Exploring the Role of Transit Ridership as a Proxy for Regional Centrality in Moderating the Relationship between the 3Ds and Street-Level Pedestrian Volume: Evidence from Seoul, Korea
Abstract
:1. Introduction
2. Theoretical Background and Literature Review
2.1. Pathways from Built Environment to Street-Level Pedestrian Volume: A Conceptual Framework
2.2. Empirical Evidence on the Relationship between Built Environment and Pedestrian Volume
3. Empirical Setting
3.1. Study Area
3.2. Data and Variables
3.2.1. Pedestrian Volume (Dependent Variable)
3.2.2. Transit Ridership (Proxy for Regional Centrality)
3.2.3. Walkshed-Level Built Environment (3D) Variables
3.2.4. Street-Level Built Environment Variables
3.3. Analysis Method and Model Specification
4. Results of Analysis
4.1. Preliminary Analysis: Determing the Size of the Transit Stops’ Influential Area
4.2. Impact of Built Environment on Pedestrian Volume: Transit Ridership Controlled vs. Not Controlled
5. Discussion
5.1. Does “Design” Matter?
5.2. Which Is a Better Explanatory Variable, Accessibility to Transit or Transit Ridership?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Constrained Model | |||||||
---|---|---|---|---|---|---|---|
Variables | OLS | Spatial Lag | Spatial Error | ||||
Coef. | t | VIF | Coef. | z | Coef. | z | |
Rho (ρ) | 0.678 *** | 30.416 | |||||
Lambda (λ) | 0.744 *** | 32.652 | |||||
Constant | 8.602 *** | 47.084 | 2.657 *** | 10.621 | 8.409 *** | 35.374 | |
Walkshed-level 3D variables | |||||||
Density (log_population density) | 0.003 | 0.125 | 1.269 | 0.052 *** | 2.725 | −0.025 | −0.682 |
Density (log_job density) | 0.216 *** | 10.885 | 1.527 | 0.071 *** | 3.943 | 0.191 *** | 5.623 |
Diversity (log_facility accessibility index) | 0.563 *** | 9.029 | 1.314 | 0.371 *** | 6.694 | 0.495 *** | 7.292 |
Design (log_connectivity index) | −0.232 ** | −2.022 | 1.148 | −0.277 *** | −2.756 | −0.343 *** | −2.783 |
Street-level variables | |||||||
Land use | |||||||
Residential | 0.355 *** | 5.069 | 3.146 | 0.281 *** | 4.572 | 0.376 *** | 4.464 |
Commercial | 0.763 *** | 9.753 | 3.191 | 0.489 *** | 7.014 | 0.665 *** | 7.208 |
Other land use (ref.) | |||||||
Street type | |||||||
Street with a sidewalk | 0.699 *** | 10.745 | 2.627 | 0.575 *** | 10.045 | 0.663 *** | 10.936 |
Street without a sidewalk | 0.514 *** | 6.073 | 1.666 | 0.435 *** | 5.860 | 0.550 *** | 6.896 |
Street with a shared sidewalk (ref.) | |||||||
Street condition | |||||||
Sidewalk width | 0.099 *** | 10.867 | 1.235 | 0.077 *** | 9.589 | 0.080 *** | 9.562 |
Number of traffic lanes | 0.021 ** | 2.291 | 1.974 | 0.018 ** | 2.237 | 0.022 ** | 2.414 |
Presence of centerline | −0.342 *** | −5.196 | 2.577 | −0.234 *** | −4.059 | −0.242 *** | −3.986 |
Presence of sloping road | −0.337 *** | −7.485 | 1.026 | −0.304 *** | −7.662 | −0.369 *** | −8.584 |
Presence of fence | 0.123 *** | 2.690 | 1.096 | 0.135 *** | 3.390 | 0.127 *** | 3.078 |
Presence of crosswalk | 0.127 *** | 2.914 | 1.353 | 0.147 *** | 3.871 | 0.185 *** | 4.599 |
Presence of obstacle | −0.000 | −0.003 | 1.017 | −0.036 | −0.621 | −0.026 | −0.427 |
Model Summary | |||||||
N | 2889 | 2889 | 2889 | ||||
R2 | 0.298 | ||||||
Adjusted R2 | 0.294 | ||||||
Pseudo-R2 | 0.460 | 0.475 | |||||
Log likelihood | −4026 | −3707 | −3681 | ||||
Akaike Info Criterion (AIC) | 8085 | 7448 | 7394 | ||||
Schwarz Criterion (SC) | 8180 | 7549 | 7490 | ||||
Statistics | |||||||
Moran’s I | 41.182 *** | ||||||
Robust LM (lag) | 10.278 *** | ||||||
