Restoration of Degraded Tropical Peatland in Indonesia: A Review
Abstract
:1. Introduction
2. Regulations, Institutions, and Planning in Degraded Peatland Restoration
2.1. Regulations of Peatland Restoration
2.2. Institutions Involved in Peatland Restoration
2.3. Peatland Ecosystem Protection and Management Plans
3. Implementation of Peatland Restoration
3.1. Criteria and Indicators for Peatland Restoration
3.2. Rewetting
3.3. Revegetation
3.3.1. The Types of Peatland Degradation Sites
3.3.2. Revegetation with Natural Regeneration
3.3.3. Revegetation with Assisted Regeneration/Planting
3.4. Revitalisation of Local Livelihoods in Peatland Restoration
3.4.1. Recent Livelihoods and an Overview of the Revitalisation Programme
3.4.2. Challenges and Opportunities for Improving Livelihoods in Peatland Restoration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andriesse, J.P. Nature and Management of Tropical Peat Soils; Food & Agriculture Organization: Rome, Italy, 1988. [Google Scholar]
- Page, S.; Hosciło, A.; Wösten, H.; Jauhiainen, J.; Silvius, M.; Rieley, J.; Ritzema, H.; Tansey, K.; Graham, L.; Vasander, H.; et al. Restoration Ecology of Lowland Tropical Peatlands in Southeast Asia: Current Knowledge and Future Research Directions. Ecosystems 2009, 12, 888–905. [Google Scholar] [CrossRef]
- Badan Restorasi Gambut. Strategic Plan Peatland Restoration Agency 2016–2020; Badan Restorasi Gambut: Jakarta, Indonesia, 2017.
- Ritung, S.; Wahyunto, K.; Nugroho; Sukarman; Hikmatullah; Suparto; Tafakresnanto, C. Peta Lahan Gambut Indonesia Skala 1:250.000; Ministry of Agriculture, Agency for Agricultural Research and Development: Bogor, Indonesia, 2011.
- Anda, M.; Ritung, S.; Suryani, E.; Sukarman; Hikmat, M.; Yatno, E.; Mulyani, A.; Subandiono, R.E.; Suratman; Husnain. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 2021, 402, 115235. [Google Scholar] [CrossRef]
- Schumann, M.; Joosten, H. Global Peatland Restoration Manual; Institute of Botany and Landscape Ecology, Greifswald University: Greifswald, Germany, 2008; Volume 39, p. 103. [Google Scholar]
- Upton, A.; Vane, C.; Girkin, N.; Turner, B.; Sjögersten, S. Does litter input determine carbon storage and peat organic chemistry in tropical peatlands? Geoderma 2018, 326, 76–87. [Google Scholar] [CrossRef]
- Agus, C.; Ilfana, Z.R.; Azmi, F.F.; Rachmanadi, D.; Widiyatno; Wulandari, D.; Santosa, P.B.; Harun, M.K.; Yuwati, T.W.; Lestari, T. The effect of tropical peat land-use changes on plant diversity and soil properties. Int. J. Environ. Sci. Technol. 2020, 17, 1703–1712. [Google Scholar] [CrossRef]
- Noor, M.; Masganti, A.F. Pembentukan dan karakteristik gambut tropika Indonesia. In Lahan Gambut Indonesia. Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan (Edisi Revisi); Fahmuddin, A., Anda, M., Jamil, A., Masganti, Eds.; IAARD Press: Bogor, Indonesia, 2014; pp. 7–32. [Google Scholar]
- Assidik, M.L.; Soekarno, I.; Widyaningtias; Humam, I.A. Water balance analysis and hydraulic structure design to prevent peatland fires. IOP Conf. Ser. Earth Environ. Sci. 2021, 758, 012006. [Google Scholar] [CrossRef]
- Wüst, R.A.J.; Bustin, R.M.; Lavkulich, L.M. New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. CATENA 2003, 53, 133–163. [Google Scholar] [CrossRef]
- Dariah, A.; Maftuah, E.; Maswar. Karakteristik lahan gambut. In Panduan Pengelolaan Berkelanjutan Lahan Gambut Terdegradasi; Badan Penelitian dan Pengembangan Pertanian: Jakarta, Indonesia, 2014. [Google Scholar]
- Masganti; Anwar, K.; Maulia Aries, S. Potensi dan Pemanfaatan Lahan Gambut Dangkal untuk Pertanian. J. Sumberd. Lahan 2017, 11, 43–52. [Google Scholar] [CrossRef]
- Nusantara, R.; Manurung, R.; Hazriani, R. The determination of peatland critical criteria and classifications: A Case study of peatland in Pontianak City, West Kalimantan Province. IOP Conf. Ser. Earth Environ. Sci. 2019, 256, 012018. [Google Scholar] [CrossRef]
- Verwer, C.C.; Van der Meer, P.J. Carbon Pools in Tropical Peat Forest: Towards a Reference Value for Forest Biomass Carbon in Relatively Undisturbed Peat Swamp Forests in Southeast Asia 1566-7197; Alterra: Wageningen, The Netherlands, 2010. [Google Scholar]
- Noor, M. Debat Gambut; Gadjah Mada University Press: Yogyakarta, Indonesia, 2016. [Google Scholar]
- Wilson, R.M.; Hopple, A.M.; Tfaily, M.M.; Sebestyen, S.D.; Schadt, C.W.; Pfeifer-Meister, L.; Medvedeff, C.; McFarlane, K.J.; Kostka, J.E.; Kolton, M.; et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 2016, 7, 13723. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.Y.; Ahmed, O.H.; Jalloh, M.B. Brief review on climate change and tropical peatlands. Geosci. Front. 2019, 10, 373–380. [Google Scholar] [CrossRef]
- Widyasari, N.A.E. Pengaruh Sifat Fisik Dan Kimia Tanah Gambut Dua Tahun Setelah Terbakar Dalam Mempengaruhi Pertumbuhan Acacia crassicarpa A. Cunn. Ex Benth di Areal IUPHHK-HT PT. Sebangun Bumi Andalas Wood Industries; Institut Pertanian Bogor: Bogor, Indonesia, 2008. [Google Scholar]
- Cochrane, K.; De Young, C.; Soto, D.; Bahri, T. Climate change implications for fisheries and aquaculture. In FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2009; Volume 530, p. 212. [Google Scholar]
- Hoyos-Santillan, J.; Lomax, B.H.; Large, D.; Turner, B.L.; Lopez, O.R.; Boom, A.; Sepulveda-Jauregui, A.; Sjögersten, S. Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Sci. Total Environ. 2019, 688, 1193–1204. [Google Scholar] [CrossRef]
- Limin, S.H.; Jentha; Ermiasi, Y. History of the Development of Tropical Peatland in Central Kalimantan, Indonesia. Tropics 2007, 16, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Hooijer, A.; Page, S.; Canadell, J.G.; Silvius, M.; Kwadijk, J.; Wösten, H.; Jauhiainen, J. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 2010, 7, 1505–1514. [Google Scholar] [CrossRef] [Green Version]
- Uda, S.K.; Hein, L.; Sumarga, E. Towards sustainable management of Indonesian tropical peatlands. Wetl. Ecol. Manag. 2017, 25, 683–701. [Google Scholar] [CrossRef] [Green Version]
- Dohong, A.; Abdul Aziz, A.; Dargusch, P. A Review of Techniques for Effective Tropical Peatland Restoration. Wetlands 2018, 38, 275–292. [Google Scholar] [CrossRef]
- Ritzema, H.; Limin, S.; Kusin, K.; Jauhiainen, J.; Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. CATENA 2014, 114, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Wösten, J.H.M.; Van Den Berg, J.; Van Eijk, P.; Gevers, G.J.M.; Giesen, W.B.J.T.; Hooijer, A.; Idris, A.; Leenman, P.H.; Rais, D.S.; Siderius, C.; et al. Interrelationships between Hydrology and Ecology in Fire Degraded Tropical Peat Swamp Forests. Int. J. Water Resour. Dev. 2006, 22, 157–174. [Google Scholar] [CrossRef]
