An Integrated Approach for Source Apportionment and Health Risk Assessment of Heavy Metals in Subtropical Agricultural Soils, Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Absolute Principal Component Score and Multiple Linear Regression
2.4. Positive Definite Matrix Factor Analysis
2.5. Health Risk Assessment
2.6. Statistical Analyses
3. Results and Discussion
3.1. Descriptive Statistics of Heavy Metals in Soil
3.2. Spatial Distribution of Heavy Metals in Soil
3.3. Sources Apportionment of Heavy Metals in Soil
3.3.1. Source Apportionment of APCS-MLR and PMF
3.3.2. Comparison of APCS-MLR and PMF
3.4. Health Risk Assessment of Heavy Metals in Soil
3.4.1. Carcinogenic and Non-Carcinogenic Risk
3.4.2. Health Risk Assessment from Different Sources
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, L.; Chen, R.; Liu, Z.; Chang, S.; Zhao, Y.; Li, L.; Li, R.; Xia, L. Sources of and control measures for PTE pollution in soil at the urban fringe in Weinan, China. Land 2021, 10, 762. [Google Scholar] [CrossRef]
- Xie, M.; Li, H.; Zhu, Y.; Xue, J.; You, Q.; Jin, B.; Shi, Z. Predicting bioaccumulation of potentially toxic element in soil–rice systems using multi-source data and machine learning methods: A case study of an industrial city in southeast China. Land 2021, 10, 558. [Google Scholar] [CrossRef]
- Belon, E.; Boisson, M.; Deportes, I.Z.; Eglin, T.K.; Feix, I.; Bispo, A.O.; Galsomies, L.; Leblond, S.; Guellier, C.R. An inventory of trace elements inputs to French agricultural soils. Sci. Total Environ. 2012, 439, 87–95. [Google Scholar] [CrossRef]
- Wang, F.F.; Guan, Q.Y.; Tian, J.; Lin, J.K.; Yang, Y.Y.; Yang, L.Q.; Pan, N.H. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena 2020, 191, 104573. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Teng, Y.G.; Chen, H.Y.; Wang, Y.Y. A partition computing-based positive matrix factorization (PC–PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2020, 388, 121766. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wu, T.; Jiang, G.; Pu, L.; Zhang, J.; Xu, F.; Yu, H.; Xie, X. Spatial distribution, environmental risk and safe utilization zoning of soil heavy metals in farmland, subtropical China. Land 2021, 10, 569. [Google Scholar] [CrossRef]
- Zheng, H.J.; Liu, Z.; Nie, X.F.; Zuo, J.C.; Wang, L.Y. Comparison of active nitrogen loss in four pathways on a sloped peanut field with red soil in China under conventional fertilization conditions. Sustainability 2019, 11, 6219. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.F.; Pu, L.J.; Zhu, M.; Meadows, M.; Sun, L.C.; Wu, T.; Bu, X.G.; Xu, Y. Differential effects of various reclamation treatments on soil characteristics: An experimental study of newly reclaimed tidal mudflats on the east China coast. Sci. Total Environ. 2021, 768, 144996. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.L.; Liu, X.M.; Xu, J.M.; Selim, H.M. Heavy metal contaminations in a soil-rice system: Identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard. Mater. 2010, 181, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.R.; Ali, S.; Zhang, H.T.; Ouyang, Y.N.; Qiu, B.Y.; Wu, F.B.; Zhang, G.P. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef]
- Cai, L.M.; Xu, Z.C.; Ren, M.Z.; Guo, Q.W.; Hu, X.B.; Hu, G.C.; Wan, H.F.; Peng, P.G. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef]
- Deng, M.; Zhu, Y.; Shao, K.; Zhang, Q.; Shen, J. Metals source apportionment in farmland soil and the prediction of metal transfer in the soil-rice-human chain. J. Environ. Manag. 2020, 260, 110092. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Zhao, Z.Q.; Yuan, Y.; Zhu, P.T.; Li, X.Z.; Guo, A.N.; Yang, Q. Application of modified receptor model for soil heavy metal sources apportionment: A case study of an industrial city, China. Environ. Sci. Pollut. Res. 2019, 26, 16345–16354. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Seijo, A.; Arenas-Lago, D.; Andrade, M.L.; Vega, F.A. Identifying sources of Pb pollution in urban soils by means of MC–ICP–MS and TOF–SIMS. Environ. Sci. Pollut. Res. 2015, 22, 7859–7872. [Google Scholar] [CrossRef]
- Mamut, A.; Eziz, M.; Mohammad, A.; Anayit, M. The spatial distribution, contamination, and ecological risk assessment of heavy metals of farmland soils in Karashahar-Baghrash oasis, northwest China. Hum. Ecol. Risk Assess. 2017, 23, 1300–1314. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef]
- Guan, Q.; Zhao, R.; Pan, N.; Wang, F.; Yang, Y.; Luo, H. Source apportionment of heavy metals in farmland soil of Wuwei, China: Comparison of three receptor models. J. Clean. Prod. 2019, 237, 117792. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Chen, R.H.; Li, J.; Wang, J.S. Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir. Environ. Sci. Pollut. Res. 2016, 23, 15331–15342. [Google Scholar] [CrossRef]
