Wastewater Surveillance for Benzodiazepines in Wuhu, China: Occurrence, Removal, and Consumption Patterns
Abstract
:1. Introduction
2. Material and Methods
2.1. Standards and Reagents
2.2. Collection of Wastewater Samples
2.3. Sample Preparation and Analysis
2.4. Quality Assurance and Quality Control
2.5. WBE Estimation and Statistical Analysis
3. Results and Discussion
3.1. Occurrence of Benzodiazepines and Metabolites in Wastewater
3.2. Temporal and Spatial Variations of BZD Consumption in Wuhu
3.3. Comparison of BZD Consumption with Other WBE Studies and Data Source
3.4. Uncertainty Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, R.J.; Hu, Q.Z.; Jin, J.X.; Han, J.; Wang, X.H. Analysis of the use of second-class psychotropic drugs in Tianjin Anding Hospital from 2021 to 2023. Mod. Drugs Clin. 2024, 39, 471–476. [Google Scholar]
- Weng, L.L.; Chen, J.Y.; Shi, T.T.; Ye, Y.R. Analysis of the use of second-class psychotropic drugs in the inpatient pharmacy of a hospital from 2020 to 2022. China Med. Pharm. 2023, 13, 126–130. [Google Scholar]
- Zhang, H.; Zhang, W.H.; Su, Z.H. Current status of benzodiazepine use. Chin. J. Drug Abus. Prev. Treat. 2020, 26, 131–136. [Google Scholar]
- Nguyen, T.; Meille, G.; Buchmueller, T. Mandatory prescription drug monitoring programs and overlapping prescriptions of opioids and benzodiazepines: Evidence from Kentucky. Drug Alcohol Depend. 2023, 243, 109759. [Google Scholar] [CrossRef]
- Liang, D.; Shi, Y. Prescription drug monitoring programs and drug overdose deaths involving benzodiazepines and prescription opioids. Drug Alcohol Rev. 2019, 38, 494–502. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction. New Benzodiazepines in Europe—A Review; EMCDDA: Luxembourg, 2021. [Google Scholar]
- Maust, D.T.; Bohnert, A.S.B.; Strominger, J.; Goldstick, J.E. Prescription characteristics associated with drug overdose risk among adults prescribed benzodiazepines: A cohort study. BMC Pharmacol. Toxicol. 2023, 24, 34. [Google Scholar] [CrossRef]
- Wang, Y.H. Difficulties and countermeasures in preventing the use of date rape drugs in sexual assault crimes. West. Acad. J. 2023, 47–52. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, X.H. Judicial identification of illegal trafficking of narcotic and psychotropic drugs. Chin. Prosec. 2022, 29–33. Available online: https://kns.cnki.net/kcms2/article/abstract?v=cwBM1amFwwPpTf0L5NHscBuRMcen_Ard0CSsGzAD0f8MeVScUPjWblEuhhFYoDKsUOl6iEETZioi-VL8e3AGweLptM7FMjojaLI1C7-L-j1Z-rHsE_erkyr8QlGvlPZfQD3Tu9TFBKArtP4r4REMxMTwbj3EbGi3g7hOZRwisU5_ruM3PjimmA==&uniplatform=NZKPT&language=CHS (accessed on 1 March 2025).
