Drought- and Salt-Tolerant Plants of the Mediterranean and Their Diverse Applications: The Case of Crete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Plant Species Selection Criteria
2.3. Empirical Assessment
2.4. Systematic Review
3. Results
3.1. Empirical Assessment
3.2. Systematic Review
3.3. Abiotic Stress Tolerance
3.4. Additional Value of Mediterranean Plants
3.4.1. Nutrition
3.4.2. Medicine
3.4.3. Industry
3.4.4. Cosmetology
Plant | Indicative References of Nutritional Value |
---|---|
Arbutus unedo L. | [103,120] |
Borago officinalis L. | [111,121,122] |
Capparis spinosa L. | [123,124] |
Ceratonia siliqua L. | [125,126,127,128,129] |
Cichorium spinosum L. | [63] |
Crataegus monogyna | [130,131] |
Crithmum maritimum L. | [132] |
Daucus carota ssp maximus (Desf.) Ball | [99,133,134] |
Foeniculum vulgare Hill. | [135] |
Juniperus oxycedrus L. | [136] |
Laurus nobilis L. | [137,138] |
Lavandula stoechas L. | [139] |
Limoniastrum monopetalum (L.) Boiss. | [140,141,142] |
Lupinus angustifolius L. | [143,144,145,146] |
Melissa officinalis L. | [147] |
Muscari comosum (L.) Parl. | [79,148] |
Myrtus communis L. | [104,105,149,150] |
Origanum dictamnus | [30,151,152,153] |
Origanum onites L. | [154,155,156] |
Pinus pinea L. | [157] |
Pistacia lentiscus L. | [158,159,160] |
Pistacia terebinthus L. | [161,162,163,164,165] |
Rosmarinus officinalis L. | [113,114,166,167,168] |
Salvia fruticosa Mill. | [169] |
Satureja thymbra L. | [170] |
Thymbra capitata (L.) Cav. | [171,172,173] |
Plant | Indicative Reference of Industrial Use |
---|---|
Borago officinalis L. | [111,112,174] |
Ceratonia siliqua L. | [115,128,129] |
Crithmum maritimum L. | [175] |
Hypericum perforatum L. | [117] |
Juniperus oxycedrus L. | [176] |
Laurus nobilis L. | [138] |
Myrtus communis L. | [104,105,149,150,177] |
Origanum onites L. | [156] |
Phillyrea latifolia L. | [118] |
Pinus pinea L. | [178] |
Pistacia lentiscus L. | [160] |
Pistacia terebinthus L. | [179] |
Quercus ilex L. | [116] |
Rosmarinus officinalis L. | [113,114,166,167,168] |
Satureja thymbra L. | [180] |
Spartium junceum L. | [119] |
Thymbra capitata (L.) Cav. | [172,173] |
Plant | Indicative Reference of Cosmetology Use |
---|---|
Capparis spinosa L. | [55,181] |
Ceratonia siliqua L. | [128] |
Crithmum maritimum. L. | [175,182,183] |
Daucus carota ssp maximus (Desf.) Ball | [133,134] |
Foeniculum vulgare Hill. | [184] |
Helichrysum orientale (L.) Gaertn | [185] |
Juniperus oxycedrus L. | [136] |
Laurus nobilis L. | [138,186] |
Lavandula stoechas L. | [139] |
Myrtus communis L. | [104,105,149,150] |
Origanum onites L. | [155] |
Phillyrea latifolia L. | [118] |
Pistacia lentiscus L. | [160] |
Pistacia terebinthus L. | [165] |
Rhamnus alaternus L. | [187] |
Rosmarinus officinalis L. | [166,167,168] |
Satureja thymbra L. | [188,189] |
Spartium junceum L. | [90] |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing Climate Both Increases and Decreases European River Floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Kreibich, H.; van Loon, A.F.; Schröter, K.; Ward, P.J.; Mazzoleni, M.; Sairam, N.; Abeshu, G.W.; Agafonova, S.; AghaKouchak, A.; Aksoy, H.; et al. The Challenge of Unprecedented Floods and Droughts in Risk Management. Nature 2022, 608, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Nerantzaki, S.D.; Efstathiou, D.; Giannakis, G.v.; Kritsotakis, M.; Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K.; Nikolaidis, N.P. Climate Change Impact on the Hydrological Budget of a Large Mediterranean Island. Hydrol. Sci. J. 2019, 64, 1190–1203. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for Drought Assessment in the Mediterranean Region under Future Climate Scenarios. Earth Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Ludwig, R.; Roson, R.; Zografos, C.; Kallis, G. Towards an Inter-Disciplinary Research Agenda on Climate Change, Water and Security in Southern Europe and Neighboring Countries. Environ. Sci. Policy 2011, 14, 794–803. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Tsanis, I.K.; Daliakopoulos, I.N.; Jacob, D. Impact of Climate Change on Water Resources Status: A Case Study for Crete Island, Greece. J. Hydrol. 2013, 479, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Change 2012, 3, 52–58. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Panagea, I.S.; Tsanis, I.K.; Grillakis, M.G.; Koutroulis, A.G.; Hessel, R.; Mayor, A.G.; Ritsema, C.J. Yield Response of Mediterranean Rangelands under a Changing Climate. Land Degrad. Dev. 2017, 28, 1962–1972. [Google Scholar] [CrossRef]
- Perri, S.; Molini, A.; Hedin, L.O.O.; Porporato, A.M. Contrasting Effects of Aridity and Seasonality on Global Salinization. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 13–17 December 2021. [Google Scholar]
- Iglesias, A.; Mougou, R.; Moneo, M.; Quiroga, S. Towards Adaptation of Agriculture to Climate Change in the Mediterranean. Reg. Environ. Change 2011, 11, 159–166. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.G.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The Threat of Soil Salinity: A European Scale Review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Asensio, D.; Sardans, J.; Zuccarini, P.; Ogaya, R.; Mattana, S.; Peñuelas, J. Seasonal Drought in Mediterranean Soils Mainly Changes Microbial C and N Contents Whereas Chronic Drought Mainly Impairs the Capacity of Microbes to Retain, P. Soil Biol. Biochem. 2022, 165, 108515. [Google Scholar] [CrossRef]
- Trabelsi, L.; Gargouri, K.; Ben Hassena, A.; Mbadra, C.; Ghrab, M.; Ncube, B.; Van Staden, J.; Gargouri, R. Impact of Drought and Salinity on Olive Water Status and Physiological Performance in an Arid Climate. Agric. Water Manag. 2019, 213, 749–759. [Google Scholar] [CrossRef]
- Villani, L.; Castelli, G.; Piemontese, L.; Penna, D.; Bresci, E. Drought Risk Assessment in Mediterranean Agricultural Watersheds: A Case Study in Central Italy. Agric. Water Manag. 2022, 271, 107748. [Google Scholar] [CrossRef]
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Van Mechelen, C.; Dutoit, T.; Kattge, J.; Hermy, M. Plant Trait Analysis Delivers an Extensive List of Potential Green Roof Species for Mediterranean France. Ecol. Eng. 2014, 67, 48–59. [Google Scholar] [CrossRef]
- Christoforidi, I.; Kollaros, D.; Papadakaki, M.; Psaroudaki, A.; Antoniou, T.; Daliakopoulos, I.N. A Novel Index for Assessing Perceived Availability and Public Demand for Urban Green Space: Application in a Mediterranean Island. Urban Urban Green 2022, 69, 127498. [Google Scholar] [CrossRef]