- Sinclair, A.L.; Graham, L.L.B.; Putra, E.I.; Saharjo, B.H.; Applegate, G.; Grover, S.P.; Cochrane, M.A. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Sci. Total Environ. 2020, 699, 134199. [Google Scholar] [CrossRef] [PubMed]
- Lampela, M.; Jauhiainen, J.; Sarkkola, S.; Vasander, H. To treat or not to treat? The seedling performance of native tree species for reforestation on degraded tropical peatlands of SE Asia. For. Ecol. Manag. 2018, 429, 217–225. [Google Scholar] [CrossRef]
- Dohong, A.; Aziz, A.A.; Dargusch, P. A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy 2017, 69, 349–360. [Google Scholar] [CrossRef]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.-D.V.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Wijedasa, L.S. Peat soil bulk density important for estimation of peatland fire emissions. Glob. Chang. Biol. 2016, 22, 2959. [Google Scholar] [CrossRef] [PubMed]
- Hoscilo, A.; Page, S.; Tansey, K.; Rieley, J. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildland Fire 2011, 20, 578–588. [Google Scholar] [CrossRef]
- Blackham, G.V.; Andri, T.; Webb, E.L.; Corlett, R.T. Seed rain into a degraded tropical peatland in Central Kalimantan, Indonesia. Biol. Conserv. 2013, 167, 215–223. [Google Scholar] [CrossRef]
- Blackham, G.V.; Webb, E.L.; Corlett, R.T. Natural regeneration in a degraded tropical peatland, Central Kalimantan, Indonesia: Implications for forest restoration. For. Ecol. Manag. 2014, 324, 8–15. [Google Scholar] [CrossRef]
- Posa, M.R.C.; Wijedasa, L.S.; Corlett, R.T. Biodiversity and Conservation of Tropical Peat Swamp Forests. BioScience 2011, 61, 49–57. [Google Scholar] [CrossRef]
- Lampela, M.; Jauhiainen, J.; Kämäri, I.; Koskinen, M.; Tanhuanpää, T.; Valkeapää, A.; Vasander, H. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. CATENA 2016, 139, 127–136. [Google Scholar] [CrossRef]
- Badan Restorasi Gambut. Mengawali Restorasi Gambut Indonesia; Badan Restorasi Gambut: Jakarta, Indonesia, 2016.
- Graham, L.L.B.; Turjaman, M.; Page, S.E. Shorea balangeran and Dyera polyphylla (syn. Dyera lowii) as tropical peat swamp forest restoration transplant species: Effects of mycorrhizae and level of disturbance. Wetl. Ecol. Manag. 2013, 21, 307–321. [Google Scholar] [CrossRef]
- Posa, M.R.C. Peat swamp forest avifauna of Central Kalimantan, Indonesia: Effects of habitat loss and degradation. Biol. Conserv. 2011, 144, 2548–2556. [Google Scholar] [CrossRef]
- Lampela, M.; Jauhiainen, J.; Sarkkola, S.; Vasander, H. Promising native tree species for reforestation of degraded tropical peatlands. For. Ecol. Manag. 2017, 394, 52–63. [Google Scholar] [CrossRef]
- Silvianingsih, Y.A.; Hairiah, K.; Suprayogo, D.; van Noordwijk, M. Kaleka Agroforest in Central Kalimantan (Indonesia): Soil Quality, Hydrological Protection of Adjacent Peatlands, and Sustainability. Land 2021, 10, 856. [Google Scholar] [CrossRef]
- Yulianti, N.; Adji, F.F. Mari Belajar Tentang Pengelolaan Lahan Tanpa Bakar (PLTB); Penerbit IPB Press: Bogor, Indonesia, 2018. [Google Scholar]
- Harrison, M.; Ottay, J.; D’Arcy, L.; Cheyne, S.; Anggodo; Belcher, C.; Cole, L.; Dohong, A.; Ermiasi, Y.; Feldpausch, T.; et al. Tropical forest and peatland conservation in Indonesia: Challenges and directions. People Nat. 2019, 2, 4–28. [Google Scholar] [CrossRef] [Green Version]
- Baur, B. Dispersal-limited species—A challenge for ecological restoration. Basic Appl. Ecol. 2014, 15, 559–564. [Google Scholar] [CrossRef]
- Gorham, E.; Rochefort, L. Peatland restoration: A brief assessment with special reference to Sphagnum bogs. Wetl. Ecol. Manag. 2003, 11, 109–119. [Google Scholar] [CrossRef]
- Bonn, A.; Reed, M.S.; Evans, C.D.; Joosten, H.; Bain, C.; Farmer, J.; Emmer, I.; Couwenberg, J.; Moxey, A.; Artz, R.; et al. Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosyst. Serv. 2014, 9, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Nurulita, Y.; Adetutu, E.M.; Gunawan, H.; Zul, D.; Ball, A.S. Restoration of tropical peat soils: The application of soil microbiology for monitoring the success of the restoration process. Agric. Ecosyst. Environ. 2016, 216, 293–303. [Google Scholar] [CrossRef]
- Dey, D.; Schweitzer, C. Restoration for the Future: Endpoints, Targets, and Indicators of Progress and Success. J. Sustain. For. 2014, 33, S43–S65. [Google Scholar] [CrossRef]
- Humpenöder, F.; Karstens, K.; Lotze-Campen, H.; Leifeld, J.; Menichetti, L.; Barthelmes, A.; Popp, A. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 2020, 15, 104093. [Google Scholar] [CrossRef]
- Graham, L.L.B.; Giesen, W.; Page, S.E. A common-sense approach to tropical peat swamp forest restoration in Southeast Asia. Restor. Ecol. 2017, 25, 312–321. [Google Scholar] [CrossRef]
- Könönen, M.; Jauhiainen, J.; Laiho, R.; Kusin, K.; Vasander, H. Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat 2015, 16, 1–13. [Google Scholar]
- Grand-Clement, E.; Anderson, K.; Smith, D.; Angus, M.; Luscombe, D.J.; Gatis, N.; Bray, L.S.; Brazier, R.E. New approaches to the restoration of shallow marginal peatlands. J. Environ. Manag. 2015, 161, 417–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Ketcheson, S.J.; Price, J.S. The Impact of Peatland Restoration on the Site Hydrology of an Abandoned Block-Cut Bog. Wetlands 2011, 31, 1263–1274. [Google Scholar] [CrossRef]
- Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Tata, H.L.; Susmianto, A. Prospek Paludikultur Ekosistem Gambut Indonesia; Forda Press: Bogor, Indonesia, 2016. [Google Scholar]
- Sayer, J.; Chokkalingam, U.; Poulsen, J. The restoration of forest biodiversity and ecological values. For. Ecol. Manag. 2004, 201, 3–11. [Google Scholar] [CrossRef]
- Government of Indonesia. Law Number 5/1960 about Agrarian Law; Government of Indonesia, Ed.; Government of Indonesia: Jakarta, Indonesia, 1960.
- Government of Indonesia. Law Number 5/1990 about Conservation of Biological Resources and Their Ecosystems; Government of Indonesia: Jakarta, Indonesia, 1990.
- Government of Indonesia. Law Number 41/1999 about Forestry; Government of Indonesia: Jakarta, Indonesia, 1999.
- Government of Indonesia. Law Number 18/2004 about Plantation; Government of Indonesia: Jakarta, Indonesia, 2004.
- Government of Indonesia. Law Number 26/2007 about Spatial Planning; Government of Indonesia: Jakarta, Indonesia, 2007.
- Government of Indonesia. Law Number 32/2009 about Environmental Protection and Management; Government of Indonesia: Jakarta, Indonesia, 2009.
- Government of Indonesia. Government Regulation Number 71/2014 about Protection and Management of Peatland Ecosystem; Government of Indonesia: Jakarta, Indonesia, 2014.
