Effectiveness, Feasibility and Seasonality of Subsewershed Disease Surveillance in Socially and Economically Diverse Areas of Cincinnati, Ohio, in 2023 and 2024; Insights from Laboratory and Rapid Testing Analysis
Abstract
1. Introduction and Background
2. Materials and Methods
2.1. Monitoring Locations
2.2. Wastewater Quality Measurements
2.3. Wastewater Sampling
2.4. Wastewater Sample Processing and Quantification
2.5. Analysis of Viral Concentrations Using GeneXpert System
2.6. Data Reporting and Normalizations
2.7. Clinical and Other Subsewershed Level Data
2.8. Statistical Data Analyses
3. Results
3.1. Overall Wastewater Concentrations and Detection Rates
3.2. Subsewershed Heterogeneity and Comparison to WWTP
3.3. Wastewater Results and Cases Correlations
3.4. Comparison of Laboratory and Rapid Quantification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez-Rodríguez, M.G.; Silva-Lance, F.; Parra-Arroyo, L.; Medina-Salazar, D.A.; Martínez-Ruiz, M.; Melchor-Martínez, E.M.; Martínez-Prado, M.A.; Iqbal, H.M.N.; Parra-Saldívar, R.; Barceló, D.; et al. Biosensors for the detection of disease outbreaks through wastewater-based epidemiology. TrAC Trends Anal. Chem. 2022, 155, 116585. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Gwee, S.X.W.; Ng, J.Q.X.; Lau, N.; Koh, J.; Pang, J. Wastewater surveillance to infer COVID-19 transmission: A systematic review. Sci. Total Environ. 2022, 804, 150060. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Davis, A.; Jones, D.; Lemeshow, S.; Tu, H.; He, F.; Ru, P.; Pan, X.; Bohrerova, Z.; Lee, J. Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United States. Sci. Total Environ. 2021, 801, 149757. [Google Scholar] [CrossRef] [PubMed]
- Amman, F.; Markt, R.; Endler, L.; Hupfauf, S.; Agerer, B.; Schedl, A.; Richter, L.; Zechmeister, M.; Bicher, M.; Heiler, G.; et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat. Biotechnol. 2022, 40, 1814–1822. [Google Scholar] [CrossRef]
- Bar-Or, I.; Indenbaum, V.; Weil, M.; Elul, M.; Levi, N.; Aguvaev, I.; Cohen, Z.; Levy, V.; Azar, R.; Mannasse, B.; et al. National Scale Real-Time Surveillance of SARS-CoV-2 Variants Dynamics by Wastewater Monitoring in Israel. Viruses 2022, 14, 1229. [Google Scholar] [CrossRef]
- Fontenele, R.S.; Kraberger, S.; Hadfield, J.; Driver, E.M.; Bowes, D.; Holland, L.R.A.; Faleye, T.O.C.; Adhikari, S.; Kumar, R.; Inchausti, R.; et al. High-throughput sequencing of SARS-CoV-2 in wastewater provides insights into circulating variants. Water Res. 2021, 205, 117710. [Google Scholar] [CrossRef]
- Matheri, A.N.; Belaid, M.; Njenga, C.K.; Ngila, J.C. Water and wastewater digital surveillance for monitoring and early detection of the COVID-19 hotspot: Industry 4.0. Int. J. Environ. Sci. Technol. 2023, 20, 1095–1112. [Google Scholar] [CrossRef]
- Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef]
- Levy, J.I.; Andersen, K.G.; Knight, R.; Karthikeyan, S. Wastewater surveillance for public health. Science 2023, 379, 26–27. [Google Scholar] [CrossRef]
- Parkins, M.D.; Lee, B.E.; Acosta, N.; Bautista, M.; Hubert, C.R.J.; Hrudey, S.E.; Frankowski, K.; Pang, X.-L. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin. Microbiol. Rev. 2023, 37, e00103-22. [Google Scholar] [CrossRef]