- Huston, R.; Chan, Y.C.; Chapman, H.; Gardner, T.; Shaw, G. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Res. 2012, 46, 1121–1132. [Google Scholar] [CrossRef]
- Duan, Y.X.; Zhang, Y.M.; Li, S.; Fang, Q.L.; Miao, F.F.; Lin, Q.G. An integrated method of health risk assessment based on spatial interpolation and source apportionment. J. Clean. Prod. 2020, 276, 123218. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.P.; Liu, C.; Lu, J.Y.; Qin, Y.H.; Mo, Y.K.; Xiao, P.J.; Liu, Y. Identification of the heavy metal pollution sources in the rhizosphere soil of farmland irrigated by the Yellow River using PMF analysis combined with multiple analysis methods—using Zhongwei City, Ningxia, as an example. Environ. Sci. Pollut. Res. 2020, 27, 16203–16214. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.Y.; Wang, J.X.; Zhou, X.D.; Zhou, Y.J.; Li, Y.; Li, B.J.; Zhou, S.L. Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, southwest China. Environ. Pollut. 2020, 256, 113505. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.C.; Tai, L.Y.; Qiao, Z.; Zhong, L.; Wang, Z.; Fu, K.X.; Chen, G.Y. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China. Sci. Total Environ. 2018, 631–632, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wu, J.; Wang, J.S. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 2016, 144, 1002–1011. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.J.; Liu, Y.; Liu, Z.; Zhang, A.N. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotoxicol. Environ. Saf. 2018, 164, 261–269. [Google Scholar] [CrossRef]
- Zhao, L.S.; Yan, Y.; Yu, R.L.; Hu, G.R.; Cheng, Y.F.; Huang, H.B. Source apportionment and health risks of the bioavailable and residual fractions of heavy metals in the park soils in a coastal city of China using a receptor model combined with Pb isotopes. Catena 2020, 194, 104736. [Google Scholar] [CrossRef]
- Chen, J.L.; Li, R.Y.; Xie, X.J.; Wang, H.; Xu, J.; Shao, J.; Jian, J.; Wuerman, A.; Shen, J.; Yang, Z. Distribution Characteristics and Pollution Evaluation of Heavy Metals in Greenbelt Soils of Nanjing City. Environ. Sci. 2021, 42, 909–916. [Google Scholar]
- Fei, X.F.; Lou, Z.H.; Christakos, G.; Ren, Z.Q.; Liu, Q.M.; Lv, X.N. The association between heavy metal soil pollution and stomach cancer: A case study in Hangzhou City. Environ. Geochem. Hlth. 2018, 40, 2481–2490. [Google Scholar] [CrossRef]
- Shao, S.; Hu, B.F.; Tao, Y.H.; You, Q.H.; Huang, M.X.; Zhou, L.Q.; Chen, Q.X.; Shi, Z. Comprehensive source identification and apportionment analysis of five heavy metals in soils in Wenzhou City, China. Environ. Geochem. Hlth. 2021, 1–24. [Google Scholar] [CrossRef]
- Jaffar, S.T.A.; Chen, L.Z.; Younas, H.; Ahmad, N. Heavy metals pollution assessment in correlation with magnetic susceptibility in topsoils of Shanghai. Environ. Earth Sci. 2017, 76, 7. [Google Scholar] [CrossRef]
- Gan, T.T.; Zhao, N.J.; Yin, G.F.; Ma, M.J.; Meng, D.S.; Fang, L.; Yang, R.F.; Liu, W.Q. A Review on Heavy Metal Pollution of Agricultural Land Soil in the Yangtze River Delta and Relevant Pollution Control Strategy. Chin. Eng. Sci. 2021, 23, 174–184. [Google Scholar]
- Huang, Y.; Li, T.; Wu, C.; He, Z.; Japenga, J.; Deng, M.; Yang, X. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. J. Hazard. Mater. 2015, 299, 540–549. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, K.; Pei, Z.; Meng, F.; Sun, J. Multivariate analysis combined with GIS to source identifification of heavy metals in soils around an abandoned inustrial area, Eastern China. Ecotoxicology 2016, 25, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.S. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ. Pollut. 2019, 24, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.F.; Wu, T.; Zhu, M.; Jiang, J.J.; Xu, Y.; Wang, X.H.; Pu, L.J. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 2021, 120, 106925. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods of Soil and Agricultural Chemistry; Agricultural Science & Technology Press: Beijing, China, 1999. [Google Scholar]
- Pan, L.B.; Ma, J.; Hu, Y.; Su, B.Y.; Fang, G.L.; Wang, Y.; Wang, Z.S.; Wang, L.; Xiang, B. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environ. Sci. Pollut. Res. 2016, 23, 19330–19340. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.H.; Guo, S.T.; Zeng, G.M.; Li, F.; Gu, Y.L.; Shi, Y.H.; Shi, L.X.; Liu, W.C.; Peng, S.Y. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Integrated Risk Information System [R/OL]. 2011. Available online: http://www.epa.gov/iris/index.html (accessed on 7 December 2020).