- Government of Indonesia. Presidential Decree Number 32/1990 about Environmental Management; Government of Indonesia: Jakarta, Indonesia, 1990.
- Government of Indonesia. Presidential Decree Number 82/1995 about Peatland Development for Food Crops Agriculture in Central Kalimantan; Government of Indonesia: Jakarta, Indonesia, 1995.
- Goldstein, J. Carbon Bomb: Indonesia’s Failed Mega Rice Project. Arcadia 2016, 1–6. [Google Scholar] [CrossRef]
- Government of Indonesia. Presidential Instruction Number 2/2007 about Accelerating the Rehabilitation and Revitalization of Peatland Development Areas in Central Kalimantan; Government of Indonesia: Jakarta, Indonesia, 2007.
- Ministry of Environment and Forestry. Ministry of Environment and Forestry Regulation Number P.16/MENLHK/SETJEN/KUM.1/2/2017 about Technical Guidelines for the Recovery of Peat Ecosystem Functions; Government of Indonesia: Jakarta, Indonesia, 2017.
- Ministry of Environment and Forestry. Ministry of Environment and Forestry Regulation Number 10/2019 about Determination and Determination of Peat Dome Management Based on Peat Hydrological Units (KHG); Government of Indonesia: Jakarta, Indonesia, 2019.
- Government of Indonesia. Presidential Regulation Number 1/2016 about Peatland Restoration Agency; Government of Indonesia: Jakarta, Indonesia, 2016.
- Government of Indonesia. Presidential Regulation Number 120/2020 about Mangrove and Peatland Restoration Agency; Government of Indonesia: Jakarta, Indonesia, 2020.
- Mansourian, S. Understanding the Relationship between Governance and Forest Landscape Restoration. Conserv. Soc. 2016, 14, 267–278. [Google Scholar] [CrossRef]
- Budiman, I.; Hapsari, R.D.; Wijaya, C.I.; Sari, E.N.N. The Governance of Risk Management on Peatland: A Case Study of Restoration in South Sumatra, Indonesia; World Resources Institute (WRI): Washington, DC, USA, 2021; p. 56. [Google Scholar] [CrossRef]
- Evers, S.; Yule, C.M.; Padfield, R.; O’Reilly, P.; Varkkey, H. Keep wetlands wet: The myth of sustainable development of tropical peatlands—Implications for policies and management. Glob. Chang. Biol. 2017, 23, 534–549. [Google Scholar] [CrossRef]
- Santosa, M.A.; Putra, J.D. Enhancement of Forest and Peatland Governance in Indonesia. Indones. J. Int. Law 2016, 13, 344. [Google Scholar] [CrossRef] [Green Version]
- Peatland Restoration Agency. Strategic Plan Peatland Restoration Agency 2016–2020; Peatland Restoration Agency: Jakarta, Indonesia, 2017. [Google Scholar]
- Peatland Restoration Agency. Three Years of Peatland Restoration in Indonesia; Peatland Restoration Agency: Jakarta, Indonesia, 2019. [Google Scholar]
- Ministry of Environment and Forestry. Ministry of Environment and Forestry Regulation Number 8/2020 about Ministry of Environment and Forestry Strategic Plan in 2020–2024; Government of Indonesia, Ed.; Government of Indonesia: Jakarta, Indonesia, 2020.
- Ministry of Environment and Forestry. Ministry of Environment and Forestry Decree Number SK.130/MENLHK/SETJEN/PKL.0/2/2017 about Determination of the National Peat Ecosystem Function Map; Government of Indonesia, Ed.; Government of Indonesia: Jakarta, Indonesia, 2017.
- Bhomia, R.K.; Murdiyarso, D. Effective Monitoring and Management of Peatland Restoration; Center for International Forestry Research: Bogor, Indonesia, 2021. [Google Scholar]
- Ruiz-Jaén, M.C.; Aide, T.M. Vegetation structure, species diversity, and ecosystem processes as measures of restoration success. For. Ecol. Manag. 2005, 218, 159–173. [Google Scholar] [CrossRef]
- Herrick, J.E.; Schuman, G.E.; Rango, A. Monitoring ecological processes for restoration projects. J. Nat. Conserv. 2006, 14, 161–171. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Carmenta, R.; Atmadja, S.; Martius, C.; Murdiyarso, D.; Purnomo, H. Managing peatlands in Indonesia: Challenges and opportunities for local and global communities. In CIFOR Infobrief; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2018. [Google Scholar]
- Giesen, W.; Sari, E.N.N. Tropical Peatland Restoration Report: The Indonesian Case; MCA: Jakarta, Indonesia, 2018.
- Mengel; Konrad; Kirkby, E.A. Principles of Plant Nutrition; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Tonks, A.J.; Aplin, P.; Beriro, D.J.; Cooper, H.; Evers, S.; Vane, C.H.; Sjögersten, S. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma 2017, 289, 36–45. [Google Scholar] [CrossRef]
- Könönen, M.; Jauhiainen, J.; Straková, P.; Heinonsalo, J.; Laiho, R.; Kusin, K.; Limin, S.; Vasander, H. Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest. Soil Biol. Biochem. 2018, 123, 229–241. [Google Scholar] [CrossRef]
- Nusantara, R.; Sudarmadji, S.; Djohan, T.; Haryono, E. Impact of Land-Use Change on Soil Carbon Dynamics in Tropical Peatland, West Kalimantan- Indonesia. Indones. J. Geogr. 2020, 52, 61. [Google Scholar] [CrossRef]
- Hakim, S.S.; Halwany, W.; Rachmanadi, D. Fungi and macrofauna community in post-fire peatland in Central Kalimantan. Indones. J. For. Res. 2019, 6, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Safford, L.; Maltby, E. Guidelines for Integrated Planning and Management of Tropical Lowland Peatlands; IUCN: Gland, Switzerland, 1998. [Google Scholar]
- Government of Indonesia. Government Regulation Number 150/2000 about Soil Degradation Control for Biomass Production; Government of Indonesia: Jakarta, Indonesia, 2000.