- Bowes, D.A.; Darling, A.; Driver, E.M.; Devrim, K.; Maal-Bared, R.; Lee, L.M.; Goodman, K.; Adhikari, S.; Aggarwal, S.; Bivins, A.; et al. Structured ethical review for wastewater-based testing in support of public health. Environ. Sci. Technol. 2023, 57, 12969–12980. [Google Scholar] [CrossRef]
- Hrudey, S.E.; Silva, D.S.; Shelley, J.; Pons, W.; Isaac-Renton, J.; Chik, A.H.S.; Conant, B. Ethics guidance for environmental scientists engaged in surveillance of wastewater for SARS-CoV-2. Environ. Sci. Technol. 2021, 55, 8484–8491. [Google Scholar] [CrossRef] [PubMed]
- Schmiege, D.; Haselhoff, T.; Thomas, A.; Kraiselburd, I.; Meyer, F.; Moebus, S. Small-scale wastewater-based epidemiology (WBE) for infectious diseases and antibiotic resistance: A scoping review. Int. J. Hyg. Environ. Health 2024, 259, 114379. [Google Scholar] [CrossRef]
- Bowes, D.A.; Driver, E.M.; Kraberger, S.; Fontenele, R.S.; Holland, L.R.A.; Wright, J.; Johnston, B.; Savic, S.; Engstrom Newell, M.; Adhikari, S.; et al. Leveraging an established neighbourhood-level, open access wastewater monitoring network to address public health priorities: A population-based study. Lancet Microbe 2023, 4, e29–e37. [Google Scholar] [CrossRef]
- Schmiege, D.; Kraiselburd, I.; Haselhoff, T.; Thomas, A.; Doerr, A.; Gosch, J.; Schoth, J.; Teichgräber, B.; Moebus, S.; Meyer, F. Analyzing community wastewater in sub-sewersheds for the small-scale detection of SARS-CoV-2 variants in a German metropolitan area. Sci. Total Environ. 2023, 898, 165458. [Google Scholar] [CrossRef]
- Yaniv, K.; Shagan, M.; Lewis, Y.E.; Kramarsky-Winter, E.; Weil, M.; Indenbaum, V.; Elul, M.; Erster, O.; Brown, A.S.; Mendelson, E.; et al. City-level SARS-CoV-2 sewage surveillance. Chemosphere 2021, 283, 131194. [Google Scholar] [CrossRef]
- Barrios, R.E.; Lim, C.; Kelley, M.S.; Li, X. SARS-CoV-2 concentrations in a wastewater collection system indicated potential COVID-19 hotspots at the zip code level. Sci. Total Environ. 2021, 800, 149480. [Google Scholar] [CrossRef] [PubMed]
- Haak, L.; Delic, B.; Li, L.; Guarin, T.; Mazurowski, L.; Dastjerdi, N.G.; Dewan, A.; Pagilla, K. Spatial and temporal variability and data bias in wastewater surveillance of SARS-CoV-2 in a sewer system. Sci. Total Environ. 2022, 805, 150390. [Google Scholar] [CrossRef]
- Oh, C.; Zhou, A.; O’Brien, K.; Jamal, Y.; Wennerdahl, H.; Schmidt, A.R.; Shisler, J.L.; Jutla, A.; Keefer, L.; Brown, W.M.; et al. Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations. Sci. Total Environ. 2022, 852, 158448. [Google Scholar] [CrossRef] [PubMed]
- Quoc, N.B.; Saingam, P.; RedCorn, R.; Carter, J.A.; Jain, T.; Candry, P.; Gattuso, M.; Huang, M.L.W.; Greninger, A.L.; Meschke, J.S.; et al. Case study: Impact of diurnal variations and stormwater dilution on SARS-CoV-2 RNA signal intensity at neighborhood scale wastewater pumping stations. ACS ES&T Water 2022, 2, 1964–1975. [Google Scholar] [CrossRef]
