The Heterogeneous Influence of Infrastructure Construction on China’s Urban Green and Smart Development—The Threshold Effect of Urban Scale
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review and Contribution
1.2.1. Measurement of the Urban GSDL
1.2.2. Relationship between Infrastructure Construction and the Urban GSDL
2. Materials and Methods
2.1. Measure of GSDL
2.1.1. Measure Model Construction
2.1.2. Indicators of GSDL Measurement
2.2. Construction of Empirical Model
2.2.1. Panel Regression Model
2.2.2. Threshold Regression Model
2.3. Variable Description
2.4. Data Source
3. Results
3.1. Linear Regression Analysis
3.2. Nonlinear Regression Analysis
3.3. Heterogeneity Regression Analysis
3.3.1. Regional Heterogeneity Analysis
3.3.2. Period Heterogeneity Analysis
3.4. Threshold Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.-Y.; Shang, J.; Ali, R.; Rehman, R.-U. The coupling coordinated relationship between new-type urbanization, eco-environment and its driving mechanism: A case of Guanzhong, China. Front. Environ. Sci. 2021, 9, 128. [Google Scholar] [CrossRef]
- McNeill, D. Mapping the European urban left: The Barcelona experience. Antipode 2003, 35, 74–94. [Google Scholar] [CrossRef]
- He, Y. Remodeling and regeneration: Evolution logic, dynamic mechanism and action framework of urban renewal. Mod. Econ. Discuss. 2021, 6, 94–100. [Google Scholar]
- Han, J. Can urban sprawl be the cause of environmental deterioration? Based on the provincial panel data in China. Environ. Res. 2020, 189, 109954. [Google Scholar] [CrossRef] [PubMed]
- Xin, B.; Qu, Y. Effects of smart city policies on green total factor productivity: Evidence from a quasi-natural experiment in China. Int. J. Environ. Res. Public Health 2019, 16, 2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Y.; Liu, J.; Cheng, Z.; Forrest, J.-Y.-L. Does the smart city policy promote the green growth of the urban economy? Evidence from China. Environ. Sci. Pollut. Res. 2021, 163, 1–15. [Google Scholar]
- Jiang, H.; Jiang, P.; Wang, D.; Wu, J. Can smart city construction facilitate green total factor productivity? A quasi-natural experiment based on China’s pilot smart city. Sustain. Cities Soc. 2021, 69, 102809. [Google Scholar] [CrossRef]
- Li, X.; Fong, P.; Dai, S. Towards sustainable smart cities: An empirical comparative assessment and development pattern optimization in China. J. Clean. Prod. 2019, 215, 730–743. [Google Scholar] [CrossRef]
- Shamsuzzoha, A.; Niemi, J.; Piya, S.; Rutledge, K. Smart city for sustainable environment: A comparison of participatory strategies from Helsinki, Singapore and London. Cities 2021, 114, 103194. [Google Scholar] [CrossRef]
- Nondo, C. Is there a relationship between information and communication technologies infrastructure, electricity consumption and total factor productivity? Int. J. Energy Econ. Policy 2018, 8, 207–218. [Google Scholar]
- Zhang, S.-D.; Yan, Y.; Li, B. Urban infrastructure, talent gathering and innovation. Soft Sci. 2020, 12, 1–12. [Google Scholar]
- Wu, Z.-D.; Ye, Q.-L. Water pollution loads and shifting within China’s inter-province trade. J. Clean. Prod. 2020, 259, 120879. [Google Scholar] [CrossRef]