- Xu, S.J.; Zheng, N.; Liu, J.S.; Wang, Y.; Chang, S.Z. Geochemistry and health risk assessment of arsenic exposure to street dust in the zinc smelting district, Northeast China. Environ. Geochem. Health 2013, 35, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment (MEE). Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (GB15618–2018). 2018. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/W020190626595212456114.pdf (accessed on 25 December 2020).
- Zhang, Y.Y.; Ma, J.; Wei, H.Y.; Shi, T.R. Heavy metals in typical farmland soils of Zhejiang Province: Levels, sources and ecological risks. Ecol. Environ. Sci. 2019, 28, 1233–1241. [Google Scholar]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, S.; Everett, M.; Mc, C.R. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 2003, 29, 563–573. [Google Scholar] [CrossRef]
- Huang, H.B.; Lin, C.Q.; Hu, G.R.; Yu, R.L.; Hao, C.L.; Chen, F.H. Source appointment of heavy metals in agricultural soils of the Jiulong River Basin based on positive matrix factorization. Environ. Sci. 2020, 41, 430–437. [Google Scholar]
- Rachwal, M.; Magieral, T.; Wawer, M. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere 2015, 138, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Feng, C.T.; Zeng, G.M.; Gao, X.; Zhong, M.Z.; Li, X.D.; Li, X.; He, X.Y.; Fang, Y.L. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Choppala, G.; Bolan, N.; Jin, H.P. Chapter two: Chromium contamination and its risk assessment in complex environmental settings. Adv. Agron. 2013, 120, 129–172. [Google Scholar]
- Grezzi, G.; Ayuso, R.A.; De Vivo, B.; Lima, A.; Albanese, S. Lead isotopes in soils and groundwaters as tracers of the impact of human activities on the surface environment: The Domizio-Flegreo Littoral (Italy) case study. J. Geochem. Explor. 2011, 109, 51–58. [Google Scholar] [CrossRef]
- Hu, Y.N.; Cheng, H.F. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large–scale region. Environ. Sci. Technol. 2013, 47, 3752–3760. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Christakos, G.; Guo, M.W.; Xiao, L.; Huang, W. Space-time quantitative source apportionment of soil heavy metal concentration increments. Environ. Pollut. 2017, 223, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Gonzalez, J.M.; Torres–Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jimenez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef]
- Cesari, D.; Amato, F.; Pandolfi, M.; Alastuey, A.; Querol, X.; Contini, D. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environ. Sci. Pollut. Res. 2016, 23, 15133–15148. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Han, G.; Yang, K. Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand. J. Clean. Prod. 2020, 265, 121898. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef]
- Khairy, M.A.; Lohmann, R. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexan-dria, Egypt. Chemosphere 2013, 91, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Stout, S.A.; Graan, T.P. Quantitative source apportionment of PAHs in sediments of little menomonee river, Wisconsin: Weathered creosote versus urban background. Environ. Sci. Technol. 2010, 44, 2932–2939. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.T.; Margenot, A.J.; Wei, X.; Fan, M.M.; Zhang, H.; Best, J.L.; Wu, P.B.; Chen, F.R.; Gao, C. Source apportionment of soil heavy metals in fluvial islands, Anhui section of the lower Yangtze River: Comparison of APCS–MLR and PMF. J. Soil Sediment. 2020, 20, 3380–3393. [Google Scholar] [CrossRef]