- Liu, B.; Talukder, M.J.H.; Terhonen, E.; Lampela, M.; Vasander, H.; Sun, H.; Asiegbu, F. The microbial diversity and structure in peatland forest in Indonesia. Soil Use Manag. 2020, 36, 123–138. [Google Scholar] [CrossRef]
- Takahashi, H. Studies on microclimate and hydrology of peat swamp forest in Central Kalimantan, Indonesia. In Biodiversity and Sustainability of Tropical Peatlands; Rieley, J.O., Page, S., Eds.; Samara Publishing Limited: Hereford, UK, 1997. [Google Scholar]
- Yabe, K.; Dohong, S. Property of Oxidation-Reduction Status of Peat in Three Areas in Central Kalimantan. In Environmental Conservation and Land Use Management of Wetland Ecosystem in South East Asia; Core University Program; Hokkaido University: Sapporo, Japan, 1999. [Google Scholar]
- Ritzema, H.; Wösten, H. Hydrology of Borneo’s Peat Swamps; Alterra: Wageningen, The Netherlands, 2002. [Google Scholar]
- Mirmanto, E. Vegetation analyses of Sebangau peat swamp forest, Central Kalimantan. Biodivers. J. Biol. Divers. 2010, 11, 82–88. [Google Scholar] [CrossRef]
- Astiani, D.W.I.; Curran, L.M.; Mujiman, M.; Ratnasari, D.; Salim, R.; Lisnawaty, N. Edge effects on biomass, growth, and tree diversity of a degraded peatland in West Kalimantan, Indonesia. Biodivers. J. Biol. Divers. 2018, 19, 272–278. [Google Scholar] [CrossRef]
- Suwarno, A.; van der Meer, P.J.; Beaujon, N.; Loong, Y.K.; Arifin, Y.F.; Rachmanadi, D.; Hill, J.K.; Reynolds, G.; Lucey, J.M. Testing the Impact of RSPO HCV Areas in Retaining Biodiversity and Carbon Stocks in the Oil Palm Landscape: Initial Results from the First Phase of Field Sampling; A Technical Report by the SEnSOR Programme; Wageningen University: Wageningen, The Netherlands, 2018. [Google Scholar]
- BP2LHK Banjarbaru. Laporan Hasil Kegiatan Pilot Project Restorasi Gambut Terintegrasi: Implementasi 3R Dalam Mendukun Keberhasilan Restorasi Gambut di Kalimantan Tengah. Kerjasama Badan Restorasi Gambut Dengan Balitbang Linkungan Hidup dan Kehutanan Banjarbaru; BP2LHK Banjarbaru: Banjarbaru, Indonesia, 2018; p. 66. [Google Scholar]
- Mishra, S.; Page, S.E.; Cobb, A.R.; Lee, J.S.H.; Jovani-Sancho, A.J.; Sjögersten, S.; Jaya, A.; Aswandi; Wardle, D.A. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J. Appl. Ecol. 2021, 58, 1370–1387. [Google Scholar] [CrossRef]
- Marwanto, S.; Sabiham, S.; Funakawa, S. Importance of CO2 production in subsoil layers of drained tropical peatland under mature oil palm plantation. Soil Tillage Res. 2019, 186, 206–213. [Google Scholar] [CrossRef]
- Jaenicke, J.; Englhart, S.; Siegert, F. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery. J. Environ. Manag. 2011, 92, 630–638. [Google Scholar] [CrossRef]
- Rezanezhad, F.; Price, J.S.; Quinton, W.L.; Lennartz, B.; Milojevic, T.; Van Cappellen, P. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 2016, 429, 75–84. [Google Scholar] [CrossRef]
- Holden, J.; Wallage, Z.E.; Lane, S.N.; McDonald, A.T. Water table dynamics in undisturbed, drained and restored blanket peat. J. Hydrol. 2011, 402, 103–114. [Google Scholar] [CrossRef]
- Ballard, C.E.; McIntyre, N.; Wheater, H.S.; Holden, J.; Wallage, Z.E. Hydrological modelling of drained blanket peatland. J. Hydrol. 2011, 407, 81–93. [Google Scholar] [CrossRef]
- Rahman, M.M.; McDermid, G.J.; Strack, M.; Lovitt, J. A New Method to Map Groundwater Table in Peatlands Using Unmanned Aerial Vehicles. Remote Sens. 2017, 9, 1057. [Google Scholar] [CrossRef] [Green Version]
- Budiman, I.; Bastoni; Sari, E.N.N.; Hadi, E.E.; Asmaliyah; Siahaan, H.; Januar, R.; Hapsari, R.D. Progress of paludiculture projects in supporting peatland ecosystem restoration in Indonesia. Glob. Ecol. Conserv. 2020, 23, e01084. [Google Scholar] [CrossRef]
- Kasih, R.C.; Simon, O.; Ma’mun Ansori, M.P.P.; Wirada, F. Rewetting on Degraded Tropical Peatland by Canal Blocking Technique in Sebangau National Park, Central Kalimantan, Indonesia. In Proceedings of the 15th International Peat Congress, Kuching, Malaysia, 15–19 August 2016; pp. 467–471. [Google Scholar]
- Suryadi, Y.; Soekarno, I.; Humam, I. Effectiveness Analysis of Canal Blocking in Sub-peatland Hydrological Unit 5 and 6 Kahayan Sebangau, Central Kalimantan, Indonesia. J. Eng. Technol. Sci. 2021, 53, 210205. [Google Scholar] [CrossRef]
- Kotowski, W.; Ackerman, M.; Grootjans, A.; Klimkowska, A.; Rössling, H.; Wheeler, B. Restoration of temperate fens: Matching strategies with site potential. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Cambridge University Press: Cambridge, UK, 2016; pp. 170–191. [Google Scholar]
- Lamers, L.P.M.; Vile, M.A.; Grootjans, A.P.; Acreman, M.C.; van Diggelen, R.; Evans, M.G.; Richardson, C.J.; Rochefort, L.; Kooijman, A.M.; Roelofs, J.G.M.; et al. Ecological restoration of rich fens in Europe and North America: From trial and error to an evidence-based approach. Biol. Rev. 2015, 90, 182–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suryadiputra, I.N.N.; Dohong, A.; Waspodo, R.S.B.; Muslihat, L.; Lubis, I.R.; Hasudungan, F.; Wibisono, I.T.C. A Guide to the Blocking of Canals and Ditches in Conjunction with the Community; Wetlands International—Indonesia Programme: Bogor, Indonesia, 2005. [Google Scholar]
- Kozan, O.; Hosobuchi, M.; Kameoka, T. Case Study on Community-Based Water Management in Tropical Peatland. In Tropical Peatland Eco-Management; Springer: Singapore, 2021; pp. 663–674. [Google Scholar] [CrossRef]
- Hasanah, A.; Setiawan, M. Rewetting design for tropical peatland restoration. Sociae Polites 2020, 21, 111–125. [Google Scholar] [CrossRef]
- Evans, C.D.; Williamson, J.M.; Kacaribu, F.; Irawan, D.; Suardiwerianto, Y.; Hidayat, M.F.; Laurén, A.; Page, S.E. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 2019, 338, 410–421. [Google Scholar] [CrossRef]
- Budiman, I.; Januar, R.; Daeli, W.; Hapsari, R.D.; Sari, E.N.N. Designing the special pilot economic zone on peatlands. J. Geogr. Trop. Environ. 2020, 4. [Google Scholar] [CrossRef] [Green Version]
- Sutikno, S.; Nasrul, B.; Gunawan, H.; Jayadi, R.; Rinaldi; Saputra, E.; Yamamoto, K. The effectiveness of canal blocking for hydrological restoration in tropical peatland. MATEC Web Conf. 2019, 276, 06003. [Google Scholar] [CrossRef] [Green Version]
- Menberu, M.; Tahvanainen, T.; Marttila, H.; Irannezhad, M.; Ronkanen, A.-K.; Penttinen, J.; Klöve, B. Water-table-dependent hydrological changes following peatland forestry drainage and restoration: Analysis of restoration success. Water Resour. Res. 2016, 52, 19. [Google Scholar] [CrossRef] [Green Version]
- Mrotzek, A.; Michaelis, D.; Günther, A.; Wrage-Mönnig, N.; Couwenberg, J. Mass Balances of a Drained and a Rewetted Peatland: On Former Losses and Recent Gains. Soil Syst. 2020, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Liu, H.; Günther, A.; Couwenberg, J.; Lennartz, B. Long-term rewetting of degraded peatlands restores hydrological buffer function. Sci. Total Environ. 2020, 749, 141571. [Google Scholar] [CrossRef]
- Suyanto, S.; Sardi, I.; Buana, Y.; van Noordwijk, M. Analysis of Local Livelihoods from Past to Present in the Central Kalimantan Ex-Mega Rice Project Area; World Agroforestry Centre: Bogor, Indonesia, 2009. [Google Scholar]
- Hernandez-Stefanoni, J.L. Relationships between landscape patterns and species richness of trees, shrubs and vines in a tropical forest. Plant Ecol. 2005, 179, 53–65. [Google Scholar] [CrossRef]
- Chazdon, R. Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [Green Version]
- Morley, R.J. Development and Vegetation Dynamics of a Lowland Ombrogenous Peat Swamp in Kalimantan Tengah, Indonesia. J. Biogeogr. 1981, 8, 383–404. [Google Scholar] [CrossRef]
- MacKinnon, K.; Hatta, G.; Mangalik, A.; Halim, H. The Ecology of Kalimantan; Oxford University Press: Oxford, UK, 1997; Volume 3. [Google Scholar]
