Spatial Patterns and Intensity of Land Abandonment Drive Wildfire Hazard and Likelihood in Mediterranean Agropastoral Areas
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Wildfire Data
2.2. Input Data
2.3. Land Abandonment Scenarios
2.4. Wildfire Simulations
2.5. Wildfire Hazard and Likelihood Analysis
3. Results
3.1. Wildfire Hazard and Likelihood at the Landscape Level
3.2. Wildfire Hazard and Likelihood at the Municipality Level
3.3. Wildfire Hazard and Likelihood at the Fuel Type Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Molina-Terrén, D.M.; Xanthopoulos, G.; Diakakis, M.; Ribeiro, L.; Caballero, D.; Delogu, G.M.; Viegas, D.X.; Silva, C.A.; Cardil, A. Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int. J. Wildland Fire 2019, 28, 85. [Google Scholar] [CrossRef] [Green Version]
- Costa, H.; De Rigo, D.; Libertà, G.; Houston Durrant, T.; San-Miguel-Ayanz, J. European Wildfire Danger and Vulnerability in a Changing Climate: Towards Integrating Risk Dimensions; EUR 30116 EN; JRC119980; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-16898-0. [CrossRef]
- Ribeiro, L.M.; Rodrigues, A.; Lucas, D.; Viegas, D.X. The impact on structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal). Fire 2020, 3, 57. [Google Scholar] [CrossRef]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertà, G.; Artés-Vivancos, T.; Oom, D.; Branco, A.; de Rigo, D.; Ferrari, D.; et al. Forest Fires in Europe, Middle East and North Africa 2020; EUR 30862 EN; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-42351-5. [CrossRef]
- EU 2021 Wildfire Season Was the Second Worst on Record, Finds New Commission Report. Available online: https://joint-research-centre.ec.europa.eu/jrc-news/eu-2021-wildfire-season-was-second-worst-record-finds-new-commission-report-2022-03-21_en#:~:text=In%202021%2C%20fires%20were%20observed,large%20number%20of%20massive%20fires (accessed on 24 October 2022).
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Spalevic, V.; Mincato, R.L. Wildfire Effects on Soil Erosion Dynamics: The Case of 2021 Megafires in Greece. Agric. For. Poljopr. Sumar. 2022, 68, 49–63. [Google Scholar] [CrossRef]
- Linley, G.D.; Jolly, C.J.; Doherty, T.S.; Geary, W.L.; Armenteras, D.; Belcher, C.M.; Bliege Bird, R.; Duane, A.; Fletcher, M.-S.; Giorgis, M.A.; et al. What do you mean, ‘megafire’? Glob. Ecol. Biogeogr. 2022, 31, 1906–1922. [Google Scholar] [CrossRef]
- Fernandes, P.M. Variation in the Canadian fire weather index thresholds for increasingly larger fires in Portugal. Forests 2019, 10, 838. [Google Scholar] [CrossRef]
- Carnicer, J.; Alegria, A.; Giannakopoulos, C.; Di Giuseppe, F.; Karali, A.; Koutsias, N.; Lionello, P.; Parrington, M.; Vitolo, C. Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe. Sci. Rep. 2022, 12, 10365. [Google Scholar] [CrossRef]
- Jain, P.; Castellanos-Acuna, D.; Coogan, S.C.P.; Abatzoglou, J.T.; Flannigan, M.D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 2022, 12, 63–70. [Google Scholar] [CrossRef]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire risk estimation in the Mediterranean area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Monteiro-Henriques, T.; Guiomar, N.; Loureiro, C.; Barros, A.M.G. Bottom-Up Variables Govern Large-Fire Size in Portugal. Ecosystems 2016, 19, 1362–1375. [Google Scholar] [CrossRef]
- Rodrigues, M.; Mariani, M.; Russo, A.; Salis, M.; Galizia, L.F.; Cardil, A. Spatio-Temporal Domains of Wildfire-Prone Teleconnection Patterns in the Western Mediterranean Basin. Geophys. Res. Lett. 2021, 48, e2021GL094238. [Google Scholar] [CrossRef]
- Galizia, L.F.; Curt, T.; Barbero, R.; Rodrigues, M. Understanding fire regimes in Europe. Int. J. Wildland Fire 2022, 31, 56–66. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulous, G.; et al. Landscape-wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Change 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017, 7, 81. [Google Scholar] [CrossRef]
- Ruffault, J.; Curt, T.; Martin-StPaul, N.K.; Moron, V.; Trigo, R.M. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat. Hazards Earth Syst. Sci. 2018, 18, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Ascoli, D.; Moris, J.V.; Marchetti, M.; Sallustio, L. Land use change towards forests and wooded land correlates with large and frequent wildfires in Italy. Ann. Silvic. Res. 2021, 46, 1–10. [Google Scholar] [CrossRef]