Robust LM (error) | 388.289 *** |
Appendix B
Unconstrained Model | |||||||
---|---|---|---|---|---|---|---|
Variables | OLS | Spatial Lag | Spatial Error | ||||
Coef. | t | VIF | Coef. | z | Coef. | z | |
Rho (ρ) | 0.599 *** | 25.151 | |||||
Lambda (λ) | 0.706 *** | 28.370 | |||||
Constant | 4.313 *** | 14.441 | 0.466 | 1.528 | 4.860 *** | 13.465 | |
Transit ridership (proxy for regional centrality) | |||||||
log_bus ridership (400 m buff.) | 0.331 *** | 15.129 | 1.524 | 0.214 *** | 10.492 | 0.267 *** | 10.760 |
log_subway ridership (300 m buff.) | 0.045 *** | 12.769 | 1.259 | 0.039 *** | 12.085 | 0.043 *** | 11.775 |
Walkshed-level 3D variables | |||||||
Density (log_population density) | −0.061 *** | −2.955 | 1.306 | 0.003 | 0.151 | −0.069 ** | −2.074 |
Density (log_job density) | 0.144 *** | 7.643 | 1.597 | 0.039 ** | 2.250 | 0.126 *** | 4.028 |
Diversity (log_facility accessibility index) | 0.172 *** | 2.829 | 1.451 | 0.097 | 1.760 | 0.200 *** | 3.009 |
Design (log_connectivity index) | −0.107 | −1.001 | 1.151 | −0.179 | −1.857 | −0.144 | −1.229 |
Street-level variables | |||||||
Land use | |||||||
Residential | 0.201 *** | 3.039 | 3.244 | 0.193 *** | 3.245 | 0.296 *** | 3.702 |
Commercial | 0.360 *** | 4.745 | 3.471 | 0.243 *** | 3.527 | 0.433 *** | 4.889 |
Other land use (ref.) | |||||||
Street type | |||||||
Street with a sidewalk | 0.690 *** | 11.412 | 2.631 | 0.579 *** | 10.569 | 0.647 *** | 11.199 |
Street without a sidewalk | 0.603 *** | 7.659 | 1.675 | 0.503 *** | 7.065 | 0.558 *** | 7.342 |
Street with a shared sidewalk (ref.) | |||||||
Street condition | |||||||
Sidewalk width | 0.082 *** | 9.634 | 1.246 | 0.067 *** | 8.697 | 0.065 *** | 8.180 |
Number of traffic lanes | 0.007 | 0.795 | 1.990 | 0.009 | 1.103 | 0.016 | 1.836 |
Presence of centerline | −0.223 *** | −3.627 | 2.599 | −0.159 *** | −2.865 | −0.169 *** | −2.910 |
Presence of sloping road | −0.278 *** | −6.626 | 1.032 | −0.267 *** | −7.044 | −0.317 *** | −7.734 |
Presence of fence | 0.155 *** | 3.650 | 1.098 | 0.159 *** | 4.151 | 0.144 *** | 3.647 |
Presence of crosswalk | 0.143 *** | 3.525 | 1.356 | 0.161 *** | 4.402 | 0.192 *** | 5.025 |
Presence of obstacle | 0.070 | 1.128 | 1.020 | 0.019 | 0.333 | 0.024 | 0.414 |
Model Summary | |||||||
N | 2889 | 2889 | 2889 | ||||
R2 | 0.394 | ||||||
Adjusted R2 | 0.391 | ||||||
Pseudo-R2 | 0.505 | 0.523 | |||||
Log likelihood | −3812 | −3565 | −3532 | ||||
Akaike Info Criterion (AIC) | 7661 | 7168 | 7101 | ||||
Schwarz Criterion (SC) | 7768 | 7282 | 7208 | ||||
Statistics | |||||||
Moran’s I | 36.238 *** | ||||||
Robust LM (lag) | 14.415 *** | ||||||
Robust LM (error) | 398.931 *** |
Appendix C
Subway Ridership Within | |||||||
---|---|---|---|---|---|---|---|
100 m | 200 m | 300 m | 400 m | 500 m | 600 m | ||
Bus ridership within | 100 m | −3631.534 | −3582.570 | −3554.960 | −3566.286 | −3574.785 | −3619.577 |
200 m | −3624.403 | −3578.292 | −3555.164 | −3567.127 | −3572.268 | −3609.902 | |
300 m | −3590.634 | −3552.466 | −3535.724 | −3553.718 | −3557.134 | −3582.928 | |
400 m | −3590.328 | −3545.743 | −3532.321 | −3557.138 | −3566.522 | −3592.585 | |
500 m | −3614.468 | −3558.104 | −3542.730 | −3572.256 | −3589.259 | −3619.456 | |
600 m | −3665.148 | −3608.897 | −3581.035 | −3604.125 | −3617.418 | −3659.830 |
References
- Lee, C.; Moudon, A.V. Physical activity and environment research in the health field: Implications for urban and transportation planning practice and research. J. Plan. Lit. 2016, 19, 147–181. [Google Scholar] [CrossRef]