- Christoforidi, I.; Kollaros, D.; Papadakaki, M.; Psaroudaki, A.; Manios, T.; Daliakopoulos, I.N. Bringing the Wood and Scrub to the Mediterranean Urban Park. In Proceedings of the Terraenvision 2022, Utrecht, The Netherlands, 28 July 2022; pp. 154–155. [Google Scholar]
- Schwilch, G.; Lemann, T.; Berglund, Ö.; Camarotto, C.; Cerdà, A.; Daliakopoulos, I.; Kohnová, S.; Krzeminska, D.; Marañón, T.; Rietra, R.; et al. Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability 2018, 10, 4416. [Google Scholar] [CrossRef] [Green Version]
- Norström, E.; Katrantsiotis, C.; Smittenberg, R.H.; Kouli, K. Chemotaxonomy in Some Mediterranean Plants and Implications for Fossil Biomarker Records. Geochim. Cosmochim. Acta 2017, 219, 96–110. [Google Scholar] [CrossRef]
- Butler, C.; Butler, E.; Orians, C.M. Native Plant Enthusiasm Reaches New Heights: Perceptions, Evidence, and the Future of Green Roofs. Urban Urban Green 2012, 11, 1–10. [Google Scholar] [CrossRef]
- Nardini, A.; lo Gullo, M.A.; Trifilò, P.; Salleo, S. The Challenge of the Mediterranean Climate to Plant Hydraulics: Responses and Adaptations. Environ. Exp. Bot. 2014, 103, 68–79. [Google Scholar] [CrossRef]
- Salleo, S.; Nardini, A. Sclerophylly: Evolutionary Advantage or Mere Epiphenomenon? Plant Biosyst. 2000, 134, 247–259. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Cowling, R.M.; Rundel, P.W.; Lamont, B.B.; Arroyo, M.K.; Arianoutsou, M. Plant Diversity in Mediterranean-Climate Regions. Trends Ecol. Evol. 1996, 11, 362–366. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus Officinalis L.: An Update Review of Its Phytochemistry and Biological Activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psaroudaki, A.; Dimitropoulakis, P.; Constantinidis, T.; Katsiotis, A.; Skaracis, G.N. Ten Indigenous Edible Plants: Contemporary Use in Eastern Crete, Greece. Cult. Agric. Food Environ. 2012, 34, 172–177. [Google Scholar] [CrossRef]
- Visioli, F.; Grande, S.; Bogani, P.; Galli, C. The Role of Antioxidants in the Mediterranean Diets: Focus on Cancer. Eur. J. Cancer Prev. 2004, 13, 337–343. [Google Scholar] [CrossRef]
- Liolios, C.C.; Graikou, K.; Skaltsa, E.; Chinou, I. Dittany of Crete: A Botanical and Ethnopharmacological Review. J. Ethnopharmacol. 2010, 131, 229–241. [Google Scholar] [CrossRef]
- Krigas, N.; Lazari, D.; Maloupa, E.; Stikoudi, M. Introducing Dittany of Crete (Origanum Dictamnus L.) to Gastronomy: A New Culinary Concept for a Traditionally Used Medicinal Plant. Int. J. Gastron. Food Sci. 2015, 2, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.E.; Lazo, G.R.; Anderson, O.D. Plant and Crop Databases. Methods Mol. Biol. 2009, 513, 243–262. [Google Scholar] [CrossRef]
- Fraser, L.H. TRY—A Plant Trait Database of Databases. Glob. Chang. Biol. 2020, 26, 189–190. [Google Scholar] [CrossRef]
- Tankersley, B. Plant Databases Linked for Botanists and Gardeners. Nature 2006, 441, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fern, K. Plants for a Future: Edible & Useful Plants for a Healthier World; Permanent Publications: East Meon, UK, 1997. [Google Scholar]
- Vogt, J.; Gillner, S.; Hofmann, M.; Tharang, A.; Dettmann, S.; Gerstenberg, T.; Schmidt, C.; Gebauer, H.; van de Riet, K.; Berger, U.; et al. Citree: A Database Supporting Tree Selection for Urban Areas in Temperate Climate. Landsc. Urban Plan. 2017, 157, 14–25. [Google Scholar] [CrossRef]
- Fremout, T.; Thomas, E.; Taedoumg, H.; Briers, S.; Gutiérrez-Miranda, C.E.; Alcázar-Caicedo, C.; Lindau, A.; Mounmemi Kpoumie, H.; Vinceti, B.; Kettle, C.; et al. Diversity for Restoration (D4R): Guiding the Selection of Tree Species and Seed Sources for Climate-Resilient Restoration of Tropical Forest Landscapes. J. Appl. Ecol. 2022, 59, 664–679. [Google Scholar] [CrossRef]
- Ellis, E.A.; Nair, P.K.R.; Jeswani, S.D. Development of a Web-Based Application for Agroforestry Planning and Tree Selection. Comput. Electron. Agric. 2005, 49, 129–141. [Google Scholar] [CrossRef]
- Reeves, M.; Maher, A.T.; Bentrup, G.; Dosskey, M.G. Tree Advisor: A Novel Woody Plant Selection Tool to Support Multifunctional Objectives. Land 2022, 11, 397. [Google Scholar] [CrossRef]
- Barredo, J.I.; Caudullo, G.; Dosio, A. Mediterranean Habitat Loss under Future Climate Conditions: Assessing Impacts on the Natura 2000 Protected Area Network. Appl. Geogr. 2016, 75, 83–92. [Google Scholar] [CrossRef]
- NHMC. Ecotourism Guide of the Main Wetlands of Crete; Natural History Museum of Crete, Project LIFE00ENV/GR/000685. Available online: https://www.nhmc.uoc.gr/sites/default/files/oikotouristikos_odigos.pdf. (accessed on 9 July 2022).
- Koutroulis, A.G.; Grillakis, M.G.; Daliakopoulos, I.N.; Tsanis, I.K.; Jacob, D. Cross Sectoral Impacts on Water Availability at +2 °C and +3 °C for East Mediterranean Island States: The Case of Crete. J. Hydrol. 2016, 532, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Boix, C.; Calvo, A.; Imeson, A.C.; Schoorl, J.M.; Soriano, M.D.; Tiemessen, I.R. The Impact of Climatic Change and Land Use on the Hydrological Response of Mediterranean Soils; a Study along a Climatological Gradient in Crete (Greece). Stud. Environ. Sci. 1995, 65, 767–770. [Google Scholar] [CrossRef]
- ESDAC ESDAC: Soil Map of Crete. Available online: https://esdac.jrc.ec.europa.eu/content/soil-map-crete (accessed on 9 July 2022).
- Steiakakis, E.; Vavadakis, D.; Kritsotakis, M.; Voudouris, K.; Anagnostopoulou, C. Drought Impacts on the Fresh Water Potential of a Karst Aquifer in Crete, Greece. Environ. Earth Sci. 2016, 75, 507. [Google Scholar] [CrossRef]
- Malagò, A.; Efstathiou, D.; Bouraoui, F.; Nikolaidis, N.P.; Franchini, M.; Bidoglio, G.; Kritsotakis, M. Regional Scale Hydrologic Modeling of a Karst-Dominant Geomorphology: The Case Study of the Island of Crete. J. Hydrol. 2016, 540, 64–81. [Google Scholar] [CrossRef]
- Tsantilis, D. Crete a Continent on an Island. National History Museum- University of Crete, Typokreta: Heraklion, Greece, 2014. (In Greek) [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengist, W.; Soromessa, T.; Legese, G. Method for Conducting Systematic Literature Review and Meta-Analysis for Environmental Science Research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulou-Vogiatzi, C. Outdoor Ornamental Plants; Gartaganis: Thessaloniki, Greece, 2009; ISBN 9789606859007. (In Greek) [Google Scholar]
- Nikitidis, N. Greek Flora: Borago Officinalis. Available online: https://www.greekflora.gr/el/flowers/1688/Borago-officinalis (accessed on 9 July 2022).
- RHS Borago Officinalis|borage/RHS Gardening. Available online: https://www.rhs.org.uk/plants/57301/i-borago-officinalis-i/details (accessed on 9 July 2022).
