New Approach to Selecting Civil Defense Centers in Al-Riyadh City (KSA) Based on Multi-Criteria Decision Analysis and GIS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geodatabase
2.3. Multi-Criteria Decision Analysis
2.3.1. Weighted Sum Method (WSM)
2.3.2. AHP Method
2.4. Civil Defense Site Selection and Validation
3. Results and Discussion
3.1. WSM and AHP Assessment
3.2. Re-Estimation and Validation of the Most Successful Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B. AHP Weights of the Eight Selected Factors
WSM | WSM | AHP 1 | AHP 1 | ||||||||||||
C2 | C3 | C4 | C5 | C6 | C7 | C8 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
C2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | C2 | 1 | 1/5 | 1/9 | 1/5 | 1/7 | 1/5 | 1/7 |
C3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | C3 | 5 | 1 | 1/7 | 1/5 | 1/9 | 1/3 | 1/7 |
C4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | C4 | 9 | 7 | 1 | 5 | 3 | 5 | 3 |
C5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | C5 | 5 | 5 | 1/5 | 1 | 1/7 | 1/3 | 1/5 |
C6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | C6 | 7 | 9 | 1/3 | 7 | 1 | 3 | 1/7 |
C7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | C7 | 5 | 3 | 1/5 | 3 | 1/3 | 1 | 1/9 |
C8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | C8 | 7 | 7 | 1/3 | 5 | 7 | 9 | 1 |
AHP 2 | AHP 2 | AHP 3 | AHP 3 | ||||||||||||
C2 | C3 | C4 | C5 | C6 | C7 | C8 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
C2 | 1 | 1 | 1/7 | 1/9 | 1/9 | 1/9 | 1/9 | C2 | 1 | 1 | 1 | 3 | 2 | 2 | 2 |
C3 | 1 | 1 | 1/7 | 1/9 | 1/9 | 1/9 | 1/9 | C3 | 1 | 1 | 9 | 9 | 9 | 9 | 9 |
C4 | 7 | 7 | 1 | 7 | 7 | 7 | 1/3 | C4 | 1 | 1/9 | 1 | 7 | 7 | 7 | 7 |
C5 | 9 | 9 | 1/7 | 1 | 1/9 | 7 | 1/9 | C5 | 1/3 | 1/9 | 1/7 | 1 | 1 | 1 | 1 |
C6 | 9 | 9 | 1/7 | 9 | 1 | 5 | 1/9 | C6 | 1/2 | 1/9 | 1/7 | 1 | 1 | 1 | 5 |
C7 | 9 | 9 | 1/7 | 1/7 | 1/5 | 1 | 1/9 | C7 | 1/2 | 1/9 | 1/7 | 1 | 1 | 1 | 1 |
C8 | 9 | 9 | 3 | 9 | 9 | 9 | 1 | C8 | 1/2 | 1/9 | 1/7 | 1 | 1/5 | 1 | 1 |
AHP 4 | AHP 4 | AHP 5 | AHP 5 | ||||||||||||
C2 | C3 | C4 | C5 | C6 | C7 | C8 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
C2 | 1 | 1 | 1 | 3 | 2 | 2 | 2 | C2 | 1 | 1 | 1/7 | 1/9 | 1/3 | 1 | 1/9 |
C3 | 1 | 1 | 9 | 9 | 9 | 9 | 9 | C3 | 1 | 1 | 1/7 | 1/9 | 1/9 | 1 | 1/9 |
C4 | 1 | 1/9 | 1 | 1 | 1 | 1 | 1 | C4 | 7 | 7 | 1 | 9 | 9 | 9 | 1/3 |
C5 | 1/3 | 1/9 | 1 | 1 | 1 | 1 | 1 | C5 | 9 | 9 | 1/9 | 1 | 1/9 | 1 | 1/9 |
C6 | 1/2 | 1/9 | 1 | 1 | 1 | 1 | 1 | C6 | 3 | 9 | 1/9 | 9 | 1 | 1 | 1/9 |
C7 | 1/2 | 1/9 | 1 | 1 | 1 | 1 | 1 | C7 | 1 | 1 | 1/9 | 1 | 1 | 1 | 1/9 |
C8 | 1/2 | 1/9 | 1 | 1 | 1 | 1 | 1 | C8 | 9 | 9 | 3 | 9 | 9 | 9 | 1 |
Appendix C. The Coordinates of the Five Proposed New CDCs
No. | Location (UTM Z38N) | District Name | |
X(m) | Y(m) | ||
1 | 652,000 | 2,710,500 | Dahiat Namar |
2 | 695,500 | 2,727,000 | Khashm Al Ann |
3 | 667,000 | 2,760,000 | King Khalid Int Airport |
4 | 696,500 | 2,752,500 | An-Nadheem |
5 | 654,000 | 2,728,500 | Al-Mahdiyah |
References
- Civil Defense—Saudi Arabia. Available online: https://www.998.gov.sa/English/CDIntroduction/Pages/conceptofCD.aspx (accessed on 25 April 2020).