- Kosjek, T.; Perko, S.; Zupanc, M.; Zanoški Hren, M.; Landeka Dragičević, T.; Žigon, D.; Kompare, B.; Heath, E. Environmental occurrence, fate and transformation of benzodiazepines in water treatment. Water Res. 2012, 46, 355–368. [Google Scholar] [CrossRef]
- Baker, D.R.; Kasprzyk-Hordern, B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Sci. Total Environ. 2013, 454–455, 422–456. [Google Scholar] [CrossRef]
- Rice, J.; Kannan, A.M.; Castrignanό, E.; Jagadeesan, K.; Kasprzyk-Horden, B. Wastewater-based Epidemiology combined with local prescription analysis as a tool for temporalmonitoring of drugs trends—A UK perspective. Sci. Total Environ. 2020, 735, 139433. [Google Scholar] [CrossRef] [PubMed]
- Mackuľak, T.; Birošová, L.; Gál, M.; Bodík, I.; Grabic, R.; Ryba, J.; Škubák, J. Wastewater analysis: The mean of the monitoring of frequently prescribed pharmaceuticals in Slovakia. Environ. Monit. Assess. 2016, 188, 18. [Google Scholar] [CrossRef] [PubMed]
- Subedi, B.; Balakrishna, K.; Sinha, R.K.; Yammasshita, N.; Balasubramanian, V.G.; Kannan, K. Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. J. Environ. Chem. Eng. 2015, 3, 2882–2891. [Google Scholar] [CrossRef]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef]
- Cunha, D.L.; De Araujo, F.G.; Marques, M. Psychoactive drugs: Occurrence in aquatic environment, analytical methods, and ecotoxicity—A review. Environ. Sci. Pollut. Res. Int. 2017, 24, 24076–24091. [Google Scholar] [CrossRef]
- Daughton, C.G. Illicit Drugs in Municipal Sewage. In Pharmaceuticals and Care Products in the Environment; ACS Symposium Series 791; American Chemical Society: Washington, DC, USA, 2001; pp. 348–364. [Google Scholar]
- Du, P.; Li, K.; Li, J.; Xu, Z.; Fu, X.; Yang, J.; Zhang, H.; Li, X. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res. 2015, 84, 76–84. [Google Scholar] [CrossRef]
- European Monitoring Centre for Drugs and Drug Addiction. Wastewater Analysis and Drugs: A European Multicity Study; EMCDDA: Luxembourg, 2021. [Google Scholar]
- Bretteville-Jensen, A.L.; Amundsen, E.J.; Mounteney, J. Key Interpretation Challenges for Wastewater-Based Epidemiology of Illicit Drugs: A Norwegian Three-City Case Study. Eur. Addict. Res. 2022, 28, 436–445. [Google Scholar] [CrossRef]
- Bijlsma, L.; Celma, A.; Castiglioni, S.; Salgueiro-González, N.; Bou-Iserte, L.; Baz-Lomba, J.; Reid, M.; Dias, M.; Lopes, A.; Matias, J.; et al. Monitoring psychoactive substance use at six European festivals through wastewater and pooled urine analysis. Sci. Total Environ. 2020, 725, 138376. [Google Scholar] [CrossRef]
- Boogaerts, T.; Jurgelaitiene, L.; Dumitrascu, C.; Kasprzyk-Hordern, B.; Kannan, A.; Been, F.; Emke, E.; de Voogt, P.; Covaci, A.; van Nuijs, A.L. Application of wastewater-based epidemiology to investigate stimulant drug, alcohol and tobacco use in Lithuanian communities. Sci. Total Environ. 2021, 777, 145914. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, Q.; Lai, F.Y.; Gartner, C.; Du, P.; Ren, Y.; Li, X.; Wang, D.; Mueller, J.F.; Thai, P.K. Using wastewater-based epidemiology to estimate consumption of alcohol and nicotine in major cities of China in 2014 and 2016. Environ. Int. 2020, 136, 105492. [Google Scholar] [CrossRef]
- Du, P.; Zhou, Z.; Wang, Z.; Xu, Z.; Zheng, Q.; Li, X.; He, J.; Li, X.; Cheng, H.; Thai, P.K. Analyzing wastewater to estimate fentanyl and tramadol use in major Chinese cities. Sci. Total Environ. 2021, 795, 148838. [Google Scholar] [CrossRef] [PubMed]