- Miezïte, L.E.; Ameztegui, A.; De Cáceres, M.; Coll, L.; Morán-Ordóñez, A.; Vega-García, C.; Rodrigues, M. Trajectories of wildfire behavior under climate change. Can forest management mitigate the increasing hazard? J. Environ. Manag. 2022, 322, 116134. [Google Scholar] [CrossRef]
- Schuh, B.; Andronic, C.; Derszniak-Noirjean, M.; Gaupp-Berghausen, M.; Hsiung, C.; Münch, A. Research for AGRI Committee—The Challenge of Land Abandonment after 2020 and Options for Mitigating Measures; QA-04-20-287-EN-N; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2020; ISBN 978-92-846-7650-7. [CrossRef]
- RAS (Regione Autonoma della Sardegna). Comuni in Estinzione-Gli Scenari dello Spopolamento in Sardegna. Progetto IDMS-2013. Programma Regionale di Sviluppo 2010–2014. Available online: https://www.sardegnaprogrammazione.it/documenti/35_84_20160802092030.pdf (accessed on 24 October 2022).
- Porqueddu, C. Sardinian Grasslands, & Rangelands. In Grasslands, & Herbivore Production in Europe, & Effects of Common Policies; Huyghe, C., de Vliegher, A., van Gils, B., Peeters, A., Eds.; Editions Quae: Versailles, France, 2014; pp. 184–190. ISBN 978-2-7592-2156-1. [Google Scholar]
- Nori, M.; Ragkos, A.; Farinella, D. Agro-pastoralism as an asset for sustainable Mediterranean islands. In Mediterranean Issues, Book 1—Imagining the Mediterranean: Challenges and Perspectives; Jurcevic, K., Lipovcan, L.K., Ramljak, O., Eds.; Institute of Social Sciences Ivo Pilar: Zagreb, Croatia, 2017; pp. 135–147. ISBN 978-953-7964-44-3. [Google Scholar]
- Salis, M.; Arca, B.; Alcasena-Urdiroz, F.; Massaiu, A.; Bacciu, V.; Bosseur, F.; Caramelle, P.; Dettori, S.; de Oliveira, A.S.F.; Molina-Terren, D.; et al. Analyzing the recent dynamics of wildland fires in Quercus suber L. woodlands in Sardinia (Italy), Corsica (France) and Catalonia (Spain). Eur. J. For. Res. 2019, 138, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Cacciarru, A. Land ownership and land use in Sardinia, Italy. Towards sustainable development patterns. Land Tenure J. 2013, 2, 145–169. [Google Scholar]
- Arru, B.; Furesi, R.; Madau, F.A.; Pulina, P. Economic performance of agritourism: An analysis of farms located in a less favoured area in Italy. Agric. Food Econ. 2021, 9, 27. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Buerkert, A.; Plieninger, T. Effects of land abandonment on nature contributions to people and good quality of life components in the Mediterranean region: A review. Land Use Policy 2022, 116, 106053. [Google Scholar] [CrossRef]
- Loepfe, L.; Martinez-Vilalta, J.; Oliveres, J.; Piñol, J.; Lloret, F. Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. For. Ecol. Manag. 2010, 259, 2366–2374. [Google Scholar] [CrossRef]
- Ursino, N.; Romano, N. Wild forest fire regime following land abandonment in the Mediterranean region. Geophys. Res. Lett. 2014, 41, 8359–8368. [Google Scholar] [CrossRef]
- Viedma, O.; Moity, N.; Moreno, J.M. Changes in landscape fire-hazard during the second half of the 20th century: Agriculture abandonment and the changing role of driving factors. Agric. Ecosyst. Environ. 2015, 207, 126–140. [Google Scholar] [CrossRef]
- van der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.E.; Verkerk, P.J. Trade-offs of European agricultural abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- Mantero, G.; Morresi, D.; Marzano, R.; Motta, R.; Mladenoff, D.J.; Garbarino, M. The influence of land abandonment on forest disturbance regimes: A global review. Landsc. Ecol. 2020, 35, 2723–2744. [Google Scholar] [CrossRef]
- Martin-Díaz, P.; Cortés-Avizanda, A.; Serrano, D.; Arrondo, E.; Sánchez-Zapata, J.A.; Donázar, J.A. Rewilding processes shape the use of Mediterranean landscapes by an avian top scavenger. Sci. Rep. 2020, 10, 2853. [Google Scholar] [CrossRef] [Green Version]
- Aquilué, N.; Fortin, M.-J.; Messier, C.; Brotons, L. The Potential of Agricultural Conversion to Shape Forest Fire Regimes in Mediterranean Landscapes. Ecosystems 2020, 23, 34–51. [Google Scholar] [CrossRef]