- Phillips, V.D. Peatswamp ecology and sustainable development in Borneo. Biodivers. Conserv. 1998, 7, 651–671. [Google Scholar] [CrossRef]
- Daryono, H. Impact of Logging on Peat Swamp Forest in Central Kalimantan, Indonesia; University of the Philippines at Los Baños: Los Baños, Philippines, 1994. [Google Scholar]
- Maltby, E.; Immirzi, P. Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere 1993, 27, 999–1023. [Google Scholar] [CrossRef]
- Blodau, C. Carbon cycling in peatlands—A review of processes and controls. Environ. Rev. 2002, 10, 111–134. [Google Scholar] [CrossRef]
- Joosten, H.; Gaudig, G.; Tanneberger, F.; Wichmann, S.; Wichtmann, W. Paludiculture: Sustainable productive use of wet and rewetted peatlands. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Bonn, A., Allott, T., Evans, M., Stoneman, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; Volume 10. [Google Scholar]
- Osaki, M.; Tsuji, N. (Eds.) Tropical Peatland Ecosystems; Osaki, M.; Tsuji, N. (Eds.) Springer: Tokyo, Japan, 2016. [Google Scholar]
- Page, S.; Banks, C.; Rieley, J. Tropical Peatlands: Distribution, Extent and Carbon Storage-Uncertainties and Knowledge Gaps; University of Leicester: Leicester, UK, 2007; Volume 2. [Google Scholar]
- Wösten, J.H.M.; Clymans, E.; Page, S.E.; Rieley, J.O.; Limin, S.H. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA 2008, 73, 212–224. [Google Scholar] [CrossRef]
- Boehm, H.-D.; Siegert, D.; Rieley, F.; Page, J. Fire impacts and carbon release on tropical peatlands in Central Kalimantan, Indonesia. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001. [Google Scholar]
- Page, S.; Hoscilo, A.; Langner, A.; Tansey, K.; Siegert, F.; Limin, S.; Rieley, J. Tropical peatland fires in Southeast Asia. In Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics; Cochrane, M.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 263–287. [Google Scholar] [CrossRef]
- Rachmanadi, D.; Lazuardi, D. Strategi rehabilitasi hutan rawa gambut terdegradasi. In Majalah Kehutanan Indonesia (MKI) Edisi IV Tahun; Indonesian Forestry Magazine (MKI): Jakarta, Indonesia, 2007. [Google Scholar]
- Van Eijk, P.; Leenman, P.; Wibisono, I.; Giesen, W. Regeneration and restoration of degraded peat swamp forest in Berbak NP, Jambi, Sumatra, Indonesia. Malay. Nat. J. 2009, 61, 223–241. [Google Scholar]
- Takahashi, K.; Shybuya, M.; Tamai, Y.; Saito, H.; Istomo; Limin, S.H.; Segah, H.; Erosa, P. Rehabilitation of intensively disturbed sites in peat swamp forest area in Central Kalimantan. In Rehabilitation of Peatlands and Establishment of Sustainable Agro-System in Central Kalimantan; Osaki, M., Wijaya, H., Limin, S., Eds.; LIPI—JSPS Core University Program: Bogor, Indonesia, 2001. [Google Scholar]
- Ismail, P.; Aziz, H.K.; Grippin, A. Restoring the wetland ecosystem: Experience in peat swamp forest restoration trials in Peninsular Malaysia. Conf. For. For. Prod. Res. 2007, 233–242. [Google Scholar]
- Nilus, R.; Fah, L.Y.; Hastie, A. Species selection trial in burnt peat swamp vegetation in Southwest Coast of Sabah, Malaysia. In Proceedings of the Rehabilitation of Tropical Rainforest Ecosystems, Kualalumpur, Malaysia, 24–25 October 2011; pp. 75–87. [Google Scholar]
- Page, S.E.; Banks, C.J.; Rieley, J.O. Tropical peatlands: Distribution, extent and carbon storage-uncertainties and knowledge gaps. Peatl. Int. 2007, 2, 26–27. [Google Scholar]
- Kirnmins, J.P. Forest Ecology. A Foundation for Sustainable Management; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Yamada, T.; Suzuki, E. Ecological role of vegetative sprouting in the regeneration of Dryobalanops rappa, an emergent species in a Bornean tropical wetland forest. J. Trop. Ecol. 2004, 20, 377–384. [Google Scholar] [CrossRef]
- Graham, L.L.B.; D’Arcy, L.; Page, S.E.; Eser, E.; Limin, S. Understanding the Growth Strategies of Tropical Peat Swamp Forest Tree Species: Establishing Potential Restoration Tools; Centre for International Management in Tropical Peatlands: Palangkaraya, Indonesia, 2004. [Google Scholar]
- Saito, H.; Shibuya, M.; Tuah, S.J.; Turjaman, M.; Takahashi, K.; Jamal, Y.; Segah, H.; Putir, P.E.; Limin, S.H. Initial screening of fast-growing tree species being tolerant of dry tropical peatlands in Central Kalimantan, Indonesia. Indones. J. For. Res. 2005, 2, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Shimamura, T.; Momose, K.; Kobayashi, S. A comparison of sites suitable for the seedling establishment of two co-occurring species, Swintonia glauca and Stemonurus scorpioides, in a tropical peat swamp forest. Ecol. Res. 2006, 21, 759–767. [Google Scholar] [CrossRef]
- Graham, L. A Literature Review of the Ecology and Silviculture of Tropical Peat Swamp Forest Tree Species Found Naturally Occurring in Central Kalimantan; Australia Indonesia Partnership: Jakarta, Indonesia, 2009. [CrossRef]
- Tom-Dery, D.; Schroeder, J.-M.; Struwe, J. Regeneration potential and stand structure of a proposed plantation site in the transition zone of Ghana. Int. J. Biodivers. Conserv. 2014, 6, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Franklin, J.F. Biological legacies: A critical management concept from Mount St. Helens. In Proceedings of the 55th North American Wildlands Natural Resource Conference, Denver, CO, USA, 16–21 March 1990; pp. 216–219. [Google Scholar]
- Mayer, P.; Abs, C.; Fischer, A. Colonisation by vascular plants after soil disturbance in the Bavarian Forest—Key factors and relevance for forest dynamics. For. Ecol. Manag. 2004, 188, 279–289. [Google Scholar] [CrossRef]
- Rachmanadi, D.; Faridah, E.; Van Der Meer, P.J. Keanekaragaman potensi regenerasi vegetasi pada hutan rawa gambut: Studi kasus di Kawasan Hutan Dengan Tujuan Khusus (KHDTK) Tumbang Nusa, Kalimantan Tengah. J. Ilmu Kehutan. 2017, 11, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Morrogh-Bernard, H.; Husson, S.; Page, S.E.; Rieley, J.O. Population status of the Bornean orang-utan (Pongo pygmaeus) in the Sebangau peat swamp forest, Central Kalimantan, Indonesia. Biol. Conserv. 2003, 110, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Schiøtz, M.; Boesen, M.V.; Nabe-Nielsen, J.; Sørensen, M.; Kollmann, J. Regeneration in Terminalia oblonga (Combretaceae)—A common timber tree from a humid tropical forest (La Chonta, Bolivia). For. Ecol. Manag. 2006, 225, 306–312. [Google Scholar] [CrossRef]
- Kibet, S. Plant communities, species diversity, richness, and regeneration of a traditionally managed coastal forest, Kenya. For. Ecol. Manag. 2011, 261, 949–957. [Google Scholar] [CrossRef]
- Pohl, M.; Alig, D.; Körner, C.; Rixen, C. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 2009, 324, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Dommain, R.; Couwenberg, J.; Joosten, H. Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration. Mires Peat 2010, 6, 5. [Google Scholar]
- Osumi, K.; Sakurai, S. The unstable fate of seedlings of the small-seeded pioneer tree species, Betula maximowicziana. For. Ecol. Manag. 2002, 160, 85–95. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A.; Edwards, D.G.W. Germination ecology in mountain hemlock (Tsuga mertensiana (Bong.) Carr.). For. Ecol. Manag. 2001, 144, 183–188. [Google Scholar] [CrossRef]
- Stoehr, M.U. Seed production of western larch in seed-tree systems in the southern interior of British Columbia. For. Ecol. Manag. 2000, 130, 7–15. [Google Scholar] [CrossRef]
- Tan, Z.D.; Lupascu, M.; Wijedasa, L.S. Paludiculture as a sustainable land use alternative for tropical peatlands: A review. Sci. Total Environ. 2021, 753, 142111. [Google Scholar] [CrossRef] [PubMed]
- Wibisono, I.T.C.; Dohong, A. Technical Guidance for Peatland Revegetation; Badan Restorasi Gambut: Jakarta, Indonesia, 2017.