- Pacione, M. Development pressure and the production of the built environment in the urban fringe. Scott. Geogr. Mag. 2008, 107, 162–169. [Google Scholar] [CrossRef]
- Camerin, F. From “Ribera Plan” to “Diagonal Mar”, passing through 1992 “Vila Olímpica”. How urban renewal took place as urban regeneration in Poblenou district (Barcelona). Land Use Policy 2019, 89, 104226. [Google Scholar] [CrossRef]
- Savini, F.; Aalbers, M.-B. The de-contextualisation of land use planning through financialisation: Urban redevelopment in Milan. Eur. Urban Reg. Stud. 2016, 23, 878–894. [Google Scholar] [CrossRef]
- Katz, C. Vagabond capitalism and the necessity of social reproduction. Antipode 2001, 33, 709–728. [Google Scholar] [CrossRef]
- Sklair, L. The Icon Project: Architecture, Cities, and Capitalist Globalization; Oxford University Press: New York, NY, USA, 2017; pp. 26–49. [Google Scholar]
- Mora, A.-Á.; Camerin, F. La herencia del “urban renewal” en los procesos actuales de regeneración urbana: El recorrido renovación-regeneración a debate. Ciudad Y Territ. Estud. Territ. 2019, 51, 5–26. [Google Scholar]
- Chen, J. Innovation ecosystem for green smart city building in China. Front. Eng. Manag. 2015, 2, 325–330. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.-M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Ding, H.-F.; Wang, Y.-H. The evaluation and analysis of the Chinese urban economic intelligence index. Stat. Decis. Mak. 2016, 13, 16–20. [Google Scholar]
- Du, J.-G.; Wang, Y.; Zhao, A.-W. Study on the effect of smart city construction on urban development and green development. Soft Sci. 2020, 34, 59–64. [Google Scholar]
- Chen, L.; Zhang, H.-X. Evaluation of green smart city in China based on enropy weight-cloud model. J. Syst. Simul. 2019, 31, 136–144. [Google Scholar]
- Zhang, J.-S.; Tan, W. Study on the green total factor productivity in main cities of China. Zb. Rad. Ekon. Fak. Rijeci Cas. Za Ekon. Teor. Praksu 2016, 34, 215–234. [Google Scholar]
- Liu, G.; Wang, B.; Zhang, N. A coin has two sides: Which one is driving China’s green TFP growth? Econ. Syst. 2016, 40, 481–498. [Google Scholar] [CrossRef]
- Huang, X.-L.; Han, X.-F.; Ge, P.-F. Spatial temporal evolution and influence mechanism of green total factor productivity in “Belt and Road” countries. Econ. Manag. 2017, 39, 6–19. [Google Scholar]
- Mitra, A.; Sharma, C. Infrastructure, information & communication technology and firms’ productive performance of the Indian manufacturing. J. Policy Modeling 2016, 38, 353–371. [Google Scholar]
- Ji, X.; Yao, Y.-X.; Long, X.-L. What causes pm2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Xia, F.; Xu, J.-T. Green total factor productivity: A re-examination of quality of growth for provinces in China. China Econ. Rev. 2020, 62, 101454. [Google Scholar] [CrossRef]
- Wang, A.; Lin, W.; Liu, B.; Wang, H.; Xu, H. Does smart city construction improve the green utilization efficiency of urban land? Land 2021, 10, 657. [Google Scholar] [CrossRef]
- Neuman, M.; Smith, S. City planning and infrastructure: Once and future partners. J. Plan. Hist. 2010, 9, 21–42. [Google Scholar] [CrossRef]
- Schomaker, R.-M. Public-private governance regimes in the global sphere. Public Organ. Rev. 2017, 17, 121–138. [Google Scholar] [CrossRef]