- Kim, H.; Yang, S. Neighborhood walking and social capital: The correlation between walking experience and individual perception of social capital. Sustainability 2017, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Loukaitou-Sideris, A. Special issue on walking. Transp. Rev. 2020, 40, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Kahn, M.E.; Morris, E.A. Walking the walk: The association between community environmentalism and green travel behavior. J. Am. Plan. Assoc. 2009, 75, 389–405. [Google Scholar] [CrossRef]
- Ogilvie, D.; Bull, F.; Cooper, A.; Rutter, H.; Adams, E.; Brand, C.; Ghali, K.; Jones, T.; Mutrie, N.; Powell, J.; et al. Evaluating the travel, physical activity and carbon impacts of a ‘natural experiment’ in the provision of new walking and cycling infrastructure: Methods for the core module of the iConnect study. BMJ Open 2012, 2, e000694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.; Lee, S.; Jung, S. Identifying the relationship between the objectively measured built environment and walking activity in the high-density and transit-oriented city, Seoul, Korea. Environ. Plan. B Plann. Design 2014, 41, 637–660. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J.; Gerike, R.; Götschi, T. Reducing car dependence in the heart of Europe: Lessons from Germany, Austria, and Switzerland. Transp. Rev. 2016, 37, 4–28. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Modern Library Editions & Random House Inc.: New York, NY, USA, 1961. [Google Scholar]
- Appleyard, D. Livable Streets; University of California Press: Berkley, CA, USA, 1981. [Google Scholar]
- Putnam, R. Bowling Alone, The Collapse and Revival of American Community; Simon and Schuster: New York, NY, USA, 2000. [Google Scholar]
- Handy, S.L.; Boarnet, M.G.; Ewing, R.; Killingsworth, R.E. How the built environment affects physical activity: Views from urban planning. Am. J. Prev. Med. 2002, 23, 64–73. [Google Scholar] [CrossRef]
- Litman, T.A. Economic value of walkability. Trans. Res. Rec. 2003, 1828, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Frumkin, H.; Frank, L.D.; Jackson, R. Urban Sprawl and Public Health: Designing, Planning, and Building for Healthy Communities; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Montgomery, C. Happy City: Transforming Our Lives Through Urban Design, 1st ed.; Farrar, Straus and Giroux: New York, NY, USA, 2013. [Google Scholar]
- Kang, C.D. Spatial access to pedestrians and retail sales in Seoul, Korea. Habitat Int. 2016, 57, 110–120. [Google Scholar] [CrossRef]
- Chung, J.; Kim, S.N.; Kim, H. The impact of PM10 levels on pedestrian volume: Findings from streets in Seoul, South Korea. Int. J. Environ. Res. Public Health 2019, 16, 4833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, A.B. Great streets. Access Mag. 1993, 1, 23–27. [Google Scholar]
- Ewing, R.; Handy, S. Measuring the unmeasurable: Urban design qualities related to walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Sung, H.G.; Go, D.H.; Choi, C.G. Evidence of Jacobs’s street life in the great Seoul city: Identifying the association of physical environment with walking activity on streets. Cities 2013, 35, 164–173. [Google Scholar] [CrossRef]
- Kang, C.D. The effects of spatial accessibility and centrality to land use on walking in Seoul, Korea. Cities 2015, 46, 94–103. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A synthesis. Transp. Res. Rec. 2001, 1780, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Shin, Y.; Sung, H. The relationship of distance-based TOD planning elements to public transit ridership in Seoul subway station areas. J. Korea Plan. Assoc. 2013, 48, 51–64. [Google Scholar]