- Colantoni, A.; Egidi, G.; Quaranta, G.; D’Alessandro, R.; Vinci, S.; Turco, R.; Salvati, L. Sustainable Land Management, Wildfire Risk and the Role of Grazing in Mediterranean Urban-Rural Interfaces: A Regional Approach from Greece. Land 2020, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Huntsinger, L.; Barry, S. Grazing in California’s Mediterranean Multi-Firescapes. Front. Sustain. Food Syst. 2021, 5, 715366. [Google Scholar] [CrossRef]
- Ager, A.A.; Day, M.A.; Short, K.C.; Evers, C.R. Assessing the impacts of federal forest planning on wildfire risk mitigation in the Pacific Northwest, USA. Landsc. Urban Plan. 2016, 147, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Evers, C.R.; Day, M.A.; Alcasena, F.J.; Houtman, R. Planning for future fire: Scenario analysis of an accelerated fuel reduction plan for the western United States. Landsc. Urban Plan. 2021, 215, 104212. [Google Scholar] [CrossRef]
- Salis, M.; Laconi, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Lozano, O.; de Oliveira, A.F.; Spano, D. Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. For. Ecol. Manag. 2016, 368, 207–221. [Google Scholar] [CrossRef]
- Gómez-González, S.; Ojeda, F.; Fernandes, P.M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 2018, 81, 104–107. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Bailey, J.D.; Pineda, N.; Vega-Garcia, C. Towards a comprehensive wildfire management strategy for Mediterranean areas: Framework development and implementation in Catalonia, Spain. J. Environ. Manag. 2019, 231, 303–320. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Benali, A.; Sá, A.C.L.; Pinho, J.; Fernandes, P.M.; Pereira, J.M.C. Understanding the Impact of Different Landscape-Level Fuel Management Strategies on Wildfire Hazard in Central Portugal. Forests 2021, 12, 522. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning. J. Combust. 2011, 2011, 572452. [Google Scholar] [CrossRef] [Green Version]
- Curt, T.; Frejaville, T. Wildfire Policy in Mediterranean France: How Far is it Efficient and Sustainable? Risk Anal. 2017, 38, 472–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salis, M.; Del Giudice, L.; Arca, B.; Ager, A.A.; Alcasena, F.; Lozano, O.; Bacciu, V.; Spano, D.; Duce, P. Modeling the effects of different fuel treatment mosaics on wildfire spread and behavior in a Mediterranean agro-pastoral area. J. Environ. Manag. 2018, 212, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Day, M.A. Development of comprehensive fuel management strategies for reducing wildfire risk in Greece. Forests 2020, 11, 789. [Google Scholar] [CrossRef]
- Sil, Â.; Fernandes, P.M.; Rodrigues, A.P.; Alonso, J.M.; Honrado, J.P.; Perera, A.; Azevedo, J.C. Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosyst. Serv. 2019, 36, 100908. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, J.C.; Moreira, C.; Castro, J.P.; Loureiro, C. Agriculture Abandonment, Land-use Change and Fire Hazard in Mountain Landscapes in Northeastern Portugal. In Landscape Ecology in Forest Management and Conservation: Challenges and Solutions for Global Change; Li, C., Lafortezza, R., Chen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 329–351. [Google Scholar]
- Airey-Lauvaux, C.; Pierce, A.D.; Skinner, C.N.; Taylor, A.H. Changes in fire behavior caused by fire exclusion and fuel build-up vary with topography in California montane forests, USA. J. Environ. Manag. 2022, 304, 114255. [Google Scholar] [CrossRef]
- Finney, M.A. Fire growth using minimum travel time methods. Can. J. For. Res. 2002, 32, 1420–1424. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Finney, M.A. Application of wildfire simulation models for risk analysis. Geophys. Res. Abstr. 2009, 11, EGU2009-5489. [Google Scholar]
- Salis, M.; Ager, A.; Arca, B.; Finney, M.A.; Bacciu, V.; Duce, P.; Spano, D. Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. Int. J. Wildland Fire 2013, 22, 549–565. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Dawe, D.A.; Miller, C.; Stockdale, C.A.; Armitage, O.B. Applications of simulation-based burn probability modelling: A review. Int. J. Wildland Fire 2020, 28, 913–926. [Google Scholar] [CrossRef] [Green Version]
- Canu, S.; Rosati, L.; Fiori, M.; Motroni, A.; Filigheddu, R.; Farris, E. Bioclimate map of Sardinia (Italy). J. Maps 2015, 11, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.; Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Sardegnageoportale. Available online: https://www.sardegnageoportale.it/ (accessed on 3 October 2022).