- Xu, Z.; Das, D.-K.; Guo, W.; Wei, W.-D. Does power grid infrastructure stimulate regional economic growth? Energy Policy 2021, 155, 112296. [Google Scholar] [CrossRef]
- Yang, K.-Z. New logic of the coordinated development of Beijing, Tianjin and Hebei: Local quality-driven development. Econ. Manag. 2019, 33, 1–3. [Google Scholar]
- Wei, T.; Chen, S.-Q. Dynamic energy and carbon footprints of urban transportation infrastructures: Differentiating between existing and newly-built assets. Appl. Energy 2020, 277, 115554. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.-X.; Ding, Y.-T. Assessing the influence of urban transportation infrastructure construction on haze pollution in China: A case study of Beijing-Tianjin-Hebei region. Environ. Impact Assess. Rev. 2021, 87, 106547. [Google Scholar] [CrossRef]
- Bresson, G.; Etienne, J.-M.; Mohnen, P. How important is innovation? A Bayesian factor-augmented productivity model based on panel data. Macroecon. Dyn. 2016, 20, 1987–2009. [Google Scholar] [CrossRef] [Green Version]
- Piselli, P.; Bronzini, R. Determinants of long-run regional prouctivity: The role of R&D, human capital and public infrastructure. Reg. Sci. Urban Econ. 2009, 39, 187–199. [Google Scholar]
- Kodongo, O.; Ojah, K. Does infrastructure really explain economic growth in Sub-Saharan Africa? Rev. Dev. Financ. 2016, 6, 105–125. [Google Scholar] [CrossRef]
- Agenor, P.-R.; Alpaslan, B. Infrastructure and industrial development with endogenous skill acquisition. Bull. Econ. Res. 2014, 70, 313–334. [Google Scholar] [CrossRef]
- Wang, R.-Z.; Ou, G.-L.; Wang, Q.-P. Can trade liberalization increase total-factor productivity? Based on regulatory effects of traffic infrastructure. J. Beijing Jiao Tong Univ. (Soc. Sci. Ed.) 2019, 18, 38–47. [Google Scholar]
- Huang, Q.-H.; Shi, P.-H.; Hu, J.-F. Industrial agglomeration and high-quality economic development: Examples of 107 prefecture-level cities along the Yangtze River Economic Belt. Reform 2020, 1, 87–99. [Google Scholar]
- Hulten, C.-R.; Bennathan, E.; Srinivasan, S. Infrastructure, externalities, and economic development: A study of the Indian manufacturing industry. World Bank Econ. Rev. 2006, 20, 291–308. [Google Scholar] [CrossRef]
- Sun, X.-H.; Liu, X.-L.; Xu, S. The agglomeration effect of transportation infrastructure and service industry—Comes from the multi-layer linear analysis at the provincial and municipal levels. Adm. Rev. 2017, 29, 214–224. [Google Scholar]
- Abe, K.; Wilson, J.-S. Investing in port infrastructure to lower trade costs in East Asia. East Asian Econ. Rev. 2011, 15, 3–32. [Google Scholar]
- Cao, Y.-Q.; Yang, Y.-L.; Xiang, H. Study on the impact of transportation infrastructure on total factor productivity in the service industry—Based on productive capital stock data. Explor. Econ. Probl. 2021, 4, 37–50. [Google Scholar]
- Zhao, W.; Deng, F.-H.; Huo, W.-D. Trade effect of internet infrastructure in countries along the “Belt and Road”—Mediation effect analysis based on trade cost and total factor productivity. J. Chongqing Univ. (Soc. Sci. Ed.) 2020, 26, 19–33. [Google Scholar]
- Pradhan, R.-P.; Bagchi, T.-P. Effect of transportation infrastructure on economic growth in India: The VECM approach. Res. Transp. Econ. 2013, 38, 139–148. [Google Scholar] [CrossRef]