- Min, B.; Lee, G.; Kim, S. The effects of land-use characteristics on trip patterns by trip modes and purposes: Focused on Seoul Metropolitan Administrative Division. JAIK Plan. Des. 2016, 32, 77–87. [Google Scholar]
- Ewing, R.; Hajrasouliha, A.; Neckerman, K.M.; Purciel-Hill, M.; Greene, W. Streetscape features related to pedestrian activity. J. Plan. Educ. Res. 2015, 36, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Hajrasouliha, A.; Yin, L. The impact of street network connectivity on pedestrian volume. Urban Stud. 2015, 52, 2483–2497. [Google Scholar] [CrossRef]
- Lee, C.; Moudon, A.V. The 3Ds + R, quantifying land use and urban form correlates of walking. Transp. Res. Part D Transp. Environ. 2006, 11, 204–215. [Google Scholar] [CrossRef]
- Peiravian, F.; Derrible, S.; Ijaz, F. Development and application of the Pedestrian Environment Index (PEI). J. Transp. Geogr. 2014, 39, 73–84. [Google Scholar] [CrossRef]
- Learnihan, V.; Van Niel, K.P.; Giles-Corti, B.; Knuiman, M. Effect of scale on the links between walking and urban design. Geogr. Res. 2011, 49, 183–191. [Google Scholar] [CrossRef]
- Cao, X.; Handy, S.L.; Mokhtarian, P.L. The influences of the built environment and residential self-selection on pedestrian behavior: Evidence from Austin, TX. Transportation 2006, 33, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Vojnovic, I. Building communities to promote physical activity: A multi-scale geographic analysis. Geogr. Ann. Series B Hum. Geogr. 2006, 88, 67–90. [Google Scholar] [CrossRef]
- Salingaros, N.A. Urban space and its information field. J. Urban Des. 2007, 4, 29–49. [Google Scholar] [CrossRef]
- Gehl, J. Life between Buildings: Using Public Space, 5th ed.; Arkitektens Forlag: Copenhagen, Denmark, 2001. [Google Scholar]
- Lee, H.; Kim, S. Shared space and pedestrian safety: Empirical evidence from pedestrian priority street projects in Seoul, Korea. Sustainability 2019, 11, 4645. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, S.N. Perceived safety and pedestrian performance in pedestrian priority streets (PPSs) in Seoul, Korea: A virtual reality experiment and trace mapping. Int. J. Environ. Res. Public Health 2021, 18, 2501. [Google Scholar] [CrossRef]
- Gehl, J.; Svarre, B. How to Study Public Life; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Mehta, V. The Street: A Quintessential Social Public Space; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Talen, E.; Koschinsky, J. The walkable neighborhood: A literature review. Int. J. Sustain. Land Use Urban Plan. 2013, 1, 42–63. [Google Scholar] [CrossRef]
- Zegras, P. Sustainable Urban Mobility: Exploring the Role of the Built Environment. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005. [Google Scholar]
- Zacharias, J. Pedestrian behavior and perception in urban walking environments. J. Plan. Lit. 2001, 16, 3–18. [Google Scholar] [CrossRef]
- Kim, N.S.; Susilo, Y.O. Comparison of pedestrian trip generation models. J. Adv. Transp. 2013, 47, 399–412. [Google Scholar] [CrossRef]
- Erhardt, G.D.; Mucci, R.A.; Cooper, D.; Sana, B.; Chen, M.; Castiglione, J. Do transportation network companies increase or decrease transit ridership? Empirical evidence from San Francisco. Transportation 2021, 49, 313–342. [Google Scholar] [CrossRef]