- Malinowski, R.; Lewiński, S.; Rybicki, M.; Gromny, E.; Jenerowicz, M.; Krupiński, M.; Nowakowski, A.; Wojtkowski, C.; Krupiński, M.; Krätzschmar, E.; et al. Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12, 3523. [Google Scholar] [CrossRef]
- ISTAT Censimento Popolazione 2021. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1 (accessed on 3 October 2022).
- ISTAT Censimento Agricoltura. 2010. Available online: http://dati-censimentoagricoltura.istat.it/Index.aspx?DataSetCode=DICA_SERIESTOR1 (accessed on 24 October 2022).
- Vaillant, N.M.; Ager, A.A.; Anderson, J. ArcFuels10 System Overview; PNW-GTR-875; Pacific Northwest Research Station, USDA Forest Service: Portland, OR, USA, 2013. [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Day, M.A.; Ager, A.A.; Galatsidas, S.; Papalampros, L. Modelling Fire Behavior to Assess Community Exposure in Europe: Combining Open Data and Geospatial Analysis. ISPRS Int. J. Geo-Inf. 2022, 11, 198. [Google Scholar] [CrossRef]
- Anderson, H.E. Aids to Determining Fuel Models for Estimating Fire Behavior; INT-GTR-122; Intermountain Forest and Range Experiment Station, USDA Forest Service: Ogden, UT, USA, 1982; p. 22. [CrossRef] [Green Version]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; RMRS-GTR-153; Rocky Mountain Research Station, USDA Forest Service: Fort Collins, CO, USA, 2005; p. 72. [CrossRef]
- Arca, B.; Bacciu, V.; Pellizzaro, G.; Salis, M.; Ventura, A.; Duce, P.; Spano, D.; Brundu, G. Fuel model mapping by IKONOS imagery to support spatially explicit fire simulators. In Proceedings of the 7th International Workshop on Advances in Remote Sensing and GIS Applications in Forest Fire Management towards an Operational Use of Remote Sensing in Forest Fire Management, Matera, Italy, 2–5 September 2009. [Google Scholar]
- Ascoli, D.; Vacchiano, G.; Scarpa, C.; Arca, B.; Barbati, A.; Battipaglia, G.; Elia, M.; Esposito, A.; Garfì, V.; Lovreglio, R.; et al. Harmonized dataset of surface fuels under Alpine, temperate and Mediterranean conditions in Italy. A synthesis supporting fire management. iForest 2020, 13, 513–522. [Google Scholar] [CrossRef]
- Ministero delle Politiche Agricole Alimentari e Forestali, Ispettorato Generale-Corpo Forestale dello Stato. CRA-Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura. INFC 2005 Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. Available online: http://www.sian.it/inventarioforestale/ (accessed on 24 October 2022).