- Pistelli, L.; Fiumi, C.; Morelli, I.; Giachi, I. Flavonoids from Calicotome Villosa. Fitoterapia 2003, 74, 417–419. [Google Scholar] [CrossRef]
- Barhouchi, B.; Aouadi, S.; Abdi, A. Preparations Based on Minerals Extracts of Calicotome Villosa Roots and Bovine Butyrate Matter: Evaluation in Vitro of Their Antibacterial and Antifungal Activities. J. Mycol. Med. 2018, 28, 473–481. [Google Scholar] [CrossRef]
- Yiotis, C.; Manetas, Y.; Psaras, G.K. Leaf and Green Stem Anatomy of the Drought Deciduous Mediterranean Shrub Calicotome Villosa (Poiret) Link. (Leguminosae). Flora: Morphol. Distrib. Funct. Ecol. Plants 2006, 201, 102–107. [Google Scholar] [CrossRef]
- Tlili, N.; Elfalleh, W.; Saadaoui, E.; Khaldi, A.; Triki, S.; Nasri, N. The Caper (Capparis L.): Ethnopharmacology, Phytochemical and Pharmacological Properties. Fitoterapia 2011, 82, 93–101. [Google Scholar] [CrossRef]
- Allaith, A.A.A. Assessment of the Antioxidant Properties of the Caper Fruit (Capparis Spinosa L.) from Bahrain. J. Assoc. Arab. Univ. Basic Appl. Sci. 2016, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, V.; Barbera, A.C.; Maucieri, C.; Gimma, G.; Scalisi, C.; Patanè, C. Evaluation of Variability to Drought and Saline Stress through the Germination of Different Ecotypes of Carob (Ceratonia Siliqua L.) Using a Hydrotime Model. Ecol. Eng. 2016, 95, 557–566. [Google Scholar] [CrossRef]
- Zouari, N.; El Mtili, N. Effects of Ectomycorrhizal Fungal Inoculation on Growth and Rooting of Carob Tree (Ceratonia Siliqua L.). South Afr. J. Bot. 2020, 135, 181–187. [Google Scholar] [CrossRef]
- Gubbuk, H.; Gunes, E.; Ayala-Silva, T.; Ercisli, S. Rapid Vegetative Propagation Method for Carob. Not. Bot. Horti. Agrobot. Cluj Napoca 2011, 39, 251–254. [Google Scholar] [CrossRef]
- RHS Ceratonia Siliqua|carob/RHS Gardening. Available online: https://www.rhs.org.uk/plants/3403/i-ceratonia-siliqua-i/details (accessed on 9 July 2022).
- Zahreddine, H.G.; Struve, D.K.; Talhouk, S.N. Growth and Nutrient Partitioning of Containerized Cercis Siliquastrum L. under Two Fertilizer Regimes. Sci. Hortic. 2007, 112, 80–88. [Google Scholar] [CrossRef]
- Feghhi, J.; Teimouri, S.; Makhdoum, M.F.; Erfanifard, Y.; Abbaszadeh Tehrani, N. The Assessment of Degradation to Sustainability in an Urban Forest Ecosystem by GIS. Urban Urban Green 2017, 27, 383–389. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Ntatsi, G.; Levizou, E.; Barros, L.; Ferreira, I.C.F.R. Nutritional Profile and Chemical Composition of Cichorium Spinosum Ecotypes. LWT Food Sci. Technol. 2016, 73, 95–101. [Google Scholar] [CrossRef]
- Klados, E.; Tzortzakis, N. Effects of Substrate and Salinity in Hydroponically Grown Cichorium Spinosum. J. Soil Sci. Plant Nutr. 2014, 14, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Ben Amor, N.; Ben Hamed, K.; Debez, A.; Grignon, C.; Abdelly, C. Physiological and Antioxidant Responses of the Perennial Halophyte Crithmum Maritimum to Salinity. Plant Sci. 2005, 168, 889–899. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Magné, C. Antioxidant Activity and Phenol Content of Crithmum Maritimum L. Leaves. Plant Physiol. Biochem. 2009, 47, 37–41. [Google Scholar] [CrossRef]
- Patlis, G. Agricultural Plant Guide; Stamoulis: Athens, Greece, 2003; ISBN 9789603514350. (In Greek) [Google Scholar]
- Strid, A. Atlas of the Aegean Flora. Part 1: Text & Plates; Cambridge University Press: Cambridge, UK, 2016; Volume 33, ISBN 978-392-180-0980. [Google Scholar]
- RHS Daucus Carota|wild Carrot/RHS Gardening. Available online: https://www.rhs.org.uk/plants/24469/i-daucus-carota-i/details (accessed on 9 July 2022).
- Nikitidis, N. Greek Flora: Helichrysum Orientale. Available online: https://www.greekflora.gr/el/flowers/3669/Helichrysum-orientale (accessed on 9 July 2022).
- RHS Hypericum Perforatum|perforate St John’s Wort/RHS Gardening. Available online: https://www.rhs.org.uk/plants/9021/i-hypericum-perforatum-i/details (accessed on 9 July 2022).
- ISC Invasive Species Compendium: Hypericum Perforatum (St John’s Wort). Available online: https://www.cabi.org/isc/datasheet/28268 (accessed on 9 July 2022).
- Massei, G.; Watkins, R.; Hartley, S.E. Sex-Related Growth and Secondary Compounds in Juniperus Oxycedrus Macrocarpa. Acta Oecologica 2006, 29, 135–140. [Google Scholar] [CrossRef]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological Maps for the Main European Woody Species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef]
- El-Bakatoushi, R. Identification and Characterization of Up-Regulated Genes in the Halophyte Limoniastrum Monopetalum (L.) Boiss Grown under Crude Oil Pollution. J. Genet. Eng. Biotechnol. 2011, 9, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Acta Plantarum Galleria Della Flora—Limoniastrum Monopetalum. Available online: https://www.actaplantarum.org/galleria_flora/galleria1.php?aid=6001 (accessed on 9 July 2022).
- ISC Invasive Species Compendium: Lupinus Angustifolius (Narrow-Leaf Lupin). Available online: https://www.cabi.org/isc/datasheet/31706 (accessed on 9 July 2022).
- Doussi, M.A.; Thanos, C.A. Ecophysiology of Seed Germination in Mediterranean Geophytes. 1. Muscari Spp. Seed Sci. Res. 2002, 12, 193–201. [Google Scholar] [CrossRef]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; la Rotonda, P.; Elia, A. Weed Control in Lampascione—Muscari Comosum (L.) Mill. Crop Prot. 2012, 36, 65–72. [Google Scholar] [CrossRef]
- Welch, W.C. Table of Landscape Plants Suitable for the Gulf Coast. Available online: https://aggie-horticulture.tamu.edu/southerngarden/landtable.html (accessed on 9 July 2022).
- Kantartzhs, Ν. Floriculture—Evergreen Ornamental Shrubs for Architecture and Landscape Architecture; IDIOTIKI: Thessaloniki, Greece, 1994; ISBN 9789607177056. (In Greek) [Google Scholar]
- Fielding, J.; Turland, N. Flowers of Crete; Royal Botanic Gardens, Kew: London, UK, 2005; ISBN 9781842460795. [Google Scholar]
- Kofinas, G. Greekflora: Phagnalon Rupestre Subsp. Graecum. Available online: https://www.greekflora.gr/el/flowers/3312/Phagnalon-rupestre-subsp-graecum (accessed on 1 October 2022).
- RHS Phillyrea Latifolia|Green Olive/RHS Gardening. Available online: https://www.rhs.org.uk/plants/12668/i-phillyrea-latifolia-i/details (accessed on 9 July 2022).
- Flexas, J.; Gulías, J.; Jonasson, S.; Medrano, H.; Mus, M. Seasonal Patterns and Control of Gas Exchange in Local Populations of the Mediterranean Evergreen Shrub Pistacia Lentiscus L. Acta Oecologica 2001, 22, 33–43. [Google Scholar] [CrossRef]
- Tsalikidis, G. Agricultural Plants for Greek Gardens; Paratiritis: Thessaloniki, Greece, 1994; ISBN 9789602607381. (In Greek) [Google Scholar]
- Moussi, K.; Nayak, B.; Perkins, L.B.; Dahmoune, F.; Madani, K.; Chibane, M. HPLC-DAD Profile of Phenolic Compounds and Antioxidant Activity of Leaves Extract of Rhamnus Alaternus L. Ind. Crops Prod. 2015, 74, 858–866. [Google Scholar] [CrossRef]
- Martínez, A.L.; González-Trujano, M.E.; Pellicer, F.; López-Muñoz, F.J.; Navarrete, A. Antinociceptive Effect and GC/MS Analysis of Rosmarinus Officinalis L. Essential Oil from Its Aerial Parts. Planta Med. 2009, 75, 508–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PFAF Satureja Thymbra Thyme-Leaved Savory PFAF Plant Database. Available online: https://pfaf.org/User/Plant.aspx?LatinName=Satureja+thymbra (accessed on 9 July 2022).