- Carmona, M.; Heath, T.; Tiesdell, S.; Oc, T. Public Places—Urban spaces; Architectural Press: Oxford, UK, 2003. [Google Scholar]
- Rodríguez, D.A.; Brisson, E.M.; Estupiñán, N. The relationship between segment-level built environment attributes and pedestrian activity around Bogota’s BRT stations. Transp. Res. Part D Transp. Environ. 2009, 14, 470–478. [Google Scholar] [CrossRef]
- Lee, J.; Koo, J. The effect of physical environment of street on pedestrian volume: Focused on central business district (CBD, GBD, YBD) of Seoul. J. Korea Plan. Assoc. 2013, 48, 269–286. [Google Scholar]
- Lee, H.S.; Kim, J.Y.; Choo, S.H. Analyzing pedestrian characteristics using the Seoul floating population survey: Focusing on 5 urban communities in Seoul. J. Korean Soc. Transp. 2014, 32, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, H.; Koo, J. The study on factors influencing pedestrian volume based on physical environment of street. J. Korea Plan. Assoc. 2014, 49, 145–163. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Jun, C. Analysis of physical environmental factors that affect pedestrian volumes by street type. J. Urban Des. Inst. Korea 2015, 6, 123–140. [Google Scholar]
- Sung, H.; Go, D.; Choi, C.G.; Cheon, S.; Park, S. Effects of street-level physical environment and zoning on walking activity in Seoul, Korea. Land Use Policy 2015, 49, 152–160. [Google Scholar] [CrossRef]
- Jang, J.Y.; Choi, S.T.; Lee, H.S.; Kim, S.J.; Choo, S.H. A comparison analysis of factors to affect pedestrian volumes by land-use type using Seoul Pedestrian Survey data. J. Korean Inst. Intell. Transp. Syst. 2015, 14, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Moreno, L.F.; Morency, P.; El-Geneidy, A.M. The link between built environment, pedestrian activity and pedestrian–vehicle collision occurrence at signalized intersections. Accid. Anal. Prev. 2011, 43, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, S.; Lee, J.S. Meso- or micro-scale? Environmental factors influencing pedestrian satisfaction. Transp. Res. Part D Transp. Environ. 2014, 30, 10–20. [Google Scholar] [CrossRef]
- KOSIS (Korean Statistical Information Service). Available online: https://kosis.kr/ (accessed on 10 September 2019).
- Seoul Metropolitan Government. 2030 Seoul Master Plan. 2014. Available online: https://www.seoulsolution.kr/en/content/2030-seoul-plan (accessed on 10 August 2021).
- Hansen, W.G. How accessibility shapes land use. J. Am. Plan. Assoc. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Kim, S.; Mokhtarian, P.; Ahn, K. The Seoul of Alonso: New perspectives on telecommuting and residential location from South Korea. Urban Geogr. 2012, 33, 1163–1191. [Google Scholar] [CrossRef]
- Kim, H. The Effects of Compact City Planning Elements on Travel Behavior of Different Income Levels. Unpublished. Master’s Thesis, Department of Civil and Environmental Engineering, Seoul National University, Seoul, Korea, 2009. [Google Scholar]
- Seoul Open Data Platform. Stat. City Buses Seoul. Available online: https://data.seoul.go.kr/dataList/248/S/2/datasetView.do (accessed on 19 August 2021).
- Seoul Open Data Platform. Statistics on the Subway Operation Status of Seoul. Available online: https://data.seoul.go.kr/dataList/247/S/2/datasetView.do (accessed on 19 August 2021).
- Seoul Open Data Platform. Statistics on the Status of Bus Stops in Seoul. Available online: https://data.seoul.go.kr/dataList/249/S/2/datasetView.do (accessed on 19 August 2021).