- Wang, C.; Lim, M.-K.; Zhang, X.-Y.; Zhao, L.-F.; Lee, P.-T.-W. Railway and road infrastructure in the belt and road initiative countries: Estimating the impact of transport infrastructure on economic growth. Transp. Res. Part A Policy Pract. 2020, 134, 288–307. [Google Scholar] [CrossRef]
- Salas-Olmedo, M.-H.; García, P.; Gutiérrez, J. Accessibility and transport infrastructure improvement assessment: The role of borders and multilateral resistance. Transp. Res. Part A 2015, 82, 110–129. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Li, Z. Influence of the opening of high-speed railway on the regional innovation pattern and its mechanism of action. South. Econ. 2020, 5, 49–64. [Google Scholar]
- Liu, J.-G.; Zhang, W.-Z. Spatial spillover association effect of regional total factor productivity in China. Geogr. Sci. 2014, 34, 522–530. [Google Scholar]
- Keller, W. Geographic localization of international technology diffusion. Am. Econ. Rev. 2002, 92, 120–142. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-L. Research on the relationship between green energy use, carbon emissions and economic growth in Henan province. Front. Energy Res. 2021, 9, 701551. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Decoupling economic growth from carbon dioxide emissions in China’s metal industrial sectors: A technological and efficiency perspective. Sci. Total Environ. 2019, 691, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.-J.; Zhang, C.; Han, C.-F. Research on the interactive growth strategies of infrastructure systems and natural ecology. China’s Popul. Resour. Environ. 2018, 28, 44–53. [Google Scholar]
- Puga, D. European regional policies in light of recent location theories. J. Econ. Geogr. 2002, 2, 113–150. [Google Scholar] [CrossRef]
- Xie, J. Infrastructure construction and China regional total factor productivity—Is based on the spatial measurement analysis of 285 prefecture-level cities. Sci. Decis.-Mak. 2018, 4, 71–94. [Google Scholar]
- Sun, C.-W.; Zhang, W.-Y.; Luo, Y.; Xu, Y.-H. The improvement and substitution effect of transportation infrastructure on air quality: An empirical evidence from China’s rail transit construction. Energy Policy 2019, 129, 949–957. [Google Scholar] [CrossRef]
- Liu, H.-J.; Yang, Q. Spatial difference and impact factors of TFP growth in China under resource environment constraints. Manag. Sci. 2014, 27, 133–144. [Google Scholar]
- Kumo, W.-L. Infrastructure investment and economic growth in South Africa: A granger causality analysis. Afr. Dev. Bank Group Work. Pap. Ser. 2012, 160, 505–532. [Google Scholar]
- Jain, D.; Tiwari, G. How the present would have looked like? Impact of non-motorized transport and public transport infrastructure on travel behavior, energy consumption and CO2 emissions—Delhi, Pune and Patna. Sustain. Cities Soc. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.-P.; Zhong, C.-P. Study on the evolution trend and influencing factors of industrial biased technology progress in China. Quant. Econ. Tech. Econ. Res. 2019, 36, 101–119. [Google Scholar]