- Cerchiara, T.; Chidichimo, G.; Ragusa, M.I.; Belsito, E.L.; Liguori, A.; Arioli, A. Characterization and Utilization of Spanish Broom (Spartium Junceum L.) Seed Oil. Ind. Crops Prod. 2010, 31, 423–426. [Google Scholar] [CrossRef]
- Darras, A.I.; Kargakou, V. Postharvest Physiology and Handling of Cut Spartium Junceum Inflorescences. Sci. Hortic. 2019, 252, 130–137. [Google Scholar] [CrossRef]
- RHS Royal Horticultural Society Gardening. Available online: https://www.rhs.org.uk/ (accessed on 9 July 2022).
- Polivkova, M.; Suman, J.; Strejcek, M.; Kracmarova, M.; Hradilova, M.; Filipova, A.; Cajthaml, T.; Macek, T.; Uhlik, O. Diversity of Root-Associated Microbial Populations of Tamarix Parviflora Cultivated under Various Conditions. Appl. Soil Ecol. 2018, 125, 264–272. [Google Scholar] [CrossRef]
- Ghawi, S.K.; Rowland, I.; Methven, L. Enhancing Consumer Liking of Low Salt Tomato Soup over Repeated Exposure by Herb and Spice Seasonings. Appetite 2014, 81, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Kazemi, F.; Abolhassani, L.; Rahmati, E.A.; Sayyad-Amin, P. Strategic Planning for Cultivation of Fruit Trees and Shrubs in Urban Landscapes Using the SWOT Method: A Case Study for the City of Mashhad, Iran. Land Use Policy 2018, 70, 1–9. [Google Scholar] [CrossRef]
- Säumel, I.; Kotsyuk, I.; Hölscher, M.; Lenkereit, C.; Weber, F.; Kowarik, I. How Healthy Is Urban Horticulture in High Traffic Areas? Trace Metal Concentrations in Vegetable Crops from Plantings within Inner City Neighbourhoods in Berlin, Germany. Environ. Pollut. 2012, 165, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Warraich, U.-E.; Hussain, F.; Kayani, H.U.R. Aging—Oxidative Stress, Antioxidants and Computational Modeling. Heliyon 2020, 6, e04107. [Google Scholar] [CrossRef] [PubMed]
- Papoulias, T. The Wild Edible Grasses of the Mountain and the Plain; Psihalos: Athens, Greece, 1999; ISBN 9789607920447. (In Greek) [Google Scholar]
- Pallauf, K.; Rivas-Gonzalo, J.C.; del Castillo, M.D.; Cano, M.P.; de Pascual-Teresa, S. Characterization of the Antioxidant Composition of Strawberry Tree (Arbutus Unedo L.) Fruits. J. Food Compos. Anal. 2008, 21, 273–281. [Google Scholar] [CrossRef] [Green Version]
- El Haouari, M.; López, J.J.; Mekhfi, H.; Rosado, J.A.; Salido, G.M. Antiaggregant Effects of Arbutus Unedo Extracts in Human Platelets. J. Ethnopharmacol. 2007, 113, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, I.; Gomes, F.; Mira, H.; Botelho, G. Distillates Composition Obtained of Fermented Arbutus Unedo L. Fruits from Different Seedlings and Clonal Plants. Ann. Agric. Sci. 2019, 64, 21–28. [Google Scholar] [CrossRef]
- Aleksic, V.; Knezevic, P. Antimicrobial and Antioxidative Activity of Extracts and Essential Oils of Myrtus Communis L. Microbiol. Res. 2014, 169, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, V.; Gardeli, C.; Mallouchos, A.; Papaioannou, M.; Komaitis, M. Variation of the Chemical Profile and Antioxidant Behavior of Rosmarinus Officinalis L. and Salvia Fruticosa Miller Grown in Greece. J. Agric. Food Chem. 2008, 56, 7254–7264. [Google Scholar] [CrossRef]
- Gardeli, C.; Vassiliki, P.; Athanasios, M.; Kibouris, T.; Komaitis, M. Essential Oil Composition of Pistacia Lentiscus L. and Myrtus Communis L.: Evaluation of Antioxidant Capacity of Methanolic Extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- Kennedy, J. Herb and Supplement Use in the US Adult Population. Clin. Ther. 2005, 27, 1847–1858. [Google Scholar] [CrossRef]
- Bhouri, W.; Boubaker, J.; Kilani, S.; Ghedira, K.; Chekir-Ghedira, L. Flavonoids from Rhamnus Alaternus L. (Rhamnaceae): Kaempferol 3-O-β-Isorhamninoside and Rhamnocitrin 3-O-β-Isorhamninoside Protect against DNA Damage in Human Lymphoblastoid Cell and Enhance Antioxidant Activity. South Afr. J. Bot. 2012, 80, 57–62. [Google Scholar] [CrossRef]
- Zeghichi, S.; Kallithraka, S.; Simopoulos, A.P. Nutritional Composition of Molokhia (Corchorus Olitorius) and Stamnagathi (Cichorium Spinosum). World Rev Nutr Diet 2003, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Abrini, J.; Et-Touys, A.; Bakri, Y.; Dakka, N. Indigenous Knowledge of the Use of Medicinal Plants in the North-West of Morocco and Their Biological Activities. Eur. J. Integr. Med. 2017, 13, 9–25. [Google Scholar] [CrossRef]
- Juhás, Š.; Bukovská, A.; Čikoš, Š.; Czikková, S.; Fabian, D.; Koppel, J. Anti-Inflammatory Effects of Rosmarinus Officinalis Essential Oil in Mice. Acta Vet. Brno 2009, 78, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Francesca, N.; Moschetti, G.; Settanni, L. The Influence of Addition of Borago Officinalis with Antibacterial Activity on the Sensory Quality of Fresh Pasta. Int. J. Gastron. Food Sci. 2015, 2, 93–97. [Google Scholar] [CrossRef] [Green Version]
- de Ciriano, M.G.-I.; García-Herreros, C.; Larequi, E.; Valencia, I.; Ansorena, D.; Astiasarán, I. Use of Natural Antioxidants from Lyophilized Water Extracts of Borago Officinalis in Dry Fermented Sausages Enriched in ω-3 PUFA. Meat Sci. 2009, 83, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.D.; Sotomayor, J.A.; Hernández, Á.; Jordán, M.J. Rosemary (Rosmarinus Officinalis L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 677–688. [Google Scholar]
- Hernández-Hernández, E.; Ponce-Alquicira, E.; Jaramillo-Flores, M.E.; Guerrero Legarreta, I. Antioxidant Effect Rosemary (Rosmarinus Officinalis L.) and Oregano (Origanum Vulgare L.) Extracts on TBARS and Colour of Model Raw Pork Batters. Meat Sci. 2009, 81, 410–417. [Google Scholar] [CrossRef] [PubMed]
- MOAC. Tree of the Year 2008—Carob Tree (Ceratonia Siliqua L.); Department of Forests, Ministry of Agriculture, Natural Resources and Environment of Cyprus: Nicosia, Cyprus, 2008. [Google Scholar]
- HTEA H Βαφική Παραδοσιακή Τέχνη Στην Κρήτη. Available online: http://www.texeng.gr/index.php/en/sector-articles/57-fysikes-vafes1 (accessed on 9 July 2022).
- PFAF Hypericum Perforatum St. John’s Wort, Common St. Johnswort PFAF Plant Database. Available online: https://pfaf.org/user/Plant.aspx?LatinName=Hypericum+perforatum (accessed on 9 July 2022).