- Zhao, H.R.; Xia, B.C.; Fan, C.; Zhao, P.; Shen, S.L. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci. Total Environ. 2012, 417, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.; Moore, F.; Keshavarzi, B.; Hale, B.A. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol. Environ. Saf. 2017, 136, 92–103. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Antoniadis, V.; Kwon, E.; Song, H.; Wang, S.L.; Hseu, Z.Y.; Rinklebe, J. Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt). Environ. Pollut. 2020, 262, 114312. [Google Scholar] [CrossRef] [PubMed]
- DHAenC (Department of Health and Aging and enHealth Council). Environmental health risk assessment: Guidelines for assessing human health risks from environmental hazards. Canberra ACT 2012, 2, 94–95. [Google Scholar]
- Tao, X.Q.; Shen, D.S.; Shentu, J.L.; Long, Y.Y.; Feng, Y.J.; Shen, C.C. Bioaccessibility and health risk of heavy metals in ash from the incineration of different e-waste residues. Environ. Sci. Pollut. Res. 2014, 22, 3558–3569. [Google Scholar] [CrossRef] [PubMed]
- Chabukdhara, M.; Nema, A. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad. India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
pH | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Min | 3.99 | 1.01 | 0.03 | 7.1 | 2.7 | 0.01 | 1.6 | 8.8 | 36.2 |
Max | 8.15 | 25.17 | 0.68 | 217.1 | 97.3 | 2.14 | 131.8 | 59.7 | 226.9 |
Mean | 5.34 | 6.37 | 0.18 | 36.73 | 18.6 | 0.11 | 11.95 | 32.48 | 76.05 |
S.D | 0.78 | 3.67 | 0.1 | 26.49 | 10.47 | 0.16 | 11.78 | 8.31 | 26.15 |
CV (%) | 14.61 | 57.56 | 53.07 | 72.12 | 56.29 | 152.24 | 98.55 | 25.59 | 34.39 |
Zhejiang 1 | — | 9.20 | 0.07 | 52.90 | 17.60 | 0.09 | 24.60 | 23.70 | 70.60 |
China 2 | — | 11.20 | 0.10 | 61.00 | 22.60 | 0.07 | 26.90 | 26.00 | 72.40 |
RSV3 | — | 30.00 | 0.30 | 150.00 | 50.00 | 0.50 | 60.00 | 70.00 | 200.00 |
Elements | Component | |||
---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
As | 0.298 | 0.014 | 0.812 | −0.464 |
Hg | 0.104 | 0.404 | 0.443 | 0.787 |
Cr | 0.892 | −0.285 | 0.056 | 0.018 |
Ni | 0.860 | −0.298 | −0.033 | 0.077 |
Cu | 0.834 | −0.088 | −0.057 | 0.084 |
Zn | 0.644 | 0.395 | −0.384 | −0.075 |
Pb | 0.068 | 0.846 | 0.002 | −0.176 |
Cd | 0.289 | 0.783 | −0.049 | −0.125 |
Models | Source 1 | Source 2 | Source 3 | Source 4 | Source 5 | Cumulative Contribution |
---|---|---|---|---|---|---|
APCS–MLR | Natural sources | Mixed sources | Industrial sources | Atmospheric deposition sources | — | |
43.1% | 27.8% | 15.4% | 13.7% | — | 100% | |
PMF | Natural sources | Agricultural sources | Industrial sources | Atmospheric deposition sources | Traffic sources | |
24.29% | 30.06% | 13.42% | 13.27% | 18.9% | 100% |
Elements | Measured Value (mg kg−1) | APCS-MLR | PMF | ||||
---|---|---|---|---|---|---|---|
R2 | Predicted Value (mg kg−1) | Error (%) | R2 | Predicted Value (mg kg−1) | Error (%) | ||
As | 6.37 | 0.96 | 6.42 | 0.70 | 0.99 | 6.37 | 0.04 |
Cd | 0.18 | 0.72 | 0.18 | 0.05 | 0.81 | 0.18 | 0.01 |