- Kamika, I.; Azizi, S.; Muleja, A.A.; Selvarajan, R.; El-Liethy, M.A.; Mamba, B.B.; Nkambule, T.T. The occurrence of opioid compounds in wastewater treatment plants and their receiving water bodies in Gauteng province, South Africa. Environ. Pollut. 2021, 290, 118048. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Han, S.; Wang, Y.; Du, P.; Li, X.; Thai, P.K. Significant difference in usage of antibiotics in three Chinese cities measured by wastewater-based epidemiology. Water Res. 2024, 254, 121335. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, M.; Du, P.; Li, X. Wastewater surveillance for antibiotics and resistance genes in a river catchment: Spatiotemporal variations and the main drivers. Water Res. 2024, 251, 121090. [Google Scholar] [CrossRef]
- Zhang, L.; Du, P.; Zheng, Q.; Zhao, M.; Zhang, R.; Wang, Z.; Xu, Z.; Li, X.; Thai, P.K. Exposure to smoking and greenspace are associated with allergy medicine use—A study of wastewater in 28 cities of China. Environ. Int. 2025, 196, 109291. [Google Scholar] [CrossRef]
- Lei, H.-J.; Yang, B.; Ye, P.; Yang, Y.-Y.; Zhao, J.-L.; Liu, Y.-S.; Xie, L.; Ying, G.-G. Occurrence, fate and mass loading of benzodiazepines and their transformation products in eleven wastewater treatment plants in Guangdong province, China. Sci. Total Environ. 2021, 755, 142648. [Google Scholar] [CrossRef]
- Wang, C.; Hou, L.; Li, J.; Xu, Z.; Gao, T.; Yang, J.; Zhang, H.; Li, X.; Du, P. Occurrence of diazepam and its metabolites in wastewater and surface waters in Beijing. Environ. Sci. Pollut. Res. 2017, 24, 15379–15389. [Google Scholar] [CrossRef]
- Khezami, F.; Gómez-Navarro, O.; Barbieri, M.V.; Khiari, N.; Chkirbene, A.; Chiron, S.; Khadhar, S.; Pérez, S. Occurrence of contaminants of emerging concern and pesticides and relative risk assessment in Tunisian groundwater. Sci. Total Environ. 2024, 906, 167319. [Google Scholar] [CrossRef]
- Lei, H.; Yao, K.; Yang, B.; Xie, L.; Ying, G. Occurrence, spatial and seasonal variation, and environmental risk of pharmaceutically active compounds in the Pearl River basin, South China. Front. Environ. Sci. Eng. 2022, 17, 46. [Google Scholar] [CrossRef]
- Baker, D.R.; Barron, L.; Kasprzyk-Hordern, B. Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part A: Chemical analysis and drug use estimates. Sci. Total Environ. 2014, 487, 629–641. [Google Scholar]
- Gracia-Lor, E.; Pérez-Valenciano, A.; De Oro-Carretero, P.; Ramírez-García, J.; Martín-Gutiérrez Ma, J. Consumption of illicit drugs and benzodiazepines in six Spanish cities during different periods of the COVID-19 pandemic. Sci. Total Environ. 2024, 935, 173356. [Google Scholar] [CrossRef] [PubMed]
- Rousis, N.; Bade, R.; Romero-Sánchez, I.; Mueller, J.F.; Thomaidis, N.S.; Thomas, K.V.; Gracia-Lor, E. Festival following the easing of COVID-19 restrictions: Prevalence of new psychoactive substances and illicit drugs. Environ. Int. 2023, 178, 108075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Zhang, J.; Yang, Y.; Shen, F.; Shen, J.; Shao, B. Determination of emerging chlorinated byproducts of diazepam in drinking water. Chemosphere 2019, 218, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, L.R.; Zhao, M.L.; Zhang, X.; Hao, F.H.; Li, X.Q.; Du, P. Optimization and application of analytical methods for benzodiazepines and their novel designer drugs in domestic wastewater. Res. Environ. Sci. 2023, 1–11. [Google Scholar] [CrossRef]
- Hildebrand, M.; Hellstern, A.; Hümpel, M.; Hellenbrecht, D.; Saller, R. Plasma levels and urinary excretion of lormetazepam in patients with liver cirrhosis and in healthy volunteers. Eur. J. Drug Metab. Pharmacokinet. 1990, 15, 19–26. [Google Scholar] [CrossRef]