- Rios, G.; Lacoux, C.; Leclercq, V.; Diamant, A.; Lebrigand, K.; Lazuka, A.; Soyeux, E.; Lacroix, S.; Fassy, J.; Couesnon, A.; et al. Monitoring SARS-CoV-2 variants alterations in Nice neighborhoods by wastewater nanopore sequencing. Lancet Reg. Health Eur. 2021, 10, 100202. [Google Scholar] [CrossRef]
- Saguti, F.; Magnil, E.; Enache, L.; Churqui, M.P.; Johansson, A.; Lumley, D.; Davidsson, F.; Dotevall, L.; Mattsson, A.; Trybala, E.; et al. Surveillance of wastewater revealed peaks of SARS-CoV-2 preceding those of hospitalized patients with COVID-19. Water Res. 2021, 189, 116620. [Google Scholar] [CrossRef]
- Saingam, P.; Li, B.; Nguyen Quoc, B.; Jain, T.; Bryan, A.; Winkler, M.K.H. Wastewater surveillance of SARS-CoV-2 at intra-city level demonstrated high resolution in tracking COVID-19 and calibration using chemical indicators. Sci. Total Environ. 2023, 866, 161467. [Google Scholar] [CrossRef]
- Saingam, P.; Jain, T.; Woicik, A.; Li, B.; Candry, P.; Redcorn, R.; Wang, S.; Himmelfarb, J.; Bryan, A.; Winkler, M.K.H. Integrating socio-economic vulnerability factors improves neighborhood-scale wastewater-based epidemiology for public health applications. Water Res. 2024, 254, 121415. [Google Scholar] [CrossRef]
- Wannigama, D.L.; Amarasiri, M.; Hongsing, P.; Hurst, C.; Modchang, C.; Chadsuthi, S.; Anupong, S.; Phattharapornjaroen, P.; Ali, A.H.; Fernandez, S.; et al. COVID-19 monitoring with sparse sampling of sewered and non-sewered wastewater in urban and rural communities. iScience 2023, 26, 107019. [Google Scholar] [CrossRef]
- Acosta, N.; Bautista, M.A.; Waddell, B.J.; McCalder, J.; Beaudet, A.B.; Man, L.; Pradhan, P.; Sedaghat, N.; Papparis, C.; Bacanu, A.; et al. Longitudinal SARS-CoV-2 RNA wastewater monitoring across a range of scales correlates with total and regional COVID-19 burden in a well-defined urban population. Water Res. 2022, 220, 118611. [Google Scholar] [CrossRef]
- Baldwin, W.M.; Dayton, R.D.; Bivins, A.W.; Scott, R.S.; Yurochko, A.D.; Vanchiere, J.A.; Davis, T.; Arnold, C.L.; Asuncion, J.E.T.; Bhuiyan, M.A.N.; et al. Highly socially vulnerable communities exhibit disproportionately increased viral loads as measured in community wastewater. Environ. Res. 2023, 222, 115351. [Google Scholar] [CrossRef]
- Mota, C.R.; Bressani-Ribeiro, T.; Araújo, J.C.; Leal, C.D.; Leroy-Freitas, D.; Machado, E.C.; Espinosa, M.F.; Fernandes, L.; Leão, T.L.; Chamhum-Silva, L.; et al. Assessing spatial distribution of COVID-19 prevalence in Brazil using decentralised sewage monitoring. Water Res. 2021, 202, 117388. [Google Scholar] [CrossRef]
- Pardo-Figueroa, B.; Mindreau-Ganoza, E.; Reyes-Calderon, A.; Yufra, S.P.; Solorzano-Ortiz, I.M.; Donayre-Torres, A.J.; Antonini, C.; Renom, J.M.; Quispe, A.M.; Mota, C.R.; et al. Spatiotemporal Surveillance of SARS-CoV-2 in the Sewage of Three Major Urban Areas in Peru: Generating Valuable Data Where Clinical Testing Is Extremely Limited. ACS ES&T Water 2022, 2, 2144–2157. [Google Scholar] [CrossRef]
- Nelson, J.R.; Lu, A.; Maestre, J.P.; Palmer, E.J.; Jarma, D.; Kinney, K.A.; Grubesic, T.H.; Kirisits, M.J. Space-time analysis of COVID-19 cases and SARS-CoV-2 wastewater loading: A geodemographic perspective. Spat. Spatio-Temporal Epidemiol. 2022, 42, 100521. [Google Scholar] [CrossRef]