- Fire Fighting. Available online: https://www.998.gov.sa/English/FireFighting/Pages/FireFighting.aspx (accessed on 8 August 2021).
- Li, X.; Yeh, A.G.O. Integration of genetic algorithms and GIS for optimal location search. Int. J. Geogr. Inf. Sci. 2005, 19, 581–601. [Google Scholar] [CrossRef]
- Badri, M.A.; Mortagy, A.K.; Alsayed, C.A. A multi-objective model for locating fire stations. Eur. J. Oper. Res. 1998, 110, 243–260. [Google Scholar] [CrossRef]
- Bitarafan, M.; Hosseini, S.B.; Abazarlou, S.; Mahmoudzadeh, A. Selecting the optimal composition of architectural forms from the perspective of civil defense using AHP and IHWP methods. Archit. Eng. Des. Manag. 2015, 11, 137–148. [Google Scholar] [CrossRef]
- Hasheminasab, H.; Hashemkhani Zolfani, S.; Bitarafan, M.; Chatterjee, P.; Abhaji Ezabadi, A. The Role of Façade Materials in Blast-Resistant Buildings: An Evaluation Based on Fuzzy Delphi and Fuzzy EDAS. Algorithms 2019, 12, 119. [Google Scholar] [CrossRef] [Green Version]
- Bitarafan, M.; Hosseini, S.B.; Sabeti, N.; Bitarafan, A. The architectural evaluation of buildings’ indices in explosion crisis management. Alex. Eng. J. 2016, 55, 3219–3228. [Google Scholar] [CrossRef]
- Yoo, S.; Kim, M.-K.; Bae, J.; Sohn, H.-G. Selection of appropriate location for civil defense shelters using genetic algorithm and network analysis. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2018, 36, 573–580. [Google Scholar]
- Yu, J.; Wen, J.; Jiang, Y. Agent-based evacuation simulation for spatial allocation assessment of urban shelters. In Proceedings of the ISPRS International Conference on Intelligent Earth Observing and Applications, Guilin, China, 23–25 October 2015. [Google Scholar]
- Kaili, D.; Qingming, Z.; Shiguo, L. GIS-Based Responsibility Area Subdivision for Metropolitan Emergency Shelters—Case Study of Wuchang District, Wuhan City. In Proceedings of the 6th International Association for China Planning Conference (IACP), Wuhan, China, 17–19 June 2012. [Google Scholar]
- Tong, Z.; Zhang, J.; Liu, X. GIS-based design of urban emergency shelter in Songbei Harbin. Lect. Notes Electr. Eng. 2012, 129, 617–622. [Google Scholar]
- Rooväli, L.; Kiivet, R.A. Geographical variations in hospital use in Estonia. Health Place 2006, 12, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Jordan, H.; Roderick, P.; Martin, D.; Barnett, S. Distance, rurality and the need for care: Access to health services in South West England. Int. J. Health Geogr. 2004, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mugiyo, H.; Chimonyo, V.G.P.; Sibanda, M.; Kunz, R.; Nhamo, L.; Masemola, C.R.; Dalin, C.; Modi, A.T.; Mabhaudhi, T. Multi-criteria suitability analysis for neglected and underutilised crop species in South Africa. PLoS ONE 2021, 16, e0244734. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Z. Suitability evaluation for mountain-based adventure tourism: A case study of Xinjiang Tianshan, China. PLoS ONE 2021, 16, e0247035. [Google Scholar] [CrossRef]
- Alsafadi, K.; Mohammed, S.; Habib, H.; Kiwan, S.; Hennawi, S.; Sharaf, M. An integration of bioclimatic, soil, and topographic indicators for viticulture suitability using multi-criteria evaluation: A case study in the Western slopes of Jabal Al Arab—Syria. Geocarto Int. 2020, 35, 1466–1488. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Ali, H.; Mousavi, S.M.N.; Kiwan, S.; Hennawi, S.; Harsanyie, E.; Pham, Q.B.; Linh, N.T.T.; Ali, R.; et al. Assessment of land suitability potentials for winter wheat cultivation by using a multi criteria decision Support- Geographic information system (MCDS-GIS) approach in Al-Yarmouk Basin (S syria). Geocarto Int. 2020, 1–19. [Google Scholar] [CrossRef]