- Elliott, H.W. Metabolism of Lorazepam. Br. J. Anaesth. 1976, 48, 1017–1023. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Hu, A.; Rashid, A.; Ashfaq, M.; Wang, Y.; Wang, H.; Luo, H.; Yu, C.-P.; Sun, Q. Monitoring, mass balance and fate of pharmaceuticals and personal care products in seven wastewater treatment plants in Xiamen City, China. J. Hazard. Mater. 2018, 354, 81–90. [Google Scholar] [CrossRef]
- Du, B.; Price, A.E.; Scott, W.C.; Kristofco, L.A.; Ramirez, A.J.; Chambliss, C.K.; Yelderman, J.C.; Brooks, B.W. Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent. Sci. Total Environ. 2014, 466–467, 976–984. [Google Scholar] [CrossRef]
- Estrada-Arriaga, E.B.; Cortés-Muñoz, J.E.; González-Herrera, A.; Calderón-Mólgora, C.G.; Rivera-Huerta, M.d.L.; Ramírez-Camperos, E.; Montellano-Palacios, L.; Gelover-Santiago, S.L.; Pérez-Castrejón, S.; Cardoso-Vigueros, L.; et al. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico. Sci. Total Environ. 2016, 571, 1172–1182. [Google Scholar] [CrossRef]
- Wu, M.; Xiang, J.; Que, C.; Chen, F.; Xu, G. Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China. Chemosphere 2015, 138, 486–493. [Google Scholar] [CrossRef]
- Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 2020, 144, 106004. [Google Scholar] [CrossRef] [PubMed]
- Mastroianni, N.; López-García, E.; Postigo, C.; Barceló, D.; López de Alda, M. Five-year monitoring of 19 illicit and legal substances of abuse at the inlet of a wastewater treatment plant in Barcelona (NE Spain) and estimation of drug consumption patterns and trends. Sci. Total Environ. 2017, 609, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Subedi, B.; Balakrishna, K.; Joshua, D.I.; Kannan, K. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 2017, 167, 429–437. [Google Scholar] [CrossRef]
- You, W.-D.; Ye, P.; Yang, B.; Luo, X.; Fang, J.; Mai, Z.-T.; Sun, J.-L. Degradation of 17 Benzodiazepines by UV/H2O2 Treatment. Front. Environ. Sci. 2021, 9, 764841. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manag. 2016, 182, 620–640. [Google Scholar] [CrossRef]
- Shan, W.; Peng, X.; Tan, W.; Zhou, Z.; Xie, H.; Wang, S. Prevalence of insomnia and associations with depression, anxiety among adults in Guangdong, China: A large-scale cross-sectional study. Sleep Med. 2024, 115, 39–47. [Google Scholar] [CrossRef]
- Cao, B.; Chen, Y.; McIntyre, R.S. Comprehensive review of the current literature on impact of ambient air pollution and sleep quality. Sleep Med. 2021, 79, 211–219. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhang, Q.X. On the application effect of psychological counseling in the diagnosis and treatment of insomnia. Psychol. Mon. 2021, 16, 217–218+23. [Google Scholar]
- Yang, Y.; Liu, X.; Liu, Z.-Z.; Tein, J.-Y.; Jia, C.-X. Life stress, insomnia, and anxiety/depressive symptoms in adolescents: A three-wave longitudinal study. J. Affect. Disord. 2023, 322, 91–98. [Google Scholar] [CrossRef]
- Hammen, C. Stress and Depression. Annu. Rev. Clin. Psychol. 2005, 1, 293–319. [Google Scholar] [CrossRef]
- Cathomas, F.; Lin, H.Y.; Chan, K.L.; Li, L.; Parise, L.F.; Alvarez, J.; Durand-de Cuttoli, R.; Aubry, A.V.; Muhareb, S.; Desland, F.; et al. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature 2024, 626, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yang, F.; Wang, Y.; Shi, L.; Wang, M.; Yang, D.; Wang, W.; Jia, Y.; So, K.-F.; Zhang, L. Stress increases hepatic release of lipocalin 2 which contributes to anxiety-like behavior in mice. Nat. Commun. 2024, 15, 3034. [Google Scholar] [CrossRef] [PubMed]