- Longo, L.; Scardino, A.; Vasapollo, G. Identification and Quantification of Anthocyanins in the Berries of Pistacia Lentiscus L., Phillyrea Latifolia L. and Rubia Peregrina L. Innov. Food Sci. Emerg. Technol. 2007, 8, 360–364. [Google Scholar] [CrossRef]
- Kovačević, Z.; Bischof, S.; Vujasinović, E.; Fan, M. The Influence of Pre-Treatment of Spartium Junceum L. Fibres on the Structure and Mechanical Properties of PLA Biocomposites. Arab. J. Chem. 2019, 12, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Celikel, G.; Demirsoy, L.; Demirsoy, H. The Strawberry Tree (Arbutus Unedo L.) Selection in Turkey. Sci. Hortic. 2008, 118, 115–119. [Google Scholar] [CrossRef]
- Zemmouri, H.; Ammar, S.; Boumendjel, A.; Messarah, M.; El Feki, A.; Bouaziz, M. Chemical Composition and Antioxidant Activity of Borago Officinalis L. Leaf Extract Growing in Algeria. Arab. J. Chem. 2019, 12, 1954–1963. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E.; Casal, S. Phytochemical Characterization of Borago Officinalis L. and Centaurea Cyanus L. during Flower Development. Food Res. Int. 2019, 123, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, T.B.; Lam, S.K.; Cheung, R.C.F.; Wong, J.H.; Wang, H.X.; Ngai, P.H.K.; Ye, X.; Chan, Y.S.; Fang, E.F. Therapeutic Use of Caper (Capparis Spinosa) Seeds. In Nuts and Seeds in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 279–284. ISBN 9780123756886. [Google Scholar]
- Romeo, V.; Ziino, M.; Giuffrida, D.; Condurso, C.; Verzera, A. Flavour Profile of Capers (Capparis Spinosa L.) from the Eolian Archipelago by HS-SPME/GC-MS. Food Chem. 2007, 101, 1272–1278. [Google Scholar] [CrossRef]
- Lambraki, Μ. Ta Chorta; ΕΛΛHΝΙΚA ΓΡAΜΜAΤA: Atena, Greece, 2000; ISBN 9789603931843. (In Greek) [Google Scholar]
- Marakis, S. Carob Bean in Food and Feed: Current Status and Future Potentials: A Critical Appraisal. J. Food Sci. Technol. 1996, 33, 365–383. [Google Scholar]
- Rached, I.; Barros, L.; Fernandes, I.P.; Santos-Buelga, C.; Rodrigues, A.E.; Ferchichi, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Ceratonia Siliqua L. Hydroethanolic Extract Obtained by Ultrasonication: Antioxidant Activity, Phenolic Compounds Profile and Effects in Yogurts Functionalized with Their Free and Microencapsulated Forms. Food Funct. 2016, 7, 1319–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardo-Gil, M.G.; Roque, R.; Roseiro, L.B.; Duarte, L.C.; Gírio, F.; Esteves, P. Supercritical Extraction of Carob Kibbles (Ceratonia Siliqua L.). J. Supercrit. Fluids 2011, 59, 36–42. [Google Scholar] [CrossRef]
- Farag, M.A.; El-Kersh, D.M. Volatiles Profiling in Ceratonia Siliqua (Carob Bean) from Egypt and in Response to Roasting as Analyzed via Solid-Phase Microextraction Coupled to Chemometrics. J. Adv. Res. 2017, 8, 379–385. [Google Scholar] [CrossRef] [PubMed]
- García-Mateos, R.; Ibarra-Estrada, E.; Nieto-Angel, R. Antioxidant Compounds in Hawthorn Fruits (Crataegus Spp.) of Mexico. Rev. Mex. Biodivers. 2013, 84, 1298–1304. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Habtemariam, S.; Ahmed, T.; Sureda, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.M. Polyphenolic Composition of Crataegus Monogyna Jacq.: From Chemistry to Medical Applications. Nutrients 2015, 7, 7708–7728. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M. The Use of the Sea Fennel as a New Spice-Colorant in Culinary Preparations. Int. J. Gastron. Food Sci. 2012, 1, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Maxia, A.; Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical Characterization and Biological Activity of Essential Oils from Daucus Carota L. Subsp. Carota Growing Wild on the Mediterranean Coast and on the Atlantic Coast. Fitoterapia 2009, 80, 57–61. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Chemical Composition Variability of Essential Oil during Ontogenesis of Daucus Carota L. Subsp. Sativus (Hoffm.) Arcang. Ind. Crops Prod. 2014, 52, 809–814. [Google Scholar] [CrossRef]
- Rather, M.A.; Dar, B.A.; Sofi, S.N.; Bhat, B.A.; Qurishi, M.A. Foeniculum Vulgare: A Comprehensive Review of Its Traditional Use, Phytochemistry, Pharmacology, and Safety. Arab. J. Chem. 2016, 9, S1574–S1583. [Google Scholar] [CrossRef] [Green Version]
- Karaman, I.; Şahin, F.; Güllüce, M.; Öǧütçü, H.; Şengül, M.; Adigüzel, A. Antimicrobial Activity of Aqueous and Methanol Extracts of Juniperus Oxycedrus L. J. Ethnopharmacol. 2003, 85, 231–235. [Google Scholar] [CrossRef]
- Fernández, N.J.; Damiani, N.; Podaza, E.A.; Martucci, J.F.; Fasce, D.; Quiroz, F.; Meretta, P.E.; Quintana, S.; Eguaras, M.J.; Gende, L.B. Laurus Nobilis L. Extracts against Paenibacillus Larvae: Antimicrobial Activity, Antioxidant Capacity, Hygienic Behavior and Colony Strength. Saudi J. Biol. Sci. 2019, 26, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Chahal, K.K.; Singh, D.K.; Panchbhaiya, A.; Singh, N.; Kaur, M.; Bhardwaj, U.; Singla, N.; Kaur, A. A Review on Chemistry and Biological Activities of Laurus Nobilis L. Essential Oil. J. Pharmacogn. Phytochem. 2017, 6, 1153–1161. [Google Scholar]
- Carrasco, A.; Ortiz-Ruiz, V.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula Stoechas Essential Oil from Spain: Aromatic Profile Determined by Gas Chromatography-Mass Spectrometry, Antioxidant and Lipoxygenase Inhibitory Bioactivities. Ind. Crops Prod. 2015, 73, 16–27. [Google Scholar] [CrossRef]
- Trabelsi, N.; Megdiche, W.; Ksouri, R.; Falleh, H.; Oueslati, S.; Soumaya, B.; Hajlaoui, H.; Abdelly, C. Solvent Effects on Phenolic Contents and Biological Activities of the Halophyte Limoniastrum Monopetalum Leaves. LWT Food Sci. Technol. 2010, 43, 632–639. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of Biological, Environmental and Technical Factors on Phenolic Content and Antioxidant Activities of Tunisian Halophytes. Comptes Rendus. Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef]
- Lopes, A.; Rodrigues, M.J.; Pereira, C.; Oliveira, M.; Barreira, L.; Varela, J.; Trampetti, F.; Custódio, L. Natural Products from Extreme Marine Environments: Searching for Potential Industrial Uses within Extremophile Plants. Ind. Crops Prod. 2016, 94, 299–307. [Google Scholar] [CrossRef]
- Chapleau, N.; De Lamballerie-Anton, M. Improvement of Emulsifying Properties of Lupin Proteins by High Pressure Induced Aggregation. Food Hydrocoll. 2003, 17, 273–280. [Google Scholar] [CrossRef]
- Sujak, A.; Kotlarz, A.; Strobel, W. Compositional and Nutritional Evaluation of Several Lupin Seeds. Food Chem. 2006, 98, 711–719. [Google Scholar] [CrossRef]
- Khan, M.K.; Karnpanit, W.; Nasar-Abbas, S.M.; Huma, Z.E.; Jayasena, V. Phytochemical Composition and Bioactivities of Lupin: A Review. Int. J. Food Sci. Technol. 2015, 50, 2004–2012. [Google Scholar] [CrossRef]
- Villarino, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. Crit. Rev. Food Sci. Nutr. 2016, 56, 835–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dastmalchi, K.; Damien Dorman, H.J.; Oinonen, P.P.; Darwis, Y.; Laakso, I.; Hiltunen, R. Chemical Composition and in vitro Antioxidative Activity of a Lemon Balm (Melissa Officinalis L.) Extract. LWT Food Sci. Technol. 2008, 41, 391–400. [Google Scholar] [CrossRef]
- PFAF Muscari Comosum Tassel Hyacinth, Tassel Grape Hyacinth PFAF Plant Database. Available online: https://pfaf.org/user/Plant.aspx?LatinName=muscari+comosum (accessed on 9 July 2022).