- Seoul Open Data Platform. Commuting Modal Share in Seoul. Available online: https://data.seoul.go.kr/dataList/10283/S/2/datasetView.do (accessed on 19 August 2021).
- Kim, H.M.; Han, S.S. Seoul. Cities 2012, 29, 142–154. [Google Scholar] [CrossRef]
- Lee, M. Travel pattern analysis using public transportation card data in Seoul metropolitan area. KRIHS Policy Brief. 2015, 536, 1–6. [Google Scholar]
- Seoul Metropolitan Government. A White Paper on Pedestrian Volume Survey; Seoul Metropolitan Government: Seoul, Korea, 2009.
- National Information Society Agency; Seoul Metropolitan Government. A Report on 2015 Pedestrian Volume Survey; Seoul Metropolitan Government: Seoul, Korea, 2015.
- Kim, H. Walking distance, route choice, and activities while walking: A record of following pedestrians from transit stations in the San Francisco Bay area. Urban Des. Int. 2015, 20, 144–157. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, G.; Webster, C. Walkability scoring: Why and how does a three–dimensional pedestrian network matter? Environ. Plan. B: Urban Anal. City Sci. 2020, 48, 2418–2435. [Google Scholar] [CrossRef]
- Crane, R. The influence of urban form on travel: An interpretive review. J. Plan. Lit. 2000, 15, 3–23. [Google Scholar] [CrossRef]
- Kocher, J.; Lerner, M. Walk Score. Available online: https://www.walkscore.com/ (accessed on 5 January 2022).
- Frank, L.D.; Engelke, P. Multiple impacts of the built environment on public health, walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 2005, 28, 193–216. [Google Scholar] [CrossRef]
- Saaty, T. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Steiner, F.; Butler, K. Planning and Urban Design Standard, Student Edition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Knight, P.L.; Marshall, W.E. The metrics of street network connectivity: Their inconsistencies. J. Urban. Int. Res. Placemaking Urban Sust. 2014, 8, 241–259. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.N. Shaping suburbia: A comparison of state-led and market-led suburbs in Seoul Metropolitan Area, South Korea. Urban Des. Int. 2016, 21, 131–150. [Google Scholar] [CrossRef]
- O’Sullivan, S.; Morrall, J. Walking distances to and from light–rail transit stations, Transportation research record. J. Transp. Res. Board. 1996, 1538, 19–26. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X. Exploring built environment correlates of walking distance of transit egress in the Twin Cities. J. Transp. Geogr. 2017, 64, 132–138. [Google Scholar] [CrossRef]
- Besser, L.M.; Dannenberg, A.L. Walking to public transit: Steps to help meet physical activity recommendations. Am. J. Prev. Med. 2005, 29, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S. Defining, Measuring, and Evaluating Path Walkability, and Testing its Impacts on Transit Users’ Mode Choice and Walking Distance to the Station. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2008. [Google Scholar]
- Yun, N.; Choi, C. Relationship between pedestrian volume and pedestrian environmental factors on the commercial streets in Seoul. J. Korea Plan. Assoc. 2013, 48, 135–150. [Google Scholar]
- Tchinda, P.E.; Kim, S.-N. The Paradox of “Eyes on the Street”: Pedestrian Density and Fear of Crime in Yaoundé, Cameroon. Sustainability 2020, 12, 5300. [Google Scholar] [CrossRef]
- Zhang, X.Q. High-rise and high-density compact urban form: The development of Hong Kong. In Compact Cities; Routledge: London, UK, 2000. [Google Scholar]