- Harun, M.K.; Yuwati, T.W. Agroforesty System For Rehabilitation of Degraded Peatland in Central Kalimantan. J. Wetl. Environ. Manag. 2015, 3. [Google Scholar]
- Yuwati, T.W.; Rachmanadi, D.; Qirom, M.A.; Santosa, P.B.; Kusin, K.; Tata, H.L. Peatland Restoration in Central Kalimantan by Rewetting and Rehabilitation with Shorea balangeran. In Tropical Peatland Eco-Management; Osaki, M., Tsuji, N., Foead, N., Rieley, J., Eds.; Springer: Singapore, 2021; pp. 595–611. [Google Scholar] [CrossRef]
- Giesen, W. Paludiculture: Sustainable Alternatives on Degraded Peat Land in Indonesia. Quick Assessment and Nationwide Screening (QANS) of Peat and Lowland Resources and Action Planning for the Implementation of a National Lowland Strategy; PVW3A10002; Partners for Water Programme: Arnhem, The Netherlands, 2013; p. 71. [Google Scholar]
- Turjaman, M.; Tamai, Y.; Sitepu, I.R.; Santoso, E.; Osaki, M.; Tawaraya, K. Improvement of early growth of two tropical peat-swamp forest tree species Ploiarium alternifolium and Calophyllum hosei by two arbuscular mycorrhizal fungi under greenhouse conditions. New For. 2008, 36, 1–12. [Google Scholar] [CrossRef]
- Joosten, H.; Tapio-Biström, M.-L.; Tol, S. Peatlands: Guidance for Climate Change Mitigation through Conservation, Rehabilitation and Sustainable Use; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Santosa, P.B. Kendala Dan Upaya Meningkatkan Keberhasilan Penanaman di Lahan Gambut. Galam, 2011; Volume 5, pp. 1–12. Available online: http://foreibanjarbaru.or.id/wp-content/uploads/2016/07/Galam-Volume-V-Nomor-1-Tahun-2011-Kendala-Dan-Upaya-Meningkatkan-Kenberhasilan-Penanaman-Di-Lahan-Gambut.pdf (accessed on 29 October 2021).
- Wetadewi, R.I.; Osaki, M.; Turjaman, M.; Antonius, S.; Goenadi, D.H.; Nursyamsi, D.; Maswar; Surayah, L.; Kato, T. Principles of AeroHydro Culture. In Tropical Peatland Eco-Management; Osaki, M., Tsuji, N., Foead, N., Rieley, J., Eds.; Springer: Singapore, 2021; pp. 249–283. [Google Scholar] [CrossRef]
- Turjaman, M.; Osaki, M. The Role of Mycorrhizal Fungi for Supporting AeroHydro Culture in Tropical Peatland. In Tropical Peatland Eco-Management; Osaki, M., Tsuji, N., Foead, N., Rieley, J., Eds.; Springer: Singapore, 2021; pp. 285–299. [Google Scholar] [CrossRef]
- Maulana, A.F.; Turjaman, M.; Hashimoto, Y.; Cheng, W.; Tawaraya, K. Nitrogen and phosphorus concentrations in growth media affect the relationship between root endophytic fungi and host plant. Arch. Microbiol. 2021, 203, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Mindawati, N.; Heryati, Y. Pengaruh Frekwensi Pemeliharaan Tanaman Muda Terhadap Pertumbuhan Meranti Di Lapangan. J. Penelit. Hutan Tanam. 2006, 3, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Sitepu, D.S.M.; Dohong, A. Modul Pelaksanaan kegiatan Revegetasi Di Lahan Gambut; Badan Restorasi Gambut: Jakarta, Indonesia, 2019.
- Nishimua, T.B.; Suzuki, E.; Kohyama, T.; Tsuyuzaki, S. Mortality and Growth of Trees in Peat-swamp and Heath Forests in Central Kalimantan After Severe Drought. Plant Ecol. 2007, 188, 165–177. [Google Scholar] [CrossRef]
- Yamanoshita, T.; Nuyim, T.; Masumori, M.; Tange, T.; Kojima, K.; Yagi, H.; Sasaki, S. Growth response of Melaleuca cajuputi to flooding in a tropical peat swamp. J. For. Res. 2001, 6, 217–219. [Google Scholar] [CrossRef]
- Syahputra, E.; Sarbino, D.S. Weeds assessment di perkebunan kelapa sawit lahan gambut. Perkeb. Lahan Trop. 2011, 1, 37–42. [Google Scholar] [CrossRef]
- Noor, S.U.; Noorginayuwati, M. Kearifan Lokal untuk Peningkatan dan Keberlanjutan Produksi Pertanian. In Lahan Gambut Lahan Gambut Indonesia: Pembentukan, Karakteristik, dan Potensi Mendukung Ketahanan Pangan (Edisi Revisi); Agus, F., Anda, M., Jamil, A., Masganti, Eds.; IAARD Press: Jakarta, Indonesia, 2014; pp. 163–188. [Google Scholar]
- Fukumoto, K.; Ota, T.; Mizoue, N.; Yoshida, S.; Teraoka, Y.; Kajisa, T. The effect of weeding frequency and timing on the height growth of young sugi (Cryptomeria japonica) in southwestern Japan. J. For. Res. 2017, 22, 204–207. [Google Scholar] [CrossRef]
- Balandier, P.; Collet, C.; Miller, J.H.; Reynolds, P.E.; Zedaker, S.M. Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation. For. Int. J. For. Res. 2006, 79, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Hirata, R.; Ito, S.; Araki, M.G.; Mitsuda, Y.; Takagi, M. Growth recovery of young hinoki (Chamaecyparis obtusa) subsequent to late weeding. J. For. Res. 2014, 19, 514–522. [Google Scholar] [CrossRef]
- Moilanen, M.; Hytönen, J.; Leppälä, M. The effect of wood ash on soil CO2 emission and carbon stock of tree stand on a drained peatland—Case study. In Proceedings of the 14th International Peat Congress “Peatland in Balance”, Stockholm, Sweden, 3–8 June 2012; pp. 467–475. [Google Scholar]
- Turjaman, M.; Santoso, E.; Susanto, A.; Gaman, S.; Limin, S.; Tamai, Y.; Osaki, M.; Tawaraya, K. Ectomycorrhizal fungi promote growth of Shorea balangeran in degraded peat swamp forests. Wetl. Ecol. Manag. 2011, 19, 331–339. [Google Scholar] [CrossRef]
- Turjaman, M.; Herdyantara, B.; Faulina, S.; Agustini, L.; Irianto, R.; Hidayat, A.; Wahno, I.; Murdani; Tjahyono, B.; Indrayadi, H. Mycorrhizal colonization of indigenous tropical tree species grown in peat swamp forests of Sumatera, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 308, 012049. [Google Scholar] [CrossRef] [Green Version]
- Medrilzam, M.; Dargusch, P.; Herbohn, J.; Smith, C. The socio-ecological drivers of forest degradation in part of the tropical peatlands of Central Kalimantan, Indonesia. For. Int. J. For. Res. 2014, 87, 335–345. [Google Scholar] [CrossRef]
- Suckall, N.; Tompkins, E.; Stringer, L. Identifying trade-offs between adaptation, mitigation and development in community responses to climate and socio-economic stresses: Evidence from Zanzibar, Tanzania. Appl. Geogr. 2014, 46, 111–121. [Google Scholar] [CrossRef]
- Uda, S.K.; Hein, L.; Adventa, A. Towards better use of Indonesian peatlands with paludiculture and low-drainage food crops. Wetl. Ecol. Manag. 2020, 28, 509–526. [Google Scholar] [CrossRef]
- Fadillah, A.; Sundawati, L.; Hartoyo, A.P.P.; Rangkuti, A.B.; Muryunika, R.; Pamungkas, P.; Siregar, I.Z. Development of peatland-friendly commodities to achieve sustainable forest management in Jambi Province. Iop Conf. Ser. Earth Environ. Sci. 2020, 528, 012007. [Google Scholar] [CrossRef]
- Antriyandarti, E.; Sutrisno, J.; Rahayu, E.S.; Setyowati, N.; Khomah, I.; Rusdiyana, E. Mitigation of peatland fires and haze disaster through livelihood revitalization: A case study in Pelalawan Riau. J. Phys. Conf. Ser. 2019, 1153, 012131. [Google Scholar] [CrossRef]
- Nugroho, I.A.; Darwo, D.; Yuniarti, D. Stakeholders’mapping and strategy for restoring peatland forest in West Tanjung Jabung Jambi, Indonesia. Indones. J. For. Res. 2021, 8, 37–57. [Google Scholar] [CrossRef]
- Applegate, G.; Freeman, B.; Tular, B.; Sitadevi, L.; Jessup, T.C. Application of agroforestry business models to tropical peatland restoration. AMBIO 2021. [Google Scholar] [CrossRef]
- Badan Restorasi Gambut. 5 Tahun Kerja BRG RI; Badan Restorasi Gambut: Jakarta, Indonesia, 2021.