- Shi, B.; Catsamas, S.; Kolotelo, P.; Wang, M.; Lintern, A.; Jovanovic, D.; Bach, P.M.; Deletic, A.; McCarthy, D.T. A Low-Cost Water Depth and Electrical Conductivity Sensor for Detecting Inputs into Urban Stormwater Networks. Sensors 2021, 21, 3056. [Google Scholar] [CrossRef]
- Servello, D.; Chalasani, P.; Leasure, E.; LeMaster, K.D.; Kellar, J.; Stiverson, J.; White, M.; Bohrerova, Z. Identification of Statewide Hotspots for Respiratory Disease Targets Using Wastewater Monitoring Data. Trop. Med. Infect. Dis. 2025, 10, 241. [Google Scholar] [CrossRef]
- Muralidharan, A.; Olson, R.; Bess, C.W.; Bischel, H.N. Equity-centered adaptive sampling in sub-sewershed wastewater surveillance using census data. Environ. Sci. Water Res. Technol. 2024, 11, 136–151. [Google Scholar] [CrossRef]
- Cohen, A.; Maile-Moskowitz, A.; Grubb, C.; Gonzalez, R.A.; Ceci, A.; Darling, A.; Hungerford, L.; Fricker, R.D., Jr.; Finkielstein, C.V.; Pruden, A.; et al. Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case Data. ACS ES&T Water 2022, 2, 2047–2059. [Google Scholar] [CrossRef] [PubMed]
- Zdenkova, K.; Bartackova, J.; Cermakova, E.; Demnerova, K.; Dostalkova, A.; Janda, V.; Jarkovsky, J.; Lopez Marin, M.A.; Novakova, Z.; Rumlova, M.; et al. Monitoring COVID-19 spread in Prague local neighborhoods based on the presence of SARS-CoV-2 RNA in wastewater collected throughout the sewer network. Water Res. 2022, 216, 118343. [Google Scholar] [CrossRef]
- Starke, J.C.; Bell, N.S.; Martinez, C.M.; Friberg, I.K.; Lawley, C.; Sriskantharajah, V.; Hirschberg, D.L. Measuring SARS-CoV-2 RNA concentrations in neighborhood wastewater. Sci. Total Environ. 2024, 926, 172021. [Google Scholar] [CrossRef]
- Li, Y.; Miyani, B.; Zhao, L.; Spooner, M.; Gentry, Z.; Zou, Y.; Rhodes, G.; Li, H.; Kaye, A.; Norton, J.; et al. Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. Sci. Total Environ. 2022, 851, 158350. [Google Scholar] [CrossRef]
- Yeager, R.; Holm, R.H.; Saurabh, K.; Fuqua, J.L.; Talley, D.; Bhatnagar, A.; Smith, T. Wastewater Sample Site Selection to Estimate Geographically Resolved Community Prevalence of COVID-19: A Sampling Protocol Perspective. GeoHealth 2021, 5, e2021GH000420. [Google Scholar] [CrossRef]
- Layton, B.A.; Kaya, D.; Kelly, C.; Williamson, K.J.; Alegre, D.; Bachhuber, S.M.; Banwarth, P.G.; Bethel, J.W.; Carter, K.; Dalziel, B.D.; et al. Evaluation of a Wastewater-Based Epidemiological Approach to Estimate the Prevalence of SARS-CoV-2 Infections and the Detection of Viral Variants in Disparate Oregon Communities at City and Neighborhood Scales. Environ. Health Perspect. 2022, 130, 67010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Greenwald, H.D.; Kennedy, L.C.; Hinkle, A.; Whitney, O.N.; Fan, V.B.; Crits-Christoph, A.; Harris-Lovett, S.; Flamholz, A.I.; Al-Shayeb, B.; Liao, L.D.; et al. Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area. Water Res. X 2021, 12, 100111. [Google Scholar] [CrossRef]
- Center for Clinical and Translational Science and Training (CCTST). Greater Cincinnati COVID-19 Situational Awareness. 2023. Available online: https://www.cctst.org/pandemic-dashboard (accessed on 12 October 2025).