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical Composition and Antioxidant Activities of Myrtus Communis L. Berries Extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Wannes, W.A.; Marzouk, B. Characterization of Myrtle Seed (Myrtus Communis Var. Baetica) as a Source of Lipids, Phenolics, and Antioxidant Activities. J. Food Drug Anal. 2016, 24, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Chinou, I.; Liolios, C.; Moreau, D.; Roussakis, C. Cytotoxic Activity of Origanum Dictamnus. Fitoterapia 2007, 78, 342–344. [Google Scholar] [CrossRef]
- Kouri, G.; Tsimogiannis, D.; Bardouki, H.; Oreopoulou, V. Extraction and Analysis of Antioxidant Components from Origanum Dictamnus. Innov. Food Sci. Emerg. Technol. 2007, 8, 155–162. [Google Scholar] [CrossRef]
- Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. Liposomal Incorporation of Carvacrol and Thymol Isolated from the Essential Oil of Origanum Dictamnus L. and in Vitro Antimicrobial Activity. Food Chem. 2009, 112, 77–83. [Google Scholar] [CrossRef]
- Alarcón, R.; Pardo-De-Santayana, M.; Priestley, C.; Morales, R.; Heinrich, M. Medicinal and Local Food Plants in the South of Alava (Basque Country, Spain). J. Ethnopharmacol. 2015, 176, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Bostancioĝlu, R.B.; Kürkçüoĝlu, M.; Başer, K.H.C.; Koparal, A.T. Assessment of Anti-Angiogenic and Anti-Tumoral Potentials of Origanum Onites L. Essential Oil. Food Chem. Toxicol. 2012, 50, 2002–2008. [Google Scholar] [CrossRef] [PubMed]
- Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. Antibacterial Activity of Essential Oils from Plants of the Genus Origanum. Food Control 2013, 34, 539–546. [Google Scholar] [CrossRef]
- Loewe-Muñoz, V.; Balzarini, M.; Álvarez-Contreras, A.; Delard-Rodríguez, C.; Navarro-Cerrillo, R.M. Fruit Productivity of Stone Pine (Pinus Pinea L.) along a Climatic Gradient in Chile. Agric. For. Meteorol. 2016, 223, 203–216. [Google Scholar] [CrossRef]
- Charef, M.; Yousfi, M.; Saidi, M.; Stocker, P. Determination of the Fatty Acid Composition of Acorn (Quercus), Pistacia Lentiscus Seeds Growing in Algeria. J. Am. Oil Chem. Soc. 2008, 85, 921–924. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Zengin, H.; Duru, M.E. Antifungal Activities of the Leaves of Three Pistacia Species Grown in Turkey. Fitoterapia 2003, 74, 164–167. [Google Scholar] [CrossRef]
- MOAC. Tree of the Year 2015—Lentisk, Pistacia Lentiscus L.; Department of Forests, Ministry of Agriculture, Natural Resources and Environment of Cyprus: Nicosia, Cyprus, 2015. [Google Scholar]
- Özcan, M. Characteristics of Fruit and Oil of Terebinth (Pistacia Terebinthus L) Growing Wild in Turkey. J. Sci. Food Agric. 2004, 84, 517–520. [Google Scholar] [CrossRef]
- Orhan, I.E.; Senol, F.S.; Gulpinar, A.R.; Sekeroglu, N.; Kartal, M.; Sener, B. Neuroprotective Potential of Some Terebinth Coffee Brands and the Unprocessed Fruits of Pistacia Terebinthus L. and Their Fatty and Essential Oil Analyses. Food Chem. 2012, 130, 882–888. [Google Scholar] [CrossRef]
- Bolek, S.; Ozdemir, M. Optimization of Roasting Conditions of Pistacia Terebinthus in a Fluidized Bed Roaster. LWT Food Sci. Technol. 2017, 80, 67–75. [Google Scholar] [CrossRef]
- Durmaz, G.; Gökmen, V. Changes in Oxidative Stability, Antioxidant Capacity and Phytochemical Composition of Pistacia Terebinthus Oil with Roasting. Food Chem. 2011, 128, 410–414. [Google Scholar] [CrossRef]
- Topçu, G.; Ay, M.; Bilici, A.; Sarikürkcü, C.; Öztürk, M.; Ulubelen, A. A New Flavone from Antioxidant Extracts of Pistacia Terebinthus. Food Chem. 2007, 103, 816–822. [Google Scholar] [CrossRef]
- Beretta, G.; Artali, R.; Facino, R.M.; Gelmini, F. An Analytical and Theoretical Approach for the Profiling of the Antioxidant Activity of Essential Oils: The Case of Rosmarinus Officinalis L. J. Pharm. Biomed. Anal. 2011, 55, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus Officinalis Essential Oil: A Review of Its Phytochemistry, Anti-Inflammatory Activity, and Mechanisms of Action Involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Santos, R.; Carvalho-Costa, D.; Cavaleiro, C.; Costa, H.S.; Albuquerque, T.G.; Castilho, M.C.; Ramos, F.; Melo, N.R.; Sanches-Silva, A. A Novel Insight on an Ancient Aromatic Plant: The Rosemary (Rosmarinus Officinalis L.). Trends Food Sci. Technol. 2015, 45, 355–368. [Google Scholar] [CrossRef]
- Risaliti, L.; Kehagia, A.; Daoultzi, E.; Lazari, D.; Bergonzi, M.C.; Vergkizi-Nikolakaki, S.; Hadjipavlou-Litina, D.; Bilia, A.R. Liposomes Loaded with Salvia Triloba and Rosmarinus Officinalis Essential Oils: In Vitro Assessment of Antioxidant, Antiinflammatory and Antibacterial Activities. J. Drug Deliv. Sci. Technol. 2019, 51, 493–498. [Google Scholar] [CrossRef]
- Jancheva, M.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Optimised Extraction of Antioxidant Polyphenols from Satureja Thymbra Using Newly Designed Glycerol-Based Natural Low-Transition Temperature Mixtures (LTTMs). J. Appl. Res. Med. Aromat. Plants 2017, 6, 31–40. [Google Scholar] [CrossRef]
- El-Jalel, L.F.A.; Elkady, W.M.; Gonaid, M.H.; El-Gareeb, K.A. Difference in Chemical Composition and Antimicrobial Activity of Thymus Capitatus L. Essential Oil at Different Altitudes. Futur. J. Pharm. Sci. 2018, 4, 156–160. [Google Scholar] [CrossRef]
- Faleiro, L.; Miguel, G.; Gomes, S.; Costa, L.; Venâncio, F.; Teixeira, A.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Antibacterial and Antioxidant Activities of Essential Oils Isolated from Thymbra Capitata L. (Cav.) and Origanum Vulgare L. J. Agric. Food Chem. 2005, 53, 8162–8168. [Google Scholar] [CrossRef]
- Goudjil, M.B.; Zighmi, S.; Hamada, D.; Mahcene, Z.; Bencheikh, S.E.; Ladjel, S. Biological Activities of Essential Oils Extracted from Thymus Capitatus (Lamiaceae). South Afr. J. Bot. 2020, 128, 274–282. [Google Scholar] [CrossRef]
- Del Rio-Celestino, M.; Font, R.; de Haro-Bailón, A. Distribution of Fatty Acids in Edible Organs and Seed Fractions of Borage (Borago Officinalis L.). J. Sci. Food Agric. 2008, 88, 248–255. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Cérantola, S.; Talarmin, H.; le Meur, C.; le Floch, G.; Magné, C. New Antibacterial and Cytotoxic Activities of Falcarindiol Isolated in Crithmum Maritimum L. Leaf Extract. Food Chem. Toxicol. 2010, 48, 553–557. [Google Scholar] [CrossRef]
- Özdemir, H. Dyeing Properties of Natural Dyes Extracted from the Junipers Leaves (J. Excelsa Bieb. and J. Oxycedrus L.). J. Nat. Fibers 2017, 14, 134–142. [Google Scholar] [CrossRef]
- Ghaedi, M.; Tavallali, H.; Sharifi, M.; Kokhdan, S.N.; Asghari, A. Preparation of Low Cost Activated Carbon from Myrtus Communis and Pomegranate and Their Efficient Application for Removal of Congo Red from Aqueous Solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 86, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Nasri, N.; Khaldi, A.; Fady, B.; Triki, S. Fatty Acids from Seeds of Pinus Pinea L.: Composition and Population Profiling. Phytochemistry 2005, 66, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Kar, Y.; Şen, N.; Deveci, H. Usability of Terebinth (Pistacia Terebinthus L.) Fruits as an Energy Source for Diesel-like Fuels Production. Energy Convers. Manag. 2012, 64, 433–440. [Google Scholar] [CrossRef]
- Choulitoudi, E.; Bravou, K.; Bimpilas, A.; Tsironi, T.; Tsimogiannis, D.; Taoukis, P.; Oreopoulou, V. Antimicrobial and Antioxidant Activity of Satureja Thymbra in Gilthead Seabream Fillets Edible Coating. Food Bioprod. Process. 2016, 100, 570–577. [Google Scholar] [CrossRef]
- Al-Safadi, B.; Elias, R. Improvement of Caper (Capparis Spinosa L.) Propagation Using in Vitro Culture and Gamma Irradiation. Sci. Hortic. 2011, 127, 290–297. [Google Scholar] [CrossRef]
- Maoloni, A.; Milanović, V.; Osimani, A.; Cardinali, F.; Garofalo, C.; Belleggia, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Cirlini, M.; et al. Exploitation of Sea Fennel (Crithmum Maritimum L.) for Manufacturing of Novel High-Value Fermented Preserves. Food Bioprod. Process. 2021, 127, 174–197. [Google Scholar] [CrossRef]
- Cornara, L.; D’Arrigo, C.; Pioli, F.; Borghesi, B.; Bottino, C.; Patrone, E.; Mariotti, M.G. Micromorphological Investigation on the Leaves of the Rock Samphire (Crithmum Maritimum L.): Occurrence of Hesperidin and Diosmin Crystals. Plant Biosyst. 2009, 143, 283–292. [Google Scholar] [CrossRef]
- Damjanović, B.; Lepojević, Ž.; Živković, V.; Tolić, A. Extraction of Fennel (Foeniculum Vulgare Mill.) Seeds with Supercritical CO2: Comparison with Hydrodistillation. Food Chem. 2005, 92, 143–149. [Google Scholar] [CrossRef]
- PFAF Helichrysum stoechas—(L.)Moench. PFAF Plant Database. Available online: https://pfaf.org/user/Plant.aspx?LatinName=Helichrysum+stoechas (accessed on 9 July 2022).