- Pellizzaro, G.; Ventura, A.; Zara, P. Influence of seasonal weather variations on fuel status for some shrubs typical of Mediterranean Basin. In Proceedings of the 6th Fire and Forest Meteorology Symposium and 19th Interior West Fire Council Meeting, Canmore, AB, Canada, 24–27 October 2005; pp. 24–27. [Google Scholar]
- Pellizzaro, G.; Duce, P.; Ventura, A.; Zara, P. Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin. Int. J. Wildland Fire 2007, 16, 633–641. [Google Scholar] [CrossRef]
- Salis, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Finney, M.A.; Pellizzaro, G.; Spano, D. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy. Environ. Monit. Assess. 2015, 187, 4175. [Google Scholar] [CrossRef] [Green Version]
- Salis, M.; Arca, B.; Del Giudice, L.; Palaiologou, P.; Alcasena-Urdiroz, F.; Ager, A.; Fiori, M.; Pellizzaro, G.; Scarpa, C.; Schirru, M.; et al. Application of simulation modeling for wildfire exposure and transmission assessment in Sardinia, Italy. Int. J. Disaster Risk Reduct. 2021, 58, 102189. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yebra, M.; Jurdao, S.; Aguado, I.; Salas, F.J.; García, M.; Nieto, H.; De Santis, A.; Cocero, D.; Riaño, D.; et al. Field Fuel Moisture Measurements on Spanish Study Sites; Version 1; Department of Geography, University of Alcalá: Alcalá de Henares, Spain, 2011. [Google Scholar]
- Yebra, M.; Scortechini, G.; Badi, A.; Beget, M.E.; Boer, M.M.; Bradstock, R.; Chuvieco, E.; Danson, F.M.; Dennison, P.; de Dios, V.R.; et al. Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Sci. Data 2019, 6, 155. [Google Scholar] [CrossRef] [Green Version]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; INT-115; Intermountain Forest and Range Experiment Station, USDA Forest Service: Ogden, UT, USA, 1972; p. 40. Available online: https://www.fs.usda.gov/treesearch/pubs/32533 (accessed on 24 October 2022).
- Van Wagner, C.E. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977, 7, 23–34. [Google Scholar] [CrossRef]
- Rothermel, R.C. Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains; INT-438; Intermountain Research Station, USDA Forest Service: Ogden, UT, USA, 1991; p. 46. [CrossRef]
- Alcasena, F.J.; Salis, M.; Ager, A.A.; Arca, B.; Molina, D.; Spano, D. Assessing landscape scale wildfire exposure for highly valued resources in a Mediterranean area. Environ. Manag. 2015, 55, 1200–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finney, M.A.; McHugh, C.W.; Grenfell, I.C.; Riley, K.L.; Short, K.C. A simulation of probabilistic wildfire risk components for the continental United States. Stoch. Environ. Res. Risk Assess. 2011, 25, 973–1000. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.; Ager, A.A. A review of recent advances in risk analysis for wildfire management. Int. J. Wildland Fire 2013, 22, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Vega-Garcia, C.; Chuvieco, E. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes. Landsc. Ecol. 2006, 21, 595–605. [Google Scholar] [CrossRef]
- Benayas, J.R.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Loureiro, C.; Guiomar, N.; Pezzatti, G.B.; Manso, F.T.; Lopes, L. The dynamics and drivers of fuel and fire in the Portuguese public forest. J. Environ. Manag. 2014, 146, 373–382. [Google Scholar] [CrossRef]
- Calkin, D.E.; Thompson, M.P.; Finney, M.A. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Pe’er, G. Agricultural policy can reduce wildfires. Science 2018, 359, 1001. [Google Scholar] [CrossRef]
