvarez, R.; De Paepe, J.; Caride, C.; Cantet, R. Land use effects on soil carbon in the Argentine Pampas. Geoderma 2013, 192, 97–110. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Sawchik, J.; Taboada, M. Agronomic and Environmental impacts of pasture-crop rotations in temperate North and South America. Agric. Ecosyst. Environ. 2014, 190, 18–26. [Google Scholar] [CrossRef]
- Peyraud, J.L.; Taboada, M.; Delaby, L. Integrated crop and livestock systems in Western Europe and South America: A review. Eur. J. Agron. 2014, 57, 31–42. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 2015, 70, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Fang, C.; Yuan, Z.; Li, F. Long Term Growth of Alfalfa Increased Soil Organic Matter Accumulation and Nutrient Mineralization in a Semi-Arid Environment. Front. Environ. Sci. 2021, 9, 649346. [Google Scholar] [CrossRef]
- Chang, S.; Liu, N.; Wang, X.; Zhang, Y.; Xie, Y. Alfalfa Carbon and Nitrogen Sequestration Patterns and Effects of Temperature and Precipitation in Three Agro—Pastoral Ecotones of Northern China. PLoS ONE 2012, 7, e50544. [Google Scholar] [CrossRef]
- Álvarez, R.; Berhongaray, G. Soil organic carbon sequestration potential of Pampean soils: Comparing methods and estimation for surface and deep layers. Soil Res. 2020, 12, 346–358. [Google Scholar] [CrossRef]
- Georgiou, K.; Jackson, R.; Vindusková, O.; Abramoff, R.; Ahlström, A.; Feng, W.; Harden, J.; Pellegrini, A.; Polley, H.; Soong, J.; et al. Global stock and capacity of mineral-associated soil organic carbon. Nat. Commum. 2022, 13, 3797. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.; Cassman, K. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.; Mc Bratney, A.; Angers, D.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per mile. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Ojeda, J.; Caviglia, O.; Agnusdei, M. Vertical distribution of root biomass and carbon stocks in forage cropping systems. Plant Soil 2018, 423, 175–191. [Google Scholar] [CrossRef]
- Villarino, S.; Pinto, P.; Jackon, R.; Piñeiro, G. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Sci. Adv. 2021, 7, eabd3176. [Google Scholar] [CrossRef] [PubMed]
- Franzluebber, A.; Stuedemann, J.A. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA. Environ. Pollut. 2002, 116, 53–62. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Zhang, Q.; Song, Z. Variations and Indications of δ13CSOC and δ15NSON in Soil Profiles in Karst Critical Zone Observatory (CZO), Southwest China. Sustainability 2019, 11, 2144. [Google Scholar] [CrossRef] [Green Version]
- Balesdent, J.; Mariotti, A. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol. Biochem. 1987, 19, 25–30. [Google Scholar] [CrossRef]
- IAEA. Use of Isotope and Radiation Methods in Soil and Water Management and Crop Nutrition; IAEA: Vienna, Austria, 2001; pp. 21–96. [Google Scholar]
- De Dios Herrero, J.M.; Colazo, J.C.; Guzmán, M.L.; Saenz, C.A.; Sager, R.; Sakadevan, K. Soil organic carbon assessments in cropping systems using isotopic techniques. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 23 April 2016. [Google Scholar]
- Qu, Q.; Zhang, J.; Hay, X.; Wu, J.; Fan, J.; Wang, D.; Li, J.; Shangguan, Z.; Deng, L. Long-term fencing alters the vertical distribution of soil δ13C and SOC turnover rate: Revealed by MBC-δ13C. Agric. Ecosyst. Environ. 2022, 339, 108119. [Google Scholar] [CrossRef]
- Smith, C.J.; Chalk, P.M. Carbon (δ13C) dynamics in agroecosystems under traditional and minimum tillage systems: A review. Soil Res. 2021, 59, 661–672. [Google Scholar] [CrossRef]
- Acton, P.; Fox, J.; Campbell, E.; Rowe, H.; Wilkinson, M. Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. J. Geophys. Res. Biogeosci. 2013, 118, 1532–1545. [Google Scholar] [CrossRef]
- Accoe, F.; Boeckx, P.; Van Cleemput, O.; Hofman, G.; Zhang, Y.; Li, R.; Chen, G. Evolution of 13C signature related to total carbon in a soil profile under grassland. Rapid Commun. Mass Spectrom. 2002, 16, 2184–2189. [Google Scholar] [CrossRef]
- Loss, A.; Pereira, M.; Perin, A.; Beutler, S.; Cunha Dos Anjos, L. Carbon, Nitrogen and natural abundance of δ13C and δ15N of light-fraction organic matter under no-tillage and crop-livestock integration systems. Acta Sci. Agron. 2012, 34, 465–472. [Google Scholar] [CrossRef]
BD | Clay | Silt | Sand | |
---|---|---|---|---|
Mg m−3 | g kg−1 | |||
CC | 1.3 | 360 | 330 | 310 |
ICLS | 1.3 | 340 | 260 | 400 |
REF | 0.8 | 310 | 400 | 280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz Colazo, J.; de Dios Herrero, J.; Sager, R.; Guzmán, M.L.; Zaman, M. Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina. Land 2022, 11, 2060. https://doi.org/10.3390/land11112060
Cruz Colazo J, de Dios Herrero J, Sager R, Guzmán ML, Zaman M. Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina. Land. 2022; 11(11):2060. https://doi.org/10.3390/land11112060
Chicago/Turabian StyleCruz Colazo, Juan, Juan de Dios Herrero, Ricardo Sager, Maria Laura Guzmán, and Mohammad Zaman. 2022. "Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina" Land 11, no. 11: 2060. https://doi.org/10.3390/land11112060
APA StyleCruz Colazo, J., de Dios Herrero, J., Sager, R., Guzmán, M. L., & Zaman, M. (2022). Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina. Land, 11(11), 2060. https://doi.org/10.3390/land11112060