- Berhanu, K.G.; Hatiye, S.D. Identification of Groundwater Potential Zones Using Proxy Data: Case study of Megech Watershed, Ethiopia. J. Hydrol. Reg. Stud. 2020, 28, 100676. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Alazba, A.A. Integrated remote sensing and GIS-based approach for deciphering groundwater potential zones in the central region of Saudi Arabia. Environ. Earth Sci. 2016, 75, 1–28. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, Z.; Zhang, W.; Dilawar, A. Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geosci. Front. 2020, 11, 1805–1819. [Google Scholar] [CrossRef]
- El Karim, A.A.; Awawdeh, M.M. Integrating GIS accessibility and location-allocation models with multicriteria decision analysis for evaluating quality of life in Buraidah city, KSA. Sustainability 2020, 12, 1412. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.A.; Al-Maamar, A.F.; Al-Manmi, D.A.M.; Veraldo, L.; Hasan, S.E.; Obaid, A.K.; Al-Quraishi, A.M.F. GIS-based modeling for selection of dam sites in the Kurdistan Region, Iraq. ISPRS Int. J. Geo-Inf. 2020, 9, 244. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.A.; Obaid, A.K.; Al-Manmi, D.A.; Al-Maamar, A.F.; Hasan, S.E.; Liesenberg, V.; Shihab, A.T.; Al-Saady, Y.I. New Insight on Soil Loss Estimation in the Northwestern Region of the Zagros Fold and Thrust Belt. ISPRS Int. J. Geo-Inf. 2021, 10, 59. [Google Scholar] [CrossRef]
- Xiao, H.; Zhou, Y.; Zhang, H. GIS-based Fire Risk Assessment and Fire Station Site Selection—Taking Dujiangyan City as An Example. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Taiyuan, China, 16–18 October 2020. [Google Scholar]
- Nyimbili, P.H.; Erden, T. GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey. Socio-Econ. Plann. Sci. 2020, 71, 100860. [Google Scholar] [CrossRef]
- Akay, A.E.; Taş, İ. Using GIS techniques for assessment of accessible forest lands by firefighting teams considering fire risk degrees. Eur. J. For. Eng. 2021, 6, 87–95. [Google Scholar] [CrossRef]
- Haddad, B.; Díaz-Cuevas, P.; Ferreira, P.; Djebli, A.; Pérez, J.P. Mapping concentrated solar power site suitability in Algeria. Renew. Energy 2021, 168, 838–853. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Tarabees, E. Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: Contribution from the analytic hierarchy process. Arab. J. Geosci. 2011, 4, 463–473. [Google Scholar] [CrossRef]
- Valkanou, K.; Karymbalis, E.; Papanastassiou, D.; Soldati, M.; Chalkias, C.; Gaki-Papanastassiou, K. Assessment of neotectonic landscape deformation in Evia Island, Greece, using GIS-based multi-criteria analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 118. [Google Scholar] [CrossRef]
- Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 270–277. [Google Scholar] [CrossRef]
- Abd El Karim, A.; Alogayell, H.M.; Alkadi, I.I.; Youssef, I. Mapping of GIS-Land Use Suitability in the Rural–Urban Continuum between Ar Riyadh and Al Kharj Cities, KSA Based on the Integrating GIS Multi Criteria Decision Analysis and Analytic Hierarchy Process. Environments 2020, 7, 75. [Google Scholar] [CrossRef]
- Akinci, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Shahabi, H.; Keihanfard, S.; Ahmad, B.B.; Amiri, M.J.T. Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite images. Environ. Earth Sci. 2014, 71, 4221–4233. [Google Scholar] [CrossRef]
- Raškauskaite, R.; Grigonis, V. An approach for the analysis of the accessibility of fire hydrants in urban territories. ISPRS Int. J. Geo-Inf. 2019, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Murad, A.A. Using geographical information systems for defining the accessibility to health care facilities in Jeddah City, Saudi Arabia. Geospat. Health 2014, 8, S661–S669. [Google Scholar] [CrossRef] [Green Version]