Cr | 36.73 | 0.88 | 36.73 | 0.23 | 0.95 | 35.63 | −0.64 |
Cu | 18.60 | 0.71 | 18.9 | 0.65 | 0.84 | 17.29 | −0.72 |
Hg | 0.11 | 0.99 | 0.11 | 0.17 | 0.99 | 0.11 | 0.00 |
Ni | 11.95 | 0.84 | 12.41 | 0.82 | 0.89 | 11.95 | 0.25 |
Pb | 32.48 | 0.75 | 35.62 | 2.1 | 0.83 | 31.97 | −0.93 |
Zn | 76.05 | 0.72 | 77.53 | 0.86 | 0.85 | 76.53 | 0.61 |
Natural Sources | Agricultural Sources | Industrial Sources | Atmospheric Deposition Sources | Traffic Sources | |||
---|---|---|---|---|---|---|---|
Noncarcinogenic risks | Adult | HIing | 4.88 × 10−3 | 5.01 × 10−3 | 8.81 × 10−3 | 9.29 × 10−4 | 3.94 × 10−3 |
HIinh | 6.94 × 10−5 | 2.81 × 10−5 | 9.57 × 10−6 | 5.07 × 10−6 | 3.98 × 10−6 | ||
HIderm | 2.51 × 10−3 | 1.02 × 10−3 | 5.20 × 10−4 | 2.05 × 10−4 | 4.45 × 10−4 | ||
HI | 7.46 × 10−3 | 6.06 × 10−3 | 9.34 × 10−3 | 1.14 × 10−3 | 4.39 × 10−3 | ||
Risk level | negligible | negligible | negligible | negligible | negligible | ||
Children | HIing | 9.56 × 10−3 | 1.64 × 10−2 | 1.74 × 10−2 | 2.57 × 10−3 | 9.64 × 10−3 | |
HIinh | 2.59 × 10−5 | 1.14 × 10−5 | 3.60 × 10−6 | 1.99 × 10−6 | 1.75 × 10−6 | ||
HIderm | 1.20 × 10−3 | 6.37 × 10−4 | 2.53 × 10−4 | 1.15 × 10−4 | 2.58 × 10−4 | ||
HI | 1.08 × 10−3 | 1.70 × 10−2 | 1.77 × 10−2 | 2.69 × 10−3 | 9.90 × 10−3 | ||
Risk level | negligible | negligible | negligible | negligible | negligible | ||
Carcinogenic risks | Adult | RIing | 0 | 5.48 × 10−6 | 1.02 × 10−5 | 2.70 × 10−7 | 5.61 × 10−7 |
RIinh | 2.34 × 10−7 | 8.65 × 10−8 | 3.63 × 10−8 | 1.45 × 10−8 | 3.05 × 10−10 | ||
RIderm | 0 | 1.33 × 10−7 | 2.83 × 10−7 | 5.26 × 10−9 | 9.79 × 10−9 | ||
HI | 2.34 × 10−7 | 5.70 × 10−6 | 1.05 × 10−5 | 2.90 × 10−7 | 5.71 × 10−7 | ||
Risk level | negligible | Low | Medium | negligible | negligible | ||
Children | RIing | 0 | 4.27 × 10−5 | 7.92 × 10−5 | 2.11 × 10−6 | 4.38 × 10−6 | |
RIinh | 3.50 × 10−7 | 1.29 × 10−7 | 5.43 × 10−8 | 2.17 × 10−8 | 4.56 × 10−10 | ||
RIderm | 0 | 2.55 × 10−7 | 5.42 × 10−7 | 1.01 × 10−8 | 1.88 × 10−8 | ||
HI | 3.50 × 10−7 | 4.31 × 10−5 | 7.98 × 10−5 | 2.14 × 10−6 | 4.40 × 10−6 | ||
Risk level | negligible | Medium | Medium | Low | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Wu, T.; Jiang, G.; Pu, L.; Li, Y.; Zhang, J.; Xu, F.; Xie, X. An Integrated Approach for Source Apportionment and Health Risk Assessment of Heavy Metals in Subtropical Agricultural Soils, Eastern China. Land 2021, 10, 1016. https://doi.org/10.3390/land10101016
Li P, Wu T, Jiang G, Pu L, Li Y, Zhang J, Xu F, Xie X. An Integrated Approach for Source Apportionment and Health Risk Assessment of Heavy Metals in Subtropical Agricultural Soils, Eastern China. Land. 2021; 10(10):1016. https://doi.org/10.3390/land10101016
Chicago/Turabian StyleLi, Ping, Tao Wu, Guojun Jiang, Lijie Pu, Yan Li, Jianzhen Zhang, Fei Xu, and Xuefeng Xie. 2021. "An Integrated Approach for Source Apportionment and Health Risk Assessment of Heavy Metals in Subtropical Agricultural Soils, Eastern China" Land 10, no. 10: 1016. https://doi.org/10.3390/land10101016
APA StyleLi, P., Wu, T., Jiang, G., Pu, L., Li, Y., Zhang, J., Xu, F., & Xie, X. (2021). An Integrated Approach for Source Apportionment and Health Risk Assessment of Heavy Metals in Subtropical Agricultural Soils, Eastern China. Land, 10(10), 1016. https://doi.org/10.3390/land10101016