- Wunder, S.; Calkin, D.E.; Charlton, V.; Feder, S.; Martínez de Arano, I.; Moore, P.; Rodríguez y Silva, F.; Tacconi, L.; Vega-García, C. Resilient landscapes to prevent catastrophic forest fires: Socioeconomic insights towards a new paradigm. For. Policy Econ. 2021, 128, 102458. [Google Scholar] [CrossRef]
- Aparício, B.A.; Santos, J.A.; Freitas, T.R.; Sá, A.C.L.; Pereira, J.M.C.; Fernandes, P.M. Unravelling the effect of climate change on fire danger and fire behaviour in the Transboundary Biosphere Reserve of Meseta Ibérica (Portugal-Spain). Clim. Change 2022, 173, 5. [Google Scholar] [CrossRef]
- Rodrigues, M.; Zúñiga-Antón, M.; Alcasena, F.; Gelabert, P.; Vega-Garcia, C. Integrating geospatial wildfire models to delineate landscape management zones and inform decision-making in Mediterranean areas. Saf. Sci. 2022, 147, 105616. [Google Scholar] [CrossRef]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land cover type and fire in Portugal: Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Oliveira, S.; Moreira, F.; Boca, R.; San-Miguel-Ayanz, J.; Pereira, J.M.C. Assessment of fire selectivity in relation to land cover and topography: A comparison between Southern European countries. Int. J. Wildland Fire 2014, 23, 620–630. [Google Scholar] [CrossRef]
- Palaiologou, P.; Ager, A.A.; Nielsen-Pincus, M.; Evers, C.; Kalabokidis, K. Using transboundary wildfire exposure assessments to improve fire management programs: A case study in Greece. Int. J. Wildland Fire 2018, 27, 501–513. [Google Scholar] [CrossRef]
- Alcasena, F.; Ager, A.; Le Page, Y.; Bessa, P.; Loureiro, C.; Oliveira, T. Assessing wildfire exposure to communities and protected areas in Portugal. Fire 2021, 4, 82. [Google Scholar] [CrossRef]
- Sá, A.C.L.; Aparicio, B.A.; Benali, A.; Bruni, C.; Salis, M.; Silva, F.; Marta-Almeida, M.; Pereira, S.; Rocha, A.; Pereira, J.M.C. Coupling wildfire spread simulations and connectivity analysis for hazard assessment: A case study in Serra da Cabreira, Portugal. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 2022, 1–35. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Barros, A.M.G.; Ager, A.A.; Fernandes, P.M. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. Int. J. Wildland Fire 2016, 25, 619–632. [Google Scholar] [CrossRef]
- Lozano, O.; Salis, M.; Ager, A.A.; Arca, B.; Alcasena, F.J.; Monteiro, A.; Finney, M.A.; Del Guiudice, L.; Scoccimarro, E.; Spano, D. Assessing climate change impacts on wildfire exposure in Mediterranean areas. Risk Anal. 2017, 37, 1898–1916. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Ager, A.A.; Salis, M.; Day, M.A.; Vega-Garcia, C. Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Sci. Total Environ. 2018, 4, 872–885. [Google Scholar] [CrossRef] [Green Version]
- Alcasena, F.; Rodrigues, M.; Gelabert, P.; Ager, A.; Salis, M.; Ameztegui, A.; Cervera, T.; Vega, C. Fostering carbon credits to finance wildfire risk reduction forest management in Mediterranean landscapes. Land 2021, 10, 1104. [Google Scholar] [CrossRef]
- Salis, M.; Del Giudice, L.; Robichaud, P.R.; Ager, A.A.; Canu, A.; Duce, P.; Pellizzaro, G.; Ventura, A.; Alcasena-Urdiroz, F.; Spano, D.; et al. Coupling wildfire spread and erosion models to quantify post-fire erosion before and after fuel treatments. Int. J. Wildland Fire 2019, 28, 687–703. [Google Scholar] [CrossRef]
- Ager, A.A.; Lasko, R.; Myroniuk, V.; Zibtsev, S.; Day, M.A.; Usenia, U.; Bogomolov, V.; Kovalets, I.; Evers, C.R. The wildfire problem in areas contaminated by the Chernobyl disaster. Sci. Total Environ. 2019, 696, 133954. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Galatsidas, S.; Papalampros, L.; Day, M.A. Spatial optimization and tradeoffs of alternative forest management scenarios in Macedonia, Greece. Forests 2021, 12, 697. [Google Scholar] [CrossRef]