- Carlson, L.C.; Baker, O.N.; Schuur, J.D. A geospatial analysis of freestanding and hospital emergency department accessibility via public transit. West. J. Emerg. Med. 2019, 20, 472–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, J.P.; Abitante, J.D.C.; Pons, N.A.D.; Senne, C.M. A spatial fuzzy multicriteria analysis of accessibility: A case study in Brazil. Sustainability 2019, 11, 3407. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Chen, N.; Islam, M.M.; Dewan, A.; Pourghasemi, H.R.; Washakh, R.M.A.; Nepal, N.; Tian, S.; Faiz, H.; Alam, M.; et al. Location-allocation modeling for emergency evacuation planning with GIS and remote sensing: A case study of Northeast Bangladesh. Geosci. Front. 2021, 12, 101095. [Google Scholar] [CrossRef]
- Chevalier, P.; Thomas, I.; Geraets, D.; Goetghebeur, E.; Janssens, O.; Peeters, D.; Plastria, F. Locating fire stations: An integrated approach for Belgium. Socioecon. Plann. Sci. 2012, 46, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Tali, J.A.; Divya, S.; Nusrath, A. Location-allocation model applied to urban public services: Spatial analysis of fire stations in Mysore Urban Area Karnataka, India. Indones. J. Geogr. 2020, 35, 201–207. [Google Scholar] [CrossRef]
- Vafaeinejad, A.; Bolouri, S.; Alesheikh, A.A.; Panahi, M.; Lee, C.W. The Capacitated Location-Allocation Problem Using the VAOMP (Vector Assignment Ordered Median Problem) Unified Approach in GIS (Geospatial Information Systam). Appl. Sci. 2020, 10, 8505. [Google Scholar] [CrossRef]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2016, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Li, H.; Chen, Y. An integrated spatial clustering analysis method for identifying urban fire risk locations in a network-constrained environment: A case study in Nanjing, China. ISPRS Int. J. Geo-Inf. 2017, 6, 370. [Google Scholar] [CrossRef]
- Oppong, J.R.; Boakye, K.; Edziyie, R.; Owusu, A.Y.; Tiwari, C. Emergency fire response in Ghana: The case of fire stations in Kumasi. Afr. Geogr. Rev. 2017, 36, 253–261. [Google Scholar] [CrossRef]
- Atmaca, M.; Akcay, C. Construction site layout planning using GIS overlay analysis—A case study. Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Malczewski, J. On the use of weighted linear combination method in GIS: Common and best practice approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- He, X.; Hong, Y.; Yu, X.; Cerato, A.B.; Zhang, X.; Komac, M. Landslides susceptibility mapping in Oklahoma state using gis-based weighted linear combination method. In Landslide Science for a Safer Geoenvironment; Springer: Cham, Switzerland, 2014; Volume 2, pp. 371–377. [Google Scholar]
- Mahmoud, S.H.; Gan, T.Y. Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data. Agric. Water Manag. 2019, 212, 35–47. [Google Scholar] [CrossRef]
- Almannaa, M.H.; Alsahhaf, F.A.; Ashqar, H.I.; Elhenawy, M.; Masoud, M.; Rakotonirainy, A. Perception analysis of E-scooter riders and non-riders in Riyadh, Saudi Arabia: Survey outputs. Sustainability 2021, 13, 863. [Google Scholar] [CrossRef]
- Garba, S.B. Managing urban growth and development in the Riyadh metropolitan area, Saudi Arabia. Habitat Int. 2004, 28, 593–608. [Google Scholar] [CrossRef]
- King Abdullah Petroleum Studies and Research. Available online: https://datasource.kapsarc.org/explore/dataset/saudi-arabia-population-by-administrative-region-nationality-and-sex/information/?disjunctive.administrative_region&disjunctive.gender (accessed on 20 May 2021).
- Riyadh Municipality. Available online: https://www.alriyadh.gov.sa/ar/riyadh/popudev (accessed on 5 May 2021).