- Burges, R.; Jenks, M. Compact Cities Sustainable Urban Forms for Developing Countries; Spon Press: London, UK, 2000. [Google Scholar]
- Kim, S.N.; Lee, K.H.; Ahn, K.H. The effects of compact city characteristics on transportation energy consumption and air quality. J. Korea Plan. Assoc. 2009, 44, 231–246. [Google Scholar]
Category | Specific Type of Facility | Weight |
---|---|---|
| General restaurant, café | 0.164 |
| Market, department store, shopping center, outlet, mall, general store | 0.161 |
| Theater, exhibition hall, museum, auditorium, concert hall, zoo, botanical garden, gym, swimming pool | 0.141 |
| Library, kindergarten, elementary/middle/high school, university | 0.177 |
| Bus stop, bus terminal, subway station, train station | 0.357 |
Variables | Definition (Unit) | Mean | S.D. | Min. | Max. |
---|---|---|---|---|---|
Dependent variable | |||||
Pedestrian volume | Total daily pedestrian counts | 7121 | 9615 | 57 | 103,437 |
Ln (pedestrian volume) | 8.247 | 1.164 | 4.043 | 11.547 | |
Transit ridership (proxy for regional centrality): macro-scale variables | |||||
Bus ridership | Daily bus ridership within 400 m buffer | 23,494 | 21,326 | 0 | 127,236 |
Ln (bus ridership + 1) | 9.696 | 0.953 | 0.000 | 11.750 | |
Subway ridership | Daily subway ridership within 300 m buffer | 27,020 | 43,941 | 0 | 247,209 |
Ln (subway ridership + 1) | 4.512 | 5.350 | 0.000 | 12.420 | |
Walkshed-level variables (within 500 m buffer): meso-scale variables | |||||
Density (population) | Population density of census tracks within 500 m (capita/m2) | 0.016 | 0.010 | >0.001 | 0.041 |
Ln (population density) | −4.467 | 0.936 | −9.520 | −3.190 | |
Density (job) | Job density of census tracks within 500 m (capita/m2) | 0.019 | 0.022 | >0.001 | 0.124 |
Ln (job density) | −4.570 | 1.133 | −9.440 | −2.090 | |
Diversity | Facility accessibility index (see Section 3.2.3) | 0.406 | 0.118 | 0.050 | 0.710 |
Ln (facility accessibility index) | 0.277 | 0.170 | −0.528 | 0.837 | |
Design | Connectivity index (link/node ratio) | 1.338 | 0.221 | 0.590 | 2.310 |
Ln (connectivity index) | −0.951 | 0.334 | −2.996 | −0.342 | |
Street-level variables (mostly within 50 m buffer): micro-scale variables | |||||
Land use | |||||
Residential | Residential use (yes = 1) | 0.694 | 0.461 | ||
Commercial | Commercial use (yes = 1) | 0.222 | 0.415 | ||
Other land use (ref.) | Other land use (yes = 1) | 0.085 | 0.218 | ||
Street type | |||||
With sidewalk | Street with a sidewalk (yes = 1) | 0.711 | 0.454 | ||
Without sidewalk | Street without a sidewalk shared with pedestrians and vehicles (yes = 1) | 0.084 | 0.278 | ||
With shared sidewalk (ref.) | Sidewalk is shared with pedestrian and bicycle (yes = 1) | 0.205 | 0.404 | ||
Street condition | |||||
Sidewalk width | Width of sidewalk or fringe of the road for pedestrian passage (m) | 4.198 | 2.221 | 1.000 | 24.000 |
# of traffic lanes | Number of traffic lanes (count) | 4.182 | 2.731 | 1.000 | 18.000 |
Presence of centerline | Dummy (yes = 1, within 50 m buffer) | 0.730 | 0.444 | ||
Presence of sloping road | Dummy (yes = 1, within 50 m buffer) | 0.213 | 0.409 | ||
Presence of fence | Dummy (yes = 1, within 50 m buffer) | 0.225 | 0.417 | ||
Presence of crosswalk | Dummy (yes = 1, within 50 m buffer) | 0.616 | 0.486 | ||
Presence of obstacle | Dummy (yes = 1, within 50 m buffer) | 0.917 | 0.276 |