- Brunstein Klomek, A.; Marrocco, F.; Kleinman, M.; Schonfeld, I.S.; Gould, M.S. Bullying, Depression, and Suicidality in Adolescents. J. Am. Acad. Child Adolesc. Psychiatry 2007, 46, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Lin, H. Seasonal dynamic analysis of outpatient volume in a mental health center from 2009 to 2018. China Contin. Med. Educ. 2020, 12, 63–66. [Google Scholar]
- Zhang, S.; Chen, X.L.; Wu, Y.; Li, W.F. Analysis of the seasonal patterns in the onset of five common psychiatric disorders. J. Psychiatry 2021, 34, 548–551. [Google Scholar]
- Molin, J.; Mellerup, E.; Bolwig, T.; Scheike, T.; Dam, H. The influence of climate on development of winter depression. J. Affect. Disord. 1996, 37, 151–155. [Google Scholar] [CrossRef]
- Valcárcel, Y.; Alonso, S.G.; Rodríguez-Gil, J.L.; Castaño, A.; Montero, J.C.; Criado-Alvarez, J.J.; Mirón, I.J.; Catalá, M. Seasonal variation of pharmaceutically active compounds in surface (Tagus River) and tap water (Central Spain). Environ. Sci. Pollut. Res. 2012, 20, 1396–1412. [Google Scholar] [CrossRef]
- Mendoza, A.; Rodríguez-Gil, J.; González-Alonso, S.; Mastroianni, N.; de Alda, M.L.; Barceló, D.; Valcárcel, Y. Drugs of abuse and benzodiazepines in the Madrid Region (Central Spain): Seasonal variation in river waters, occurrence in tap water and potential environmental and human risk. Environ. Int. 2014, 70, 76–87. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Wang, R.; Yu, P.P.; Lu, Q.Q.; Qiao, P.P. Analysis of the use of second-class psychotropic drugs in Xicheng Branch of Luohe Central Hospital from 2017 to 2019. Mod. Drugs Clin. 2020, 35, 1709–1713. [Google Scholar]
- Bai, L.Q.; Wang, J. Analysis of the use of estazolam tablets in 10 hospitals in Yunnan Province. Chin. J. Pharmacovigil. 2019, 16, 734–740. [Google Scholar]
- Chu, X.H.; Zhang, X.Y.; Cang, H.Q.; Zhao, L.; Sun, X.H.; Zhang, J.G.; Ni, B.B. Analysis of the use of second-class psychotropic drugs in our hospital outpatient department from 2015 to 2017. J. Taishan Med. Coll. 2019, 40, 676–679. [Google Scholar]
- Tian, Y.J.; Huang, Y.; Rong, Y.M.; Wang, C.G. Risk analysis of the use of narcotic and psychotropic drugs in the outpatient department of a general hospital in Shandong Province. Chin. J. Drug Abus. Prev. Treat. 2021, 27, 633–636. [Google Scholar]
- Zhang, H.B.; Zhang, C.F.; Li, Y.P.; Zhao, X.R.; Liang, L.J.; Gao, Y.S. Analysis of the usage trends of second-class psychotropic drugs in the outpatient department of Zhongshan Third People’s Hospital in 2018. China Pract. Med. 2020, 15, 159–161. [Google Scholar]
- Bade, R.; Ghetia, M.; White, J.M.; Gerber, C. Determination of prescribed and designer benzodiazepines and metabolites in influent wastewater. Anal. Methods 2020, 12, 3637–3644. [Google Scholar] [CrossRef]
- Croft, T.L.; Huffines, R.A.; Pathak, M.; Subedi, B. Prevalence of illicit and prescribed neuropsychiatric drugs in three communities in Kentucky using wastewater-based epidemiology and Monte Carlo simulation for the estimation of associated uncertainties. J. Hazard. Mater. 2020, 384, 121306. [Google Scholar] [CrossRef]
- Adhikari, S.; Kumar, R.; Driver, E.M.; Bowes, D.A.; Ng, K.T.; Sosa-Hernandez, J.E.; Oyervides-Muñoz, M.A.; Melchor-Martínez, E.M.; Martínez-Ruiz, M.; Coronado-Apodaca, K.G.; et al. Occurrence of Z-drugs, benzodiazepines, and ketamine in wastewater in the United States and Mexico during the COVID-19 pandemic. Sci. Total Environ. 2023, 857, 159351. [Google Scholar] [CrossRef]
- Subedi, B.; Kannan, K. Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, US.A. Sci. Total Environ. 2015, 514, 273–280. [Google Scholar] [CrossRef]
- Baz-Lomba, J.A.; Reid, M.J.; Thomas, K.V. Target and suspect screening of psychoactive substances in sewage-based samples by UHPLC-QTO. F. Anal. Chim. Acta 2016, 914, 81–90. [Google Scholar] [CrossRef]