- Marques, A.; Teixeira, B.; Nunes, M.L. Bay Laurel (Laurus Nobilis) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 239–246. ISBN 9780124166448. [Google Scholar]
- Pageon, H.; Azouaoui, A.; Zucchi, H.; Ricois, S.; Tran, C.; Asselineau, D. Potentially Beneficial Effects of Rhamnose on Skin Ageing: An in Vitro and in Vivo Study. Int. J. Cosmet. Sci. 2019, 41, 213–220. [Google Scholar] [CrossRef]
- Michaelakis, A.; Theotokatos, S.A.; Koliopoulos, G.; Chorianopoulos, N.G. Essential Oils of Satureja Species: Insecticidal Effect on Culex Pipiens Larvae (Diptera: Culicidae). Molecules 2007, 12, 2567–2578. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, M. Anticholinesterase and Antioxidant Activities of Savoury (Satureja Thymbra L.) with Identified Major Terpenes of the Essential Oil. Food Chem. 2012, 134, 48–54. [Google Scholar] [CrossRef]
- Ding, N.; Zhong, Y.; Li, J.; Xiao, Q. Study on Selection of Native Greening Plants Based on Eye-Tracking Technology. Sci. Rep. 2022, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Toscano, S.; Ferrante, A.; Romano, D. Response of Mediterranean Ornamental Plants to Drought Stress. Horticulturae 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Bombi, P. Potential Conflict Extent between Two Invasive Alien Pests, Rhynchophorus Ferrugineus and Paysandisia Archon, and the Native Populations of the Mediterranean Fan Palm. J. Nat. Conserv. 2020, 58, 125927. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Bassi, L.; Brundu, G.; Camarda, I.; Carli, E.; D’Auria, G.; Del Guacchio, E.; Domina, G.; Ferretti, G.; Foggi, B.; et al. Plant Invasions on Small Mediterranean Islands: An Overview. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 1119–1133. [Google Scholar] [CrossRef]
- D’Agata, C.D.C.; Skoula, M.; Brundu, G. A Preliminary Inventory of the Alien Flora of Crete (Greece). Bocconea 2009, 23, 301–315. [Google Scholar]
- Kanatas, P.; Kanatas, P. Potential Role of Eucalyptus Spp. and Acacia Spp. Allelochemicals in Weed Management. Chil. J. Agric. Res. 2020, 80, 452–458. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L.; Canham, C.D. Neighbourhood Analyses of the Allelopathic Effects of the Invasive Tree Ailanthus Altissima in Temperate Forests. J. Ecol. 2008, 96, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Korakaki, E.; Legakis, A.; Katsanevakis, S.; Koulelis, P.P.; Avramidou, E.V.; Soulioti, N.; Petrakis, P.V. Invasive Alien Species of Greece. Invasive Alien Species 2021, 124–189. [Google Scholar] [CrossRef]
- Mathieu, R.; Freeman, C.; Aryal, J. Mapping Private Gardens in Urban Areas Using Object-Oriented Techniques and Very High-Resolution Satellite Imagery. Landsc. Urban Plan. 2007, 81, 179–192. [Google Scholar] [CrossRef]
- Guillen-Cruz, G.; Rodríguez-Sánchez, A.L.; Fernández-Luqueño, F.; Flores-Rentería, D. Influence of Vegetation Type on the Ecosystem Services Provided by Urban Green Areas in an Arid Zone of Northern Mexico. Urban Urban Green 2021, 62, 127135. [Google Scholar] [CrossRef]
- Helfand, G.E.; Sik Park, J.; Nassauer, J.I.; Kosek, S. The Economics of Native Plants in Residential Landscape Designs. Landsc. Urban Plan. 2006, 78, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, K.; Walz, A.; Martín-López, B.; Sachse, R. Testing Socio-Cultural Valuation Methods of Ecosystem Services to Explain Land Use Preferences. Ecosyst. Serv. 2017, 26, 270–288. [Google Scholar] [CrossRef] [PubMed]
- Mexia, T.; Vieira, J.; Príncipe, A.; Anjos, A.; Silva, P.; Lopes, N.; Freitas, C.; Santos-Reis, M.; Correia, O.; Branquinho, C.; et al. Ecosystem Services: Urban Parks under a Magnifying Glass. Environ. Res. 2018, 160, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Lovell, R.; Wheeler, B.W.; Higgins, S.L.; Irvine, K.N.; Depledge, M.H. A Systematic Review of the Health and Well-Being Benefits of Biodiverse Environments. J. Toxicol. Environ. Health Part B 2014, 17, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A Framework for Assessing and Implementing the Co-Benefits of Nature-Based Solutions in Urban Areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
Plant | IP | CL | PP | LH | HG | TL | FB | RG | TD | GC |
---|---|---|---|---|---|---|---|---|---|---|
Acer sempervirens L. | Χ | Χ | Χ | Χ | Χ | |||||
Arbutus unedo L. | Χ | Χ | Χ | Χ | ||||||
Borago officinalis L. | Χ | Χ | Χ | Χ | ||||||
Calicotome villosa (Poir.) Link | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Campanula cretica (A.DC.) D. Dietr. | Χ | Χ | Χ | Χ | ||||||
Capparis spinosa L. | Χ | Χ | Χ | Χ | Χ | |||||
Ceratonia siliqua L. | Χ | Χ | Χ | Χ | Χ | |||||
Cercis siliquastrum L. | X | X | X | X | X | |||||
Cichorium spinosum L. | Χ | Χ | Χ | Χ | ||||||
Cistus creticus ssp. Creticus L. 1762 | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Crithmum maritimum L. | Χ | Χ | Χ | Χ | Χ | Χ | Χ | |||
Cupressus sempervirens L. | X | X | X | X | X | |||||
Daucus carota ssp maximus (Desf.) Ball | Χ | Χ | Χ | Χ | ||||||
Ebenus cretica L. | Χ | Χ | Χ | Χ | Χ | Χ | Χ | |||
Foeniculum vulgare Hill. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Helichrysum orientale (L.) Gaertn | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Hypericum perforatum L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Juniperus oxycedrus L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Laurus nobilis L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Lavandula stoechas L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Limoniastrum monopetalum (L.) Boiss. | Χ | Χ | Χ | Χ | Χ | Χ | Χ | |||
Lupinus angustifolius L. | Χ | Χ | Χ | Χ | Χ | |||||
Medicago arborea L. | Χ | Χ | Χ | Χ | Χ | |||||
Melissa officinalis L. | Χ | Χ | Χ | Χ | ||||||
Muscari comosum (L.) Parl. | Χ | Χ | Χ | Χ | Χ | |||||