Subway Ridership Within | |||||||
---|---|---|---|---|---|---|---|
100 m | 200 m | 300 m | 400 m | 500 m | 600 m | ||
Bus ridership within | 100 m | 0.492 | 0.509 | 0.518 | 0.513 | 0.511 | 0.495 |
200 m | 0.493 | 0.509 | 0.516 | 0.511 | 0.510 | 0.497 | |
300 m | 0.504 | 0.518 | 0.5227 | 0.516 | 0.516 | 0.506 | |
400 m | 0.504 | 0.519 | 0.5232 | 0.514 | 0.512 | 0.503 | |
500 m | 0.496 | 0.515 | 0.519 | 0.509 | 0.504 | 0.494 | |
600 m | 0.480 | 0.500 | 0.508 | 0.500 | 0.496 | 0.481 |
Variables | Constrained Model | Unconstrained Model | ||
---|---|---|---|---|
Coef. | z | Coef. | z | |
Lambda (λ) | 0.744 *** | 32.652 | 0.706 *** | 28.370 |
Constant | 8.409 *** | 35.374 | 4.860 *** | 13.465 |
Transit ridership (proxy for regional centrality) | ||||
log_bus ridership (400 m buff.) | 0.267 *** | 10.760 | ||
log_subway ridership (300 m buff.) | 0.043 *** | 11.775 | ||
Walkshed-level 3D variables | ||||
Density (log_population density) | −0.025 | −0.682 | −0.069 ** | −2.074 |
Density (log_job density) | 0.191 *** | 5.623 | 0.126 *** | 4.028 |
Diversity (log_facility accessibility index) | 0.495 *** | 7.292 | 0.200 *** | 3.009 |
Design (log_connectivity index) | −0.343 *** | −2.783 | −0.144 | −1.229 |
Street-level variables | ||||
Land use | ||||
Residential | 0.376 *** | 4.464 | 0.296 *** | 3.702 |
Commercial | 0.665 *** | 7.208 | 0.433 *** | 4.889 |
Other land use (ref.) | ||||
Street type | ||||
Street with a sidewalk | 0.663 *** | 10.936 | 0.647 *** | 11.199 |
Street without a sidewalk | 0.550 *** | 6.896 | 0.558 *** | 7.342 |
Street with a shared sidewalk (ref.) | ||||
Street condition | ||||
Sidewalk width | 0.080 *** | 9.562 | 0.065 *** | 8.180 |
Number of traffic lanes | 0.022 ** | 2.414 | 0.016 | 1.836 |
Presence of centerline | −0.242 *** | −3.986 | −0.169 *** | −2.910 |
Presence of sloping road | −0.369 *** | −8.584 | −0.317 *** | −7.734 |
Presence of fence | 0.127 *** | 3.078 | 0.144 *** | 3.647 |
Presence of crosswalk | 0.185 *** | 4.599 | 0.192 *** | 5.025 |
Presence of obstacle | −0.026 | −0.427 | 0.024 | 0.414 |
Summary Statistics | ||||
N | 2,889 | 2,889 | ||
Pseudo-R2 | 0.475 | 0.523 | ||
Moran‘s I | 41.182 *** | 36.238 *** | ||
Robust LM (error) | 388.289 *** | 398.931 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-N.; Chung, J.; Lee, J. Exploring the Role of Transit Ridership as a Proxy for Regional Centrality in Moderating the Relationship between the 3Ds and Street-Level Pedestrian Volume: Evidence from Seoul, Korea. Land 2022, 11, 1749. https://doi.org/10.3390/land11101749
Kim S-N, Chung J, Lee J. Exploring the Role of Transit Ridership as a Proxy for Regional Centrality in Moderating the Relationship between the 3Ds and Street-Level Pedestrian Volume: Evidence from Seoul, Korea. Land. 2022; 11(10):1749. https://doi.org/10.3390/land11101749
Chicago/Turabian StyleKim, Seung-Nam, Juwon Chung, and Junseung Lee. 2022. "Exploring the Role of Transit Ridership as a Proxy for Regional Centrality in Moderating the Relationship between the 3Ds and Street-Level Pedestrian Volume: Evidence from Seoul, Korea" Land 11, no. 10: 1749. https://doi.org/10.3390/land11101749
APA StyleKim, S.-N., Chung, J., & Lee, J. (2022). Exploring the Role of Transit Ridership as a Proxy for Regional Centrality in Moderating the Relationship between the 3Ds and Street-Level Pedestrian Volume: Evidence from Seoul, Korea. Land, 11(10), 1749. https://doi.org/10.3390/land11101749