- Pais, S.; Aquilué, N.; Campos, J.; Sil, Â.; Marcos, B.; Martínez-Freiría, F.; Domínguez, J.; Brotons, L.; Honrado, J.P.; Regos, A. Mountain farmland protection and fire-smart management jointly reduce fire hazard and enhance biodiversity and carbon sequestration. Ecosyst. Serv. 2020, 44, 101143. [Google Scholar] [CrossRef]
- Lovreglio, R.; Meddour-Sahar, O.; Leone, V. Goat grazing as a wildfire prevention tool: A basic review. iForest 2014, 7, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Bergmeier, E.; Capelo, J.; Di Pietro, R.; Guarino, R.; Kavgacı, A.; Loidi, J.; Tsiripidis, I.; Xystrakis, F. ‘Back to the Future’—Oak wood-pasture for wildfire prevention in the Mediterranean. Plant Sociol. 2021, 58, 41–48. [Google Scholar] [CrossRef]
- Rouet-Leduc, J.; Pe’er, G.; Moreira, F.; Bonn, A.; Helmer, W.; Shahsavan Zadeh, S.A.A.; Zizka, A.; van der Plas, F. Effects of large herbivores on fire regimes and wildfire mitigation. J. Appl. Ecol. 2021, 58, 2690–2702. [Google Scholar] [CrossRef]
- Davies, K.W.; Wollstein, K.; Dragt, B.; O’Connor, C. Grazing management to reduce wildfire risk in invasive annual grass prone sagebrush communities. Rangelands 2022, 44, 194–199. [Google Scholar] [CrossRef]
- Bajocco, S.; Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land cover classes do wildfires prefer? Landsc. Ecol. 2008, 23, 241–248. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Este, M.; Ganga, A.; Elia, M.; Lovreglio, R.; Giannico, V.; Spano, G.; Colangelo, G.; Lafortezza, R.; Sanesi, G. Modeling fire ignition probability and frequency using Hurdle models: A cross-regional study in Southern Europe. Ecol. Process. 2020, 9, 54. [Google Scholar] [CrossRef]
Fuel Type | Dead Fuel Load (t ha−1) | Live Fuel Load (t ha−1) | Fuel Depth (cm) | Bio-Climate | CH (m) | CBH (m) | CBD (100 kg m−3) |
---|---|---|---|---|---|---|---|
Grasslands * | 1.2 | 0 | 15 | LMM | 0 | 0 | 0 |
Permanent crops | 1 | 2 | 80 | 0 | 0 | 0 | |
Herbaceous vegetation * | 2.5 | 0 | 35 | 0 | 0 | 0 | |
Low Med. maquis | 5.3 | 4.1 | 45 | 0 | 0 | 0 | |
High Med. maquis | 15 | 12.5 | 135 | 11 | 1 | 14 | |
Broadleaf forests | 12 | 2 | 70 | 12 | 2 | 14 | |
Coniferous forests | 10 | 1 | 25 | 14 | 2 | 11 | |
Cork oak | 12 | 2 | 70 | 12 | 2 | 14 | |
Ab. herbaceous lands * | 6 | 0 | 45 | 0 | 0 | 0 | |
Grasslands * | 1.2 | 0 | 15 | UMM | 0 | 0 | 0 |
Permanent crops | 1 | 2 | 80 | 0 | 0 | 0 | |
Herbaceous vegetation * | 2.5 | 0 | 35 | 0 | 0 | 0 | |
Low Med. maquis | 6.3 | 4.9 | 70 | 0 | 0 | 0 | |
High Med. maquis | 18 | 15 | 160 | 11 | 1 | 14 | |
Broadleaf forests | 14.4 | 2.4 | 70 | 15 | 3 | 14 | |
Coniferous forests | 12 | 1.2 | 25 | 16 | 3 | 11 | |
Cork oak | 14.4 | 2.4 | 70 | 15 | 3 | 14 | |
Ab. herbaceous lands * | 6 | 0 | 45 | 0 | 0 | 0 | |
* In the case of slope above 20°, fuel load is reduced by 20%. |
Land Abandonment Scenarios | aBP | CFL (m) | HFLP (ha) | FS (ha) |
---|---|---|---|---|
NA | 0.0205 a (0.0162) | 1.55 a (1.08) | 26,081.44 A | 4141.24 a (1430.97) |
PR-10% | 0.0218 b (0.0166) | 1.61 b (1.09) | 33,200.32 B | 4463.55 b (1565.07) |
PR-20% | 0.0229 c (0.0163) | 1.67 c (1.10) | 40,761.12 C | 4755.18 c (1680.28) |
PR-30% | 0.0244 d (0.0176) | 1.73 d (1.10) | 48,315.68 D | 5060.15 g (1856.67) |
PR-40% | 0.0256 e (0.0178) | 1.80 e (1.10) | 55,935.36 E | 5330.43 e (2007.28) |