- Leidman, E.; Duca, L.M.; Omura, J.D.; Proia, K.; Stephens, J.W.; Sauber-Schatz, E.K. COVID-19 Trends Among Persons Aged 0–24 Years—United States, 1 March 1–12 December 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 88–94. [Google Scholar] [CrossRef]
- Yoshida, M.; Worlock, K.B.; Huang, N.; Lindeboom, R.G.H.; Butler, C.R.; Kumasaka, N.; Dominguez Conde, C.; Mamanova, L.; Bolt, L.; Richardson, L.; et al. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature 2021, 602, 321–327. [Google Scholar] [CrossRef]
- Li, W.T.; Zhang, Y.; Liu, M.; Liu, Y.Q.; Ma, X. Prolonged viral shedding in feces of children with COVID-19: A systematic review and synthesis of data. Eur. J. Pediatr. 2022, 181, 4011–4017. [Google Scholar] [CrossRef]
- Nagarkar, M.; Keely, S.P.; Jahne, M.; Wheaton, E.; Hart, C.; Smith, B.; Garland, J.; Varughese, E.A.; Braam, A.; Wiechman, B.; et al. SARS-CoV-2 monitoring at three sewersheds of different scales and complexity demonstrates distinctive relationships between wastewater measurements and COVID-19 case data. Sci. Total Environ. 2022, 816, 151534. [Google Scholar] [CrossRef]
- Amoah, I.D.; Abunama, T.; Awolusi, O.O.; Pillay, L.; Pillay, K.; Kumari, S.; Bux, F. Effect of selected wastewater characteristics on estimation of SARS-CoV-2 viral load in wastewater. Sci. Total Environ. 2022, 203, 111877. [Google Scholar] [CrossRef]
- Varbanov, M.; Bertrand, I.; Philippot, S.; Retourney, C.; Gardette, M.; Hartard, C.; Jeulin, H.; Duval, R.E.; Loret, J.F.; Schvoerer, E.; et al. Somatic coliphages are conservative indicators of SARS-CoV-2 inactivation during heat and alkaline pH treatments. Sci. Total Environ. 2021, 797, 149112. [Google Scholar] [CrossRef]







| Subsewersheds | ||||
|---|---|---|---|---|
| Parameters | A | B | C | D |
| Area characteristics | Residential/Industrial | Residential | Residential | Residential/Commercial |
| Kando population estimate | 17,170 | 13,830 | 6501 | 23,043 |
| MSD/RJN Flow estimate (MGD) | 15 | 0.8 | 0.3 | 1.5 |
| Overall SVI | 0.76 | 0.24 | 0.93 | 0.94 |
| Hospitals/Nursing homes | 2/2 | 0/5 | 0/0 | 0/2 |
| Age characteristics (<18 year, %) | 26 | 18 | 52 | 28 |
| Age characteristics (>65 year, %) | 36 | 25 | 16 | 14 |
| Race, ethnicity (% Black/White/Hispanic) | 87/7/3 | 4/86/4 | 80/9/5 | 30/56/8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Servello, D.; Korach-Rechtman, H.; Bessler, S.M.; Partridge, D.; Turner, C.; White, M.; Bohrerova, Z.; Stiverson, J.; Chalasani, P.; Kellar, J.; et al. Effectiveness, Feasibility and Seasonality of Subsewershed Disease Surveillance in Socially and Economically Diverse Areas of Cincinnati, Ohio, in 2023 and 2024; Insights from Laboratory and Rapid Testing Analysis. Water 2026, 18, 158. https://doi.org/10.3390/w18020158
Servello D, Korach-Rechtman H, Bessler SM, Partridge D, Turner C, White M, Bohrerova Z, Stiverson J, Chalasani P, Kellar J, et al. Effectiveness, Feasibility and Seasonality of Subsewershed Disease Surveillance in Socially and Economically Diverse Areas of Cincinnati, Ohio, in 2023 and 2024; Insights from Laboratory and Rapid Testing Analysis. Water. 2026; 18(2):158. https://doi.org/10.3390/w18020158
Chicago/Turabian StyleServello, Dustin, Hila Korach-Rechtman, Scott M. Bessler, David Partridge, Carrie Turner, Michelle White, Zuzana Bohrerova, Jill Stiverson, Purnima Chalasani, Justin Kellar, and et al. 2026. "Effectiveness, Feasibility and Seasonality of Subsewershed Disease Surveillance in Socially and Economically Diverse Areas of Cincinnati, Ohio, in 2023 and 2024; Insights from Laboratory and Rapid Testing Analysis" Water 18, no. 2: 158. https://doi.org/10.3390/w18020158
APA StyleServello, D., Korach-Rechtman, H., Bessler, S. M., Partridge, D., Turner, C., White, M., Bohrerova, Z., Stiverson, J., Chalasani, P., Kellar, J., Leasure, E., Haubner, S., Rehman, S., Wright, K., & Amin, M. (2026). Effectiveness, Feasibility and Seasonality of Subsewershed Disease Surveillance in Socially and Economically Diverse Areas of Cincinnati, Ohio, in 2023 and 2024; Insights from Laboratory and Rapid Testing Analysis. Water, 18(2), 158. https://doi.org/10.3390/w18020158