- Chaudhary, P.; Chhetri, S.K.; Joshi, K.M.; Shrestha, B.M.; Kayastha, P. Application of an Analytic Hierarchy Process (AHP) in the GIS interface for suitable fire site selection: A case study from Kathmandu Metropolitan City, Nepal. Socioecon. Plann. Sci. 2016, 53, 60–71. [Google Scholar] [CrossRef]
- Erden, T.; Coşkun, M.Z. Multi-criteria site selection for fire services: The interaction with analytic hierarchy process and geographic information systems. Nat. Hazards Earth Syst. Sci. 2010, 10, 2127–2134. [Google Scholar] [CrossRef]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2013; ISBN 9780471691174. [Google Scholar]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Fishburn, P.C. Assignments Letters to the Editor. Oper. Res. 1967, 15, 537–542. [Google Scholar] [CrossRef]
- Shao, Z.; Huq, M.E.; Cai, B.; Altan, O.; Li, Y. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environ. Model. Softw. 2020, 134, 104868. [Google Scholar] [CrossRef]
- Balezentiene, L.; Streimikiene, D.; Balezentis, T. Fuzzy decision support methodology for sustainable energy crop selection. Renew. Sustain. Energy Rev. 2013, 17, 83–93. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R.; Andreani, L.; Rahnama, M. Improving landslide susceptibility mapping using morphometric features in the Mawat area, Kurdistan Region, NE Iraq: Comparison of different statistical models. Geomorphology 2018, 319, 147–160. [Google Scholar] [CrossRef]
- Chung, C.-J.-F.; Fabbri, A.G. Validation of spatial prediction models for landslide hazard mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Al-Jazirah. Available online: https://www.al-jazirah.com/2001/20011104/lp5.htm (accessed on 6 July 2021).
- Jozaghi, A.; Alizadeh, B.; Hatami, M.; Flood, I.; Khorrami, M.; Khodaei, N.; Tousi, E.G. A comparative study of the AHP and TOPSIS techniques for dam site selection using GIS: A case study of Sistan and Baluchestan Province, Iran. Geosciences 2018, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Noori, A.; Bonakdari, H.; Morovati, K.; Gharabaghi, B. The optimal dam site selection using a group decision-making method through fuzzy TOPSIS model. Environ. Syst. Decis. 2018, 38, 471–488. [Google Scholar] [CrossRef]
- Wei, L.; Li, H.-L.; Liu, Q.; Chen, J.-Y.; Cui, Y.-J. Study and implementation of fire sites planning based on GIS and AHP. Procedia Eng. 2011, 11, 486–495. [Google Scholar] [CrossRef] [Green Version]
Ref | Method | Technology | Country |
---|---|---|---|
[27] | AHP | Solar power site suitability | Algeria |
[24] | AHP | Fire Risk Assessment | China |
[28] | AHP | Site suitability investigation | Egypt |
[29] | AHP | Neotectonic landscape deformation | Greece |
[30] | AHP | Land-use suitability | Mexico |
[20] | AHP | Groundwater potential | Pakistan |
[19] | AHP | Groundwater potential | Saudi Arabia |
[31] | AHP | Land Use Suitability | Saudi Arabia |
[26] | AHP | Developing a fire risk map | Turkey |
[32] | AHP | Agricultural land use suitability | Turkey |
[33] | AHP Boolean logic | Waste landfill sites | Iran |
[34] | Buffer zones | Accessibility of fire hydrants | Lithuania |
[35] | Euclidean distance | Health care facilities | Saudi Arabia |
[36] | Euclidean distance | Emergency department accessibility | United States |
[37] | Fuzzy AHP | Analysis of accessibility | Brazil |
[25] | Fuzzy AHP | Optimal location for fire stations | Turkey |
[38] | Location–allocation | Emergency evacuation planning | Bangladesh |
[39] | Location–allocation | Locating fire stations | Belgium |
[40] | Location–allocation | Available sites for fire stations | India |
[41] | Location–allocation | Fire station allocation | Iran |
[21] | Location–Allocation | Evaluating Quality of Life | Saudi Arabia |
[4] | MCDA | Locating fire stations | Dubai |
[42] | MCDA AHP | Identifying potential flood hazard zones | Iran |
[43] | Network Kernel Density Estimation | Urban fire risk locations | China |