- Medrilzam, M.; Smith, C.; Aziz, A.A.; Herbohn, J.; Dargusch, P. Smallholder Farmers and the Dynamics of Degradation of Peatland Ecosystems in Central Kalimantan, Indonesia. Ecol. Econ. 2017, 136, 101–113. [Google Scholar] [CrossRef]
- Ward, C.; Stringer, L.C.; Warren-Thomas, E.; Agus, F.; Hamer, K.; Pettorelli, N.; Hariyadi, B.; Hodgson, J.; Kartika, W.D.; Lucey, J.; et al. Wading through the swamp: What does tropical peatland restoration mean to national-level stakeholders in Indonesia? Restor. Ecol. 2020, 28, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Puspitaloka, D.; Kim, Y.-S.; Purnomo, H.; Fulé, P.Z. Analysis of challenges, costs, and governance alternative for peatland restoration in Central Kalimantan, Indonesia. Trees For. People 2021, 6, 100131. [Google Scholar] [CrossRef]
- Ward, C.; Stringer, L.C.; Warren-Thomas, E.; Agus, F.; Crowson, M.; Hamer, K.; Hariyadi, B.; Kartika, W.D.; Lucey, J.; McClean, C.; et al. Smallholder perceptions of land restoration activities: Rewetting tropical peatland oil palm areas in Sumatra, Indonesia. Reg. Environ. Chang. 2021, 21, 1. [Google Scholar] [CrossRef]
- Schaafsma, M.; van Beukering, P.J.H.; Oskolokaite, I. Combining focus group discussions and choice experiments for economic valuation of peatland restoration: A case study in Central Kalimantan, Indonesia. Ecosyst. Serv. 2017, 27, 150–160. [Google Scholar] [CrossRef]
- Puspitaloka, D.; Kim, Y.-S.; Purnomo, H.; Fulé, P.Z. Defining ecological restoration of peatlands in Central Kalimantan, Indonesia. Restor. Ecol. 2020, 28, 435–446. [Google Scholar] [CrossRef]
Criteria | Indicator | Reference Level (Healthy Peatland) | Details and Source |
---|---|---|---|
|
|
| Site is degraded if the water table drops due to drainage, resulting in peat oxidation and exposing pyrite and quartz layers [66]. |
|
| Paludiculture can be used to rehabilitate all areas of degraded peatlands, except for areas severely degraded and subject to regular or prolonged flooding [87]. | |
|
|
| Deforestation, drainage and exposing pyrite can increase acidity (to pH levels of 2–3). [88,89]. |
| Degraded areas have a C concentration higher than the pristine area; the C/N ratio increased by around 20 units with degradation [90,91]. | ||
| Revegetation of post fire peatland improves chemical soil properties. Over time, this leads to an improvement in total N, P, and K, as well as CEC [92]. | ||
|
| Drainage and peat drying can irreversibly reduce its water holding capacity [93]. Water holding capacity of the intact area (302%) was higher than that of the degraded area (196%) [49]. | |
| Peatland degradation increases the bulk density and reduces the value of hydraulic conductivity [27,89]. | ||
| The drainage of peatland leads to peat subsidence. Disturbance can result in subsidence rates of more than 35 cm in the first five years [94]. | ||
|
| The natural forest has a culturable bacterial population that is higher than that of the degraded area [49]. The concentrations of microbial C and N were highest in the swamp forest and decreased following degradation level [90]. | |
| Natural peat forests hosted more diverse microbes than disturbed peat forests. Saprotrophic fungi were in greater abundance in natural peat forest, whereas phototrophs fungi tended to be more abundant in disturbed peat soil [95]. | ||
| Revegetation activity affects the abundance of fungi and macrofauna in post-fire peatland. The abundance of soil fungi increases with understory cover) [92]. | ||
|
|
| The average depth of the water table for intact land (Sebangau National Park) is around 0.4 m during the normal rainy season [26]. The water table fluctuation is lowest in the natural forest and increases following degradation, but the fluctuation depends on the rainfall [26,49]. |
|
| Hydraulic conductivity declined by 67% with conversion to agriculture [27,96]. | |
|
| The Eh value is strongly influenced by the water table depth at the measurement point [97]. | |
|
| ET values were around 3 mm/day in Sarawak [98]. As the vegetation becomes less dense and the surface dries out through degradation, ET declines. | |
|
|
| A survey of the nonforested area of the ex-MRP found 79 species of woody plants [36]. Edge effects caused by peat forest fragmentation significantly reduced tree species diversity and species richness. A total of 24 species in an interior site were not found near the edge site. Peatland restoration should be conducted to reduce forest matrices and the edge effects [100]. |
|
| Vegetation survey at Block A North-West ex-MRP, 13 years after being abandoned, was colonized by 8805 individual woody plants, comprising 6085 saplings and shrubs and 2720 trees. The mean density of woody plants was 0.09 individuals/m2. The species of Combretocarpus rotundatus was more abundant than other tree species, including (Cratoxylum glaucum, Cratoxylum arborescens) and shrub species (Melastoma malabaricum) [36]. | |
|
|
| In the HCV area of oil palm plantations in the peatlands of Central Kalimantan, 23 genera of ants were found. The ant community was dominated by Anoplolepis gracilipes, an invasive species common in oil palm plantations but usually absent from high quality undisturbed forest, and its presence in HCVs is therefore indicative of highly degraded habitat [101]. |
|
| Degraded forest fragments and nonforest regrowth had reduced species numbers, with 36 and 32 species, respectively [41]. | |
|
| Loss of habitat leads to commensurate loss of mammal species with significant positive relationships between mammal species and canopy cover, canopy height, number of plant species, number of large trees (>30 cm) and number of fallen large trees (>30 cm) [37]. | |
|
| A survey of the secondary forest area of KHDTK Tumbang Nusa, found 9 species of herpetofauna [102]. | |
|
|
| Loss of peat soil carbon stock occurs due to accelerated oxidation caused by drought and fires. Degraded peat soil can experience subsidence of 5 cm y−1, equating to an average 5 year carbon loss of 178 t CO2-eq ha−1 y−1 [27]. |
|
| Disturbed peat swamp forest had 50% [103] –70% [90] lower dissolved organic carbon compared to the undisturbed forest. | |
|
| Forest biomass growth at forest edge sites reduced by 32% and 23–25% for tree diameters of 10–20 cm and >20 cm, respectively, compared to interior sites [100]. | |
|
|
| Degraded peat swamp forests support less diversity of community livelihoods and most of the cultivation options (e.g., oil palm) tend to cause further degradation unless they can be achieved with a raised water table. |