- Lu, P.; Liu, J.-H.; Wang, Y.-X.; Ruan, L. Can industrial agglomeration improve regional green total factor productivity in China? An empirical analysis based on spatial econometric. Growth Chang. 2021, 52, 1011–1039. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.-Y.; Zhang, J.-P. Estimation of Chinese inter-provincial material capital stock: 1952–2000. Econ. Res. 2004, 10, 35–44. [Google Scholar]
- Yeaple, S.-R.; Golub, S.-S. International productivity differences, infrastructure, and comparative advantage. Rev. Int. Econ. 2007, 15, 223–242. [Google Scholar] [CrossRef]
- Teng, Z.-W. Spatial separation and drivers of green total factor productivity in China’s service industry. Quant. Res. 2020, 37, 23–41. [Google Scholar]
- Zhang, W.-D.; Ding, H.; Shi, D.-Q. Influence of smart city construction on total factor productivity—Based on quasi-natural experiments. Tech. Econ. 2018, 37, 107–114. [Google Scholar]
- Florida, R. The rise of the creative class. Wash. Mon. 2002, 35, 593–596. [Google Scholar]
- Yin, Q.; Li, Z.-W. How innovation overflow affects inter-provincial environmental total factor productivity—Based on DEA-ESDA method. Sci. Technol. Prog. Countermeas. 2019, 36, 45–54. [Google Scholar]
- Zhang, W.; Hu, Y. Effect of innovative human capital on green total factor productivity in Yangtze River Delta—Empirical analysis of space Dubin model. China Popul. Resour. Environ. 2020, 30, 106–120. [Google Scholar]
- Fang, F.-Q.; Tian, G.; Xiao, H. Influence of infrastructure on China economic growth and mechanism research on expansion--Based on barro growth model. Econ. Theory Econ. Manag. 2020, 12, 13–27. [Google Scholar]
- Zhou, W.-W.; Li, X.-P.; Li, J. Space overflow effect of infrastructure construction on whole factor productivity—Based on 271 prefecture-level panels under the background of “One Belt and One Road”. Econ. Probl. Explor. 2020, 6, 64–76. [Google Scholar]
- Thombre, A.; Agarwal, A. A paradigm shift in urban mobility: Policy insights from travel before and after COVID-19 to seize the opportunity. Transp. Policy 2021, 110, 335–353. [Google Scholar] [CrossRef]
- Moore, M.; Gould, P.; Keary, B.-S. Global urbanization and impact on health. Int. J. Hyg. Environ. Health 2003, 206, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.; Rojas-Rueda, D.; Khreis, H.; Cirach, M.; Andrés, D.; Ballester, J.; Bartoll, X.; Daher, C.; Deluca, A.; Echave, C.; et al. Changing the urban design of cities for health: The superblock model. Environ. Int. 2019, 134, 105132. [Google Scholar] [CrossRef] [PubMed]
Indicator | Variable | Unit | Computation Method |
---|---|---|---|
Input indicators | Fixed capital stock | 100 million yuan | Perpetual inventory method |
Labor | 10 thousand people | The number of urban employees at the end of year | |
Electricity consumption | 10 thousand kilowatts | Total electricity consumption | |
Education and technology expenditure | 10 thousand yuan | Financial expenditure on science, technology, and education | |
Output indicators | Regional GDP | 100 million yuan | Regional GDP of the year |
International internet users | 10 thousand people | The number of urban international Internet users | |
Patent application quantity | Part | The number of urban patent application | |
Harmless disposal rate of domestic garbage | % | Percentage of the disposal of harmless garbage | |
Sewage treatment rate | % | Percentage of sewage disposed | |