[44] | Service areas | Fire response systems | Ghana |
[45] | Weighted overlay | Site layout planning | Turkey |
[46] | WLC | Best practice approach for WLC | - |
[47] | WLC | Regional hazard map | United States |
[16] | MCE | Viticulture suitability using MCE | Syria |
[17] | MCDA, MCDS | Land suitability assessment | Syria |
Criteria Code | Factors Description | Maps | Source of Map |
---|---|---|---|
C1 | Distance from existing civil defense center | Civil defense center | General Directorate of Civil Defense |
C2 | Accident density | Accidents | General Directorate of Civil Defense |
C3 | Population density | Population density | Municipality of Al-Riyadh |
C4 | Distance from the road | Road and street network | General Directorate of Civil Defense |
C5 | Distance from commercial centers | Land use | Royal Commission for Riyadh city |
C6 | Distance from educational services | Land use | Royal Commission for Riyadh city |
C7 | Distance from industrial areas | Land use | Royal Commission for Riyadh city |
C8 | Distance from residential areas | Land use | Royal Commission for Riyadh city |
Correlation | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|
C2 | 1 | ||||||
C3 | 0.692 | 1 | |||||
C4 | 0.286 | 0.421 | 1 | ||||
C5 | 0.471 | 0.666 | 0.484 | 1 | |||
C6 | 0.287 | 0.562 | 0.549 | 0.767 | 1 | ||
C7 | 0.366 | 0.542 | 0.297 | 0.458 | 0.502 | 1 | |
C8 | 0.173 | 0.266 | 0.317 | 0.553 | 0.625 | 0.411 | 1 |
Criteria | Reclassification | Range | Criteria | Reclassification | Range |
---|---|---|---|---|---|
C1 | 1 | 0–3000 | C4 | 9 | 0–200 |
3 | 3000–5000 | 7 | 200–1000 | ||
5 | 5000–7000 | 5 | 1000–3000 | ||
7 | 7000–9000 | 3 | 3000–6000 | ||
9 | 9000–35,000 | 1 | 6000–14,700 | ||
C2 | 1 | 0–1 | C5 | 9 | 0–200 |
3 | 1–20 | 7 | 200–2000 | ||
5 | 20–35 | 5 | 2000–5000 | ||
7 | 35–50 | 3 | 5000–8000 | ||
9 | 50–75 | 1 | 8000–35,000 | ||
C3 | 1 | 0–1 | C6, C7 and C8 | 9 | 0–200 |
3 | 1–500 | 7 | 200–2000 | ||
5 | 500–4000 | 5 | 2000–5000 | ||
7 | 4000–13,000 | 3 | 5000–8000 | ||
9 | 13,000–24,000 | 1 | 8000–35,000 |
Weight | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|
WSM | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 | 0.143 |
AHP-1 | 0.020 | 0.041 | 0.324 | 0.070 | 0.172 | 0.079 | 0.294 |
AHP-2 | 0.021 | 0.021 | 0.229 | 0.110 | 0.151 | 0.077 | 0.390 |
AHP-3 | 0.154 | 0.421 | 0.223 | 0.043 | 0.070 | 0.048 | 0.042 |
AHP-4 | 0.174 | 0.488 | 0.080 | 0.061 | 0.066 | 0.066 | 0.066 |
AHP-5 | 0.030 | 0.029 | 0.278 | 0.100 | 0.118 | 0.038 | 0.407 |
Weight | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|
AHP-1 | 0.434 | 0.016 | 0.030 | 0.152 | 0.046 | 0.107 | 0.052 | 0.163 |
AHP-2 | 0.474 | 0.077 | 0.253 | 0.043 | 0.037 | 0.039 | 0.039 | 0.039 |
AHP-5 | 0.411 | 0.022 | 0.021 | 0.164 | 0.070 | 0.082 | 0.027 | 0.202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, B.; Alsalman, A.; Othman, A.A.; Obaid, A.K.; Bashir, H. New Approach to Selecting Civil Defense Centers in Al-Riyadh City (KSA) Based on Multi-Criteria Decision Analysis and GIS. Land 2021, 10, 1108. https://doi.org/10.3390/land10111108
Bashir B, Alsalman A, Othman AA, Obaid AK, Bashir H. New Approach to Selecting Civil Defense Centers in Al-Riyadh City (KSA) Based on Multi-Criteria Decision Analysis and GIS. Land. 2021; 10(11):1108. https://doi.org/10.3390/land10111108
Chicago/Turabian StyleBashir, Bashar, Abdullah Alsalman, Arsalan Ahmed Othman, Ahmed K. Obaid, and Hussein Bashir. 2021. "New Approach to Selecting Civil Defense Centers in Al-Riyadh City (KSA) Based on Multi-Criteria Decision Analysis and GIS" Land 10, no. 11: 1108. https://doi.org/10.3390/land10111108
APA StyleBashir, B., Alsalman, A., Othman, A. A., Obaid, A. K., & Bashir, H. (2021). New Approach to Selecting Civil Defense Centers in Al-Riyadh City (KSA) Based on Multi-Criteria Decision Analysis and GIS. Land, 10(11), 1108. https://doi.org/10.3390/land10111108