|
| Degradation can lead to unsustainable cultivation practices that may improve short-term income but result in longer-term loss of the capacity of the peat to support household incomes. | |
|
| Unsustainable peatland use may result in exploitative practices whereby individuals stand to gain the most but hasten the degradation of the community resource. | |
|
| Unsustainable peatland use will result in longer-term loss of productive function and increased risk of fire, with the community requiring greater outside support. | |
|
| Unsustainable use and degradation may cause loss of the community resource, and with it the future opportunities for employment and sustainable enterprises. |
No | Damage Characteristics | Intervention |
---|---|---|
1. | Logged over forest with complete structure |
|
2. | Incomplete structure of logged-over forests/bushes |
|
3. | Peatland area that has been burnt once |
|
4. | Peatland area that has been subject to repeated burning |
|
5. | Peatland with repeated burning and changing hydrological status due to drainage (the presence of canals) |
|
No. | Location and Area | Tree Species | Notes and References |
---|---|---|---|
1. | Forest Research Institute (FRI) Palembang collaboration with International Tropical Timber Organization (ITTO), location plot at Sepucuk (20 Ha), South Sumatera | Gonystylus bancanus Dyera polyphylla Tetramerista glabra Shorea balangeran | Initially, without rewetting at the time, drainage was constructed in plantations around the plot [87], |
2. | FRI Palembang collaboration with Peatland Restoration Agency (PRA), at Sepucuk (10 Ha), South Sumatera | Shorea balangeran | Agrosilvofishery, some part of the area was burned by fires. |
3. | Forest Management Unit (KPHP) V Pademaran Lempuing, FRI Palembang, Forest Research and Development Centre (FRDC-Bogor), in collaboration with The Mushroom Initiative (TMI), location at Pademaran, South Sumatera | Dyera polyphylla Shorea balangeran Tristaniopsis obovata Melaleuca cajuputi Dryobalanops aromatica Cratoxylum glacum Fragraea fragrans | Application of mycorrhizal fungi and use of organic pots. |
4. | FRI Banjarbaru, FRDC-Bogor, TMI, location at Tumbang Nusa (50 Ha), Central Kalimantan | Dyera polyphylla Shorea balangeran Tristaniopsis obovata Combretocarpus rotundatus Melaleuca cajuputi Alstonia pneumatophora Vatica rassak Calophyllum hose Syzygium garcinifolia | Application of mycorrhizal fungi and use of organic pots. |
5. | Katingan Peatland Restoration and Conservation Project, 1.23 Ha, Central Kalimantan | Dyera polyphylla Shorea balangeran Melaleuca cajuputi Alstonia scholaris | Katingan is being implemented as an ecosystem restoration project by Rimba Makmur Utama, Ltd. [87]. |
6. | Padang Island (Meranti Archiphelago Regency) and Bengkalis Island, several 10,000 Ha, Riau Province | Metroxylon sago | Extensive sago plantation as a livelihood for forest communities [87]. |
7. | Tanjung Leban, Bengkalis Restoration Site, University of Riau, CIFOR, Global Landscape Forum, 5.25 Ha | Dyera polyphylla Shorea spp. Hevea brassiliensis | There is no hydrological rehabilitation, mixed species plantations [87]. |
8. | Dyera Hutan Lestari Ltd., 2000 Ha, Sei Aur, Jambi Province | Dyera polyphylla Alstonia scholaris | Forest plantations, but abandoned after repeated fires [87]. |
9. | Tri Pupa Jaya Plantation (Asia Pulp and Paper-Sinar Mas Group), 2000 Ha, South Sumatera | Dyera polyphylla Alstonia scholaris Palaquium burckii Shorea leprosula | Creation of a buffer zone between forest plantations and adjacent protected areas [87]. |
10. | Conoco Phillips Ltd., 200 Ha, Jambi Province | Dyera polyphylla Alstonia scholaris Calophyllum sp. Dryobalanops | Some tree species died after rewetting (Giesen and Sari, 2018). |
11. | Inhutani II Ltd. And Gajah Mada University, Segedong-Samandaka, 2220 Ha, West Kalimantan | Shorea pinanga S. macrophylla S. stenoptera S. guiso S. teysmanniana S. compressa S. balangeran S. mangachapoi | The location was not actively managed, and some natural regeneration of Dipterocarpaceae occurred [87]. |
12. | FRI Banjarbaru, FRDC-Bogor collaboration with AFOCO (Asian Forest Cooperation Organization), 4 Ha, Tumbang Nusa, Central Kalimantan | Dyera polyphylla Shorea balangeran Combretocarpus rotundatus Nothapoebe cf. umbelliflora | D. pollyphylla and S. balangeran demonstrated good growth performance. |
13. | FRI Banjarbaru and Telkom Palangkaraya Ltd., 2 Ha, Tumbang Nusa, Central Kalimantan | Shorea balangeran | They followed the Re-Peat program (Purwanto, pers.comm). |
14. | JSPS (Japan Society for the Promotion of Science) Hokkaido University and University of Palangkaraya, 2 Ha, Kalampangan, Central Kalimantan | Shorea balangeran | Seedlings were inoculated with ectomycorrhizal fungi [184]. |
15. | R&D Sinar Mas Forestry, Komatsu Ltd., and Forestry Research and Development Centre, Perawang, 16 Ha, Riau Province | Shorea balangeran Melaleuca cajuputi Cratoxylum arborescens Camnosperma coriaceum | S. balangeran grew well in peatland and is a potential candidate for pulp and paper [87]. |
16. | Tolan Tiga Indonesia Ltd., Barumun River, 10 Ha, Riau Province | Shorea spp. (Dipterocarpaceae) | High mortality [87]. |
17. | Great Forests Parks (Tahura) Orang Kayo Hitam, Berbak, 8000 Ha, Jambi | Dyera polyhylla Metroxylon sago Tetramerista glabra | Canal block had been completed [87]. |
18. | World Wide Fund for nature (WWF), Londerang site, 200 Ha, Jambi Province | Dyera polyphylla, Artocarpus integra Mangifera indica Durio zibethinus Nephelium lapaceum | This location was not adapted to full rewetting [87]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuwati, T.W.; Rachmanadi, D.; Pratiwi; Turjaman, M.; Indrajaya, Y.; Nugroho, H.Y.S.H.; Qirom, M.A.; Narendra, B.H.; Winarno, B.; Lestari, S.; et al. Restoration of Degraded Tropical Peatland in Indonesia: A Review. Land 2021, 10, 1170. https://doi.org/10.3390/land10111170
Yuwati TW, Rachmanadi D, Pratiwi, Turjaman M, Indrajaya Y, Nugroho HYSH, Qirom MA, Narendra BH, Winarno B, Lestari S, et al. Restoration of Degraded Tropical Peatland in Indonesia: A Review. Land. 2021; 10(11):1170. https://doi.org/10.3390/land10111170
Chicago/Turabian StyleYuwati, Tri Wira, Dony Rachmanadi, Pratiwi, Maman Turjaman, Yonky Indrajaya, Hunggul Yudono Setio Hadi Nugroho, Muhammad Abdul Qirom, Budi Hadi Narendra, Bondan Winarno, Sri Lestari, and et al. 2021. "Restoration of Degraded Tropical Peatland in Indonesia: A Review" Land 10, no. 11: 1170. https://doi.org/10.3390/land10111170