Greenery coverage of urban area | % | Greening coverage rate in built-up areas of the city | |
Discharge of industrial wastewater | 10 thousand tons | Industrial wastewater discharge volume of the city | |
Industrial smoke and dust emissions | Tons | Industrial smoke and dust emissions’ volume of the city | |
Industrial SO2 emissions | Tons | Industrial SO2 emissions’ volume of the city |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Urban GSDL | Urban GSDL | Urban GSDL | Urban GSDL | Urban GSDL | |
L.GSDL | 0.6251 *** (0.0149) | 0.5861 *** (0.0149) | 0.5571 *** (0.0155) | 0.5561 *** (0.0155) | 0.5557 *** (0.0155) |
lnENER | 0.0533 *** (0.0178) | −0.0693 *** (0.0201) | −0.0830 *** (0.0201) | −0.0832 *** (0.0201) | −0.0838 *** (0.0201) |
lnTRANS | 0.1088 *** (0.0466) | 0.1604 *** (0.0199) | 0.1604 *** (0.0495) | 0.1663 *** (0.0496) | 0.1655 *** (0.0496) |
lnTELE | 0.0783 *** (0.0145) | 0.0232 ** (0.0148) | 0.0233 ** (0.0147) | 0.0229 *** (0.0147) | 0.0219 ** (0.0147) |
lnPGDP | 0.2409 *** (0.0200) | 0.2331 *** (0.0199) | 0.2233 *** (0.0206) | 0.2191 *** (0.0211) | |
STR | 0.1397 *** (0.0227) | 0.1350 *** (0.0228) | 0.1345 *** (0.0228) | ||
HC | 0.0021 * (0.0012) | 0.0022 * (0.0012) | |||
GOVER | 0. 0719 (0.0738) | ||||
CONS | −5.0399 *** (0.3568) | −2.9332 *** (0.3892) | −2.7627 *** (0.3875) | −2.7434 *** (0.3875) | −2.6855 *** (0.3920) |
(1) | (2) | (3) | |
---|---|---|---|
Urban GSDL | Urban GSDL | Urban GSDL | |
L.GSDL | 0.5709 *** (0.0150) | 0.5540 *** (0.0163) | 0.5553 *** (0.0155) |
lnENER | −1.6591 *** (0.1882) | ||
lnENER2 | 0.0589 *** (0.0072) | ||
lnTRANS | −1.3411 *** (0.3899) | ||
lnTRANS2 | 0.0649 *** (0.0220) | ||
lnTELE | −0.4372 ** (0.1893) | ||
lnTELE2 | 0.0184 ** (0.0076) | ||
lnPGDP | 0.3601 *** (0.0207) | 0.3147 *** (0.0203) | 0.2556 *** (0.0181) |
STR | 0.3722 *** (0.0259) | 0.3789 *** (0.0257) | 0.3849 *** (0.0261) |
HC | 0.0003 (0.0013) | 0.0029 ** (0.0013) | 0.0020 (0.0013) |
GOVER | 0.1335 (0.0873) | 0.1007 (0.0881) | 0.0875 (0.0889) |
CONS | 8.4869 *** (1.1943) | 4.1780 ** (1.7588) | 0.5696 (1.1481) |
North China | Northeast China | East China | Central South | Southwest China | Northwest China | |
---|---|---|---|---|---|---|
Urban GSDL | Urban GSDL | Urban GSDL | Urban GSDL | Urban GSDL | Urban GSDL | |
L.GSDL | 0.5385 *** (0.0485) | 0.5081 *** (0.0536) | 0.5255 *** (0.0288) | 0.5628 *** (0.0296) | 0.5153 *** (0.0511) | 0.5952 *** (0.0553) |
lnENER | −0.1223 * (0.0656) | −0.3265 *** (0.0814) | −0.0877 ** (0.0431) | 0.0119 (0.0370) | −0.1007 (0.0634) | −0.1085 ** (0.0468) |
lnTRANS | 0.1929 (0.2006) | 0.1247 (0.2193) | 0.2212 *** (0.0768) | 0.0878 (0.1026) | 0.3315 *** (0.1265) | 0.3249 *** (0.1552) |
lnTELE | −0.0018 (0.0623) | 0.0487 (0.0589) | 0.0331 ** (0.0278) | 0.0192 ** (0.0221) | 0.0604 (0.0447) | 0.0605 (0.0481) |
lnPGDP | 0.2679 *** (0.0900) | 0.2350 *** (0.0797) | 0.1883 ** (0.0404) | 0.1893 *** (0.0370) | 0.1090 *** (0.0353) | 0.1100 * (0.0654) |
STR | −0.0003 (0.0023) | 0.2590 *** (0.0773) | 0.2475 *** (0.0588) | 0.0598 (0.0451) | 0.2112 *** (0.1063) | 0.1721 ** (0.0767) |
HC | −0.0009 (0.0036) | 0.0180 ** (0.0070) | 0.0022 (0.0025) | 0.0038 (0.0021) | 0.0119 *** (0.0046) | −0.0004 (0.0024) |
GOVER | 0.2828 (0.8695) | 0.3113 (0.6601) | 0.1394 (0.0610) | 0.1046 (0.2405) | −0.2219 (0.1697) | 0.2303 (0.4910) |