Myrtus communis L. | Χ | Χ | Χ | Χ | Χ | |||||
Narcissus tazetta L. | Χ | Χ | Χ | Χ | Χ | |||||
Nerium oleander L. | Χ | Χ | Χ | Χ | Χ | Χ | Χ | |||
Origanum dictamnus L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Origanum onites L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Pancratium maritimum L. | Χ | Χ | Χ | Χ | ||||||
Petromarula pinnata (L.) A.DC. | X | X | X | |||||||
Phagnalon rupestre ssp. graecum Batt. | X | X | X | X | X | X | ||||
Phillyrea latifolia L. | Χ | Χ | Χ | Χ | X | |||||
Phoenix theophrastii Greuter | Χ | Χ | Χ | Χ | ||||||
Pinus pinea L. | Χ | Χ | Χ | Χ | ||||||
Pistacia lentiscus L. | Χ | Χ | Χ | Χ | Χ | Χ | Χ | |||
Pistacia terebinthus L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Quercus coccifera L. | Χ | Χ | Χ | Χ | Χ | Χ | Χ | |||
Quercus ilex L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Rhamnus alaternus L. | Χ | Χ | Χ | |||||||
Rosmarinus officinalis L. | Χ | Χ | Χ | Χ | Χ | Χ | Χ | |||
Salvia fruticosa Mill. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Sambucus nigra L. | Χ | Χ | Χ | Χ | Χ | |||||
Satureja thymbra L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Sideritis syriaca subsp. syriaca L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Spartium junceum L. | Χ | Χ | Χ | Χ | Χ | |||||
Styrax officinalis L. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Tamarix parviflora DC. | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | ||
Thymbra capitata (L.) Cav. | Χ | Χ | Χ | Χ | Χ | Χ | ||||
Vitex agnus-castus L. | Χ | Χ | Χ | Χ | Χ | |||||
Zelkova abelicea (Lam.) Boiss. | Χ | Χ | Χ | Χ |
Plant | Salinity | Drought | Nutrient Deficiency | Frugal | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PR | NT | References | PR | NT | References | PR | NT | References | PR | NT | References | |
Borago officinalis L. | ● | 18 | [49] | 15 | [49,50] | 18 | [51] | |||||
Calicotome villosa | 80 | [52] | 85 | [53,54] | 85 | 85 | ||||||
Capparis spinosa L. | 45 | [55,56] | 50 | [55,56] | 55 | 55 | ||||||
Ceratonia siliqua L. | 180 | [57] | 250 | [58,59] | 358 | 358 | [60] | |||||
Cercis siliquastrum L. | 40 | [61] | 50 | 50 | [62] | 50 | ||||||
Cichorium spinosum L. | 25 | [63] | ● | 34 | [64] | 40 | [64] | |||||
Crithmum maritimum L. | 42 | [65,66] | 42 | 42 | 42 | |||||||
Cupressus sempervirens L. | 90 | [67,68] | 240 | [67,68] | 120 | 240 | ||||||
Daucus carota ssp. Maximus (Desf.) Ball 1878 | ● | 27 | [69] | ● | 27 | [69] | ||||||
Helichrysum orientale (L.) Gaertn | 18 | 25 | 25 | [70] | 25 | |||||||
Hypericum perforatum L. | ● | 25 | [71,72] | ● | 25 | [71,72] | ||||||
Juniperus oxycedrus L. | 22 | 22 | [73,74] | 22 | [74] | 22 | ||||||
Laurus nobilis L. | ● | 18 | [67] | 24 | [67] | 32 | ||||||
Lavandula stoechas L. | ● | 12 | [49,67] | ● | 30 | |||||||
Limoniastrum monopetalum (L.) Boiss. | 130 | [75,76] | 121 | [75,76] | 121 | 164 | ||||||
Lupinus angustifolius L. | 25 | [77] | ● | ● | 25 | |||||||
Muscari comosum (L.) Parl. | 22 | [78] | 22 | [79] | ● | 48 | ||||||
Nerium oleander L. | 980 | [67,80] | 720 | [67] | 1150 | 1150 | [81] | |||||
Origanum dictamnus L. | ● | 70 | 70 | [30] | 70 | |||||||
Origanum onites L. | 85 | 244 | 135 | [82] | 244 | |||||||
Phagnalon rupestre ssp. graecum Batt. | 24 | 24 | [83] | 24 | 24 | [83] | ||||||
Phillyrea latifolia L. | 12 | [84] | 12 | [67] | 20 | [67] | 20 | [84] | ||||
Pinus pinea L. | 55 | 85 | [67] | 85 | [67] | 85 | ||||||
Pistacia lentiscus L. | 320 | 350 | 350 | [85] | 350 | |||||||
Rhamnus alaternus L. | 650 | [86] | 500 | [87] | 970 | [49] | 970 | |||||
Rosmarinus officinalis L. | 350 | [67,86] | 170 | [67,86] | 450 | [88] | 450 | |||||
Satureja thymbra L. | 120 | [89] | 200 | [89] | 182 | 220 | ||||||
Spartium junceum L. | 62 | [86,90] | 150 | [86,90,91,92] | 200 | [86,90] | 200 | [92] | ||||
Tamarix parviflora DC. | 180 | [93] | 180 | [93] | 180 | [93] | 180 |
Invasive Species | Native Species | Cupressus sempervirens L. | Sambucus nigra L. | Quercus ilex | Tamarix parviflora DC. | Cercis siliquastrum L. | Pistacia terebinthus L. | Styrax officinalis L. | Pinus pinea L. | Acer sempervirens L. | Laurus nobilis L. | Ceratonia silique L. | Nerium oleander L. | Medicago arborea L. | Vitex agnus-castus L. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acacia farnesiana (L.) Willd. | Χ | Χ | Χ | Χ | Χ | ||||||||||
Acacia saligna (Labill.) H. Wendl | Χ | Χ | Χ | Χ | Χ | ||||||||||
Ailanthus altissima (Miller) Swingle | Χ | Χ | Χ | Χ | |||||||||||
Eucalyptus sp. | Χ | Χ | Χ | Χ | |||||||||||
Lantana camara L. | Χ | Χ | Χ | ||||||||||||
Robinia pseudoacacia L. | Χ | Χ | Χ | ||||||||||||
Solanum elaeagnifolium Cav. | Χ | Χ | Χ | ||||||||||||
Tamarix arborea (Ehrenb.) Bunge | Χ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christoforidi, I.; Kollaros, D.; Manios, T.; Daliakopoulos, I.N. Drought- and Salt-Tolerant Plants of the Mediterranean and Their Diverse Applications: The Case of Crete. Land 2022, 11, 2038. https://doi.org/10.3390/land11112038
Christoforidi I, Kollaros D, Manios T, Daliakopoulos IN. Drought- and Salt-Tolerant Plants of the Mediterranean and Their Diverse Applications: The Case of Crete. Land. 2022; 11(11):2038. https://doi.org/10.3390/land11112038
Chicago/Turabian StyleChristoforidi, Irene, Dimitrios Kollaros, Thrassyvoulos Manios, and Ioannis N. Daliakopoulos. 2022. "Drought- and Salt-Tolerant Plants of the Mediterranean and Their Diverse Applications: The Case of Crete" Land 11, no. 11: 2038. https://doi.org/10.3390/land11112038
APA StyleChristoforidi, I., Kollaros, D., Manios, T., & Daliakopoulos, I. N. (2022). Drought- and Salt-Tolerant Plants of the Mediterranean and Their Diverse Applications: The Case of Crete. Land, 11(11), 2038. https://doi.org/10.3390/land11112038