RND-10% | 0.0221 f (0.0168) | 1.61 b (1.09) | 33,162.24 B | 4478.62 f (1532.85) |
RND-20% | 0.0232 c (0.0171) | 1.67 c (1.09) | 40,645.76 F | 4750.20 c (1696.12) |
RND-30% | 0.0249 g (0.0183) | 1.74 f (1.10) | 48,411.20 G | 5076.81 c (1832.48) |
RND-40% | 0.0263 h (0.0187) | 1.80 g (1.10) | 55,803.36 H | 5436.00 h (1991.80) |
Land Abandonment Scenarios | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fuel Type | NA | PR-10% | PR-20% | PR-30% | PR-40% | RND-10% | RND-20% | RND-30% | RND-40% | |
aBP | AB | 0.0250 a | 0.0286 b | 0.0259 c | 0.0299 d | 0.0235 a | 0.0269 e | 0.0239 d | 0.0282 g | |
AP | 0.0228 a | 0.0256 b | 0.0287 c | 0.0259 d | 0.0292 e | 0.0243 f | 0.0273 c | 0.0246 g | 0.0277 h | |
MM | 0.0178 a | 0.0195 b | 0.0214 c | 0.0199 d | 0.0220 e | 0.0189 f | 0.0206 g | 0.0191 h | 0.0212 e | |
FOR | 0.0137 a | 0.0153 b | 0.0171 c | 0.0155 d | 1.7388 e | 0.0147 f | 0.0161 c | 0.0148 g | 0.0166 h | |
CFL (m) | AB | 1.93 a | 1.98 a | 2.01 a | 2.02 a | 1.93 a | 1.98 b | 2.01 a | 2.02 a | |
AP | 1.23 a | 1.26 b | 1.27 b | 1.29 b | 1.31 b | 1.26 c | 1.28 c | 1.30 c | 1.33 c | |
MM | 4.00 a | 4.03 b | 4.05 b | 4.06 b | 4.08 b | 4.03 b | 4.04 b | 4.06 b | 4.08 b | |
FOR | 1.44 a | 1.45 b | 1.46 b | 1.46 b | 1.48 b | 1.45 b | 1.46 b | 1.47 b | 1.47 b | |
FS (ha) | AB | 4778.9 a | 5168.3 a | 5528.1 a | 5848.3 a | 4767.6 a | 5117.3 b | 5495.9 b | 5890.2 b | |
AP | 4447.7 a | 4800.2 b | 5095.8 b | 5416.8 b | 5695.4 b | 4810.2 b | 5120.3 c | 5467.4 c | 5843.8 c | |
MM | 3740.8 a | 4011.0 b | 4268.3 b | 4476.0 b | 4702.2 b | 4017.1 b | 4238.7 c | 4499.0 c | 4766.0 c | |
FOR | 3120.0 a | 3366.4 b | 3599.6 b | 3835.8 b | 3964.6 b | 3412.6 c | 3527.7 c | 3782.2 c | 4096.8 c | |
FL > 2.5 (%) | AB | 19.98 a | 22.69 a | 24.18 a | 25.03 a | 19.93 b | 22.73 a | 24.08 a | 25.01 b | |
AP | 3.16 a | 3.50 b | 3.93 b | 4.45 b | 5.19 b | 3.51 b | 3.91 b | 4.47 b | 5.19 b | |
MM | 80.46 a | 80.61 b | 80.74 b | 80.78 b | 80.92 b | 80.57 b | 80.71 c | 80.74 b | 80.89 b | |
FOR | 7.63 a | 8.18 b | 8.62 b | 8.94 b | 9.32 b | 8.18 b | 8.59 b | 8.97 b | 9.25 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salis, M.; Del Giudice, L.; Jahdi, R.; Alcasena-Urdiroz, F.; Scarpa, C.; Pellizzaro, G.; Bacciu, V.; Schirru, M.; Ventura, A.; Casula, M.; et al. Spatial Patterns and Intensity of Land Abandonment Drive Wildfire Hazard and Likelihood in Mediterranean Agropastoral Areas. Land 2022, 11, 1942. https://doi.org/10.3390/land11111942
Salis M, Del Giudice L, Jahdi R, Alcasena-Urdiroz F, Scarpa C, Pellizzaro G, Bacciu V, Schirru M, Ventura A, Casula M, et al. Spatial Patterns and Intensity of Land Abandonment Drive Wildfire Hazard and Likelihood in Mediterranean Agropastoral Areas. Land. 2022; 11(11):1942. https://doi.org/10.3390/land11111942
Chicago/Turabian StyleSalis, Michele, Liliana Del Giudice, Roghayeh Jahdi, Fermin Alcasena-Urdiroz, Carla Scarpa, Grazia Pellizzaro, Valentina Bacciu, Matilde Schirru, Andrea Ventura, Marcello Casula, and et al. 2022. "Spatial Patterns and Intensity of Land Abandonment Drive Wildfire Hazard and Likelihood in Mediterranean Agropastoral Areas" Land 11, no. 11: 1942. https://doi.org/10.3390/land11111942
APA StyleSalis, M., Del Giudice, L., Jahdi, R., Alcasena-Urdiroz, F., Scarpa, C., Pellizzaro, G., Bacciu, V., Schirru, M., Ventura, A., Casula, M., Pedes, F., Canu, A., Duce, P., & Arca, B. (2022). Spatial Patterns and Intensity of Land Abandonment Drive Wildfire Hazard and Likelihood in Mediterranean Agropastoral Areas. Land, 11(11), 1942. https://doi.org/10.3390/land11111942