Time | 2005–2012 Urban GSDL | 2013–2018 Urban GSDL |
---|---|---|
L.GSDL | 0.3281 *** (0.0242) | 0.3845 *** (0.0276) |
lnENER | −0.1152 *** (0.0340) | −0.0590 (0.0375) |
lnTRANS | 0.0935 (0.0681) | 0.2619 ** (0.1104) |
lnTELE | 0.0011 (0.0188) | 0.0602 ** (0.0275) |
lnPGDP | 0.0946 ** (0.0371) | 0.1867 *** (0.0392) |
STR | 0.1080 (0.0728) | 0.1485 *** (0.0313) |
HC | 0.0066 *** (0.0021) | 0.0042 * (0.0026) |
GOVER | 0.1776 (0.1453) | −0.0811 (0.1190) |
CONS | −0.0023 (0.5975) | −3.8485 *** (1.1300) |
Single Threshold | Double Threshold | |||||
---|---|---|---|---|---|---|
Urban GSDL | Urban GSDL | Urban GSDL | Urban GSDL | Urban GSDL | Urban GSDL | |
H0 | No threshold | Has single threshold | ||||
H1 | Has single threshold | Has double threshold | ||||
Threshold value | 588 | 588 | 588 | 198.43 588 | 198.43 588 | 198.43 588 |
F statistics | 137.21 *** | 136.84 *** | 136.69 *** | 125.44 *** | 125.17 *** | 124.01 *** |
p value | 0.023 | 0.026 | 0.036 | 0.2740 | 0.2870 | 0.3800 |
Th−0 | −1.1414 *** (0.0235) | −0.1940 *** (0.0343) | 0.0238 (0.0176) | −0.1697 *** (0.0242) | −0.2584 *** (0.0367) | −0.0143 (0.0120) |
Th−1 | −0.1162 *** (0.0235) | −0.1194 *** (0.0232) | 0.049 *** (0.0178) | −0.1375 *** (0.0234) | −0.2018 *** (0.0342) | 0.0249 (0.0176) |
Th−2 | −0.1131 *** (0.0234) | −0.1678 *** (0.0343) | 0.0504 *** (0.0178) | |||
Conclusion | reject | reject | reject | accept | accept | accept |
lnENER | −0.1361 *** (0.0235) | −0.1360 *** (0.0235) | −0.1378 *** (0.0234) | −0.1364 *** (0.0234) | ||
lnTRANS | −0.1852 *** (0.0342) | −0.1851 *** (0.0342) | −0.2015 *** (0.0343) | −0.2113 *** (0.0347) | ||
lnTELE | 0.0299 * (0.0176) | 0.0296 * (0.0176) | 0.0250 (0.0175) | 0.0249 (0.0175) | ||
lnPGDP | 0.3783 *** (0.0241) | 0.3800 *** (0.0241) | 0.3794 *** (0.0241) | 0.3858 *** (0.0241) | 0.3873 *** (0.0241) | 0.3857 *** (0.0241) |
STR | 0.3927 *** (0.0257) | 0.3929 *** (0.0257) | 0.3928 *** (0.0257) | 0.3880 *** (0.0256) | 0.3886 *** (0.0256) | 0.3877 *** (0.0256) |
HC | 0.0026 ** (0.0013) | 0.0026 ** (0.0013) | 0.0026 ** (0.0013) | 0.0026 ** (0.0013) | 0.0025 * (0.0013) | 0.0030 ** (0.0013) |
GOVER | 0.1120 (0.0875) | 0.1107 (0.0875) | 0.1125 (0.0875) | 0.1116 (0.0871) | 0.1102 (0.0872) | 0.1168 (0.0873) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Wang, D.; Du, J. The Heterogeneous Influence of Infrastructure Construction on China’s Urban Green and Smart Development—The Threshold Effect of Urban Scale. Land 2021, 10, 1015. https://doi.org/10.3390/land10101015
Xu L, Wang D, Du J. The Heterogeneous Influence of Infrastructure Construction on China’s Urban Green and Smart Development—The Threshold Effect of Urban Scale. Land. 2021; 10(10):1015. https://doi.org/10.3390/land10101015
Chicago/Turabian StyleXu, Lingyan, Dandan Wang, and Jianguo Du. 2021. "The Heterogeneous Influence of Infrastructure Construction on China’s Urban Green and Smart Development—The Threshold Effect of Urban Scale" Land 10, no. 10: 1015. https://doi.org/10.3390/land10101015
APA StyleXu, L., Wang, D., & Du, J. (2021). The Heterogeneous Influence of Infrastructure Construction on China’s Urban Green and Smart Development—The Threshold Effect of Urban Scale. Land, 10(10), 1015. https://doi.org/10.3390/land10101015