- Ting, T.-T.; Chang, Y.-C.; Chiang, P.-J.; Li, H.-C.; Chen, S.-H.; Chen, P.-C.; Chu, H.-T.; Chuang, P.-Y.; Liu, Y.-H.; Chen, P.-S. Wastewater-based epidemiology to monitor 68 NPS/conventional drug use in Taipei metropolitan area in Taiwan during and after COVID-19 pandemic. J. Hazard. Mater. 2024, 476, 135020. [Google Scholar] [CrossRef]
- Othman, A.A.; Simpson, B.S.; Jaunay, E.L.; White, J.M.; Bade, R.; Gerber, C. A method for improved detection of 8-isoprostaglandin F2α/β and benzodiazepines in wastewater. Sci. Total Environ. 2022, 851, 158061. [Google Scholar] [CrossRef]
- Olive, G.; Rey, E. Pharmacokinetics properties of benzodiazepines. Nouv. Presse Medicale 1982, 11, 2957–2964. [Google Scholar]
- Dawson, G.W.; Jue, S.G.; Brogden, R.N. Alprazolam—A review of its pharmacodynamic properties and efficacy in the treatment of anxiety and depression. Drugs 1984, 27, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Storhaug, L.; Enger, A.; Hjelmeland, K.; Øiestad, E.; Vindenes, V. Prolonged excretion of 7-aminoclonazepam in urine after repeated ingestion of clonazepam: A case report. Forensic Sci. Int. 2012, 222, E33–E35. [Google Scholar] [CrossRef] [PubMed]
- El Balkhi, S.; Chaslot, M.; Picard, N.; Dulaurent, S.; Delage, M.; Mathieu, O.; Saint-Marcoux, F. Characterization and identification of eight designer benzodiazepine metabolites by incubation with human liver microsomes and analysis by a triple quadrupole mass spectrometer. Int. J. Leg. Med. 2017, 131, 979–988. [Google Scholar] [CrossRef]
- Mahon, W.A.; Inaba, T.; Umeda, T.; Tsutsumi, E.; Stone, R. Biliary elimination of diazepam in man. Clin. Pharmacol. Ther. 1976, 19, 443–450. [Google Scholar] [CrossRef]
- Smith-Kielland, A.; Skuterud, B.; Olsen, K.M.; Mørland, J. Urinary excretion of diazepam metabolites in healthy volunteers and drug users. Scand. J. Clin. Lab. Investig. 2001, 61, 237–246. [Google Scholar] [CrossRef]
- Beck, O.; Lafolie, P.; Odelius, G.; Boreus, L.O. Immunological screening of benzodiazepines in urine—Improved detection of oxazepam intake. Toxicol. Lett. 1990, 52, 7–14. [Google Scholar] [CrossRef]
- Ferner, R.E. Disposition of toxic drugs and chemicals in man. Clin. Toxicol. 2021, 59, 603. [Google Scholar] [CrossRef]
- Machinist, J.M.; Bopp, B.A.; Anderson, D.J.; Granneman, G.R.; Sonders, R.C.; Tolman, K.; Buchi, K.; Rollins, D. Metabolism of 14C-estazolam in dogs and humans. Xenobiotica 1986, 16, 11–20. [Google Scholar] [CrossRef]
- Hümpel, M.; Nieuweboer, B.; Milius, W.; Hanke, H.; Wendt, H. Kinetics and biotransformation of lormetazepam: II. Radioimmunologic determinations in plasma and urine of young and elderly subjects: First-pass effect. Clin. Pharmacol. Ther. 1980, 28, 673–679. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Comer, W.H.; Elliott, H.W.; Shader, R.I.; Knowles, J.A.; Ruelius, H.W. Clinical Pharmacokinetics of Lorazepam. III. Intravenous Injection. Preliminary Results. J. Clin. Pharmacol. 1977, 17, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Eadie, M.J.; O’Rourke-Brophy, T.; Smith, T.C. The pharmacokinetics of midazolam in man. Clin. Exp. Pharmacol. Physiol. 1980, 7, 680. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Shen, M.; Zhuo, X.; Zhao, Z.; Jiang, Y.; Wu, H.; Liu, W.; Xiang, P.; Bu, J.; Huang, Z.; et al. Study on the Metabolism of Midazolam in Vivo. Chin. J. Forensic Sci. 2001, 19–23. Available online: https://kns.cnki.net/kcms2/article/abstract?v=cwBM1amFwwN2yqTWr6dkP8N9jE1loM57tOcbfCleBbDj_yggeT3Lfwn69oMnc1nn29RKO16drEanMym4bRDgIYwcFJcQuzjcuFdCaD7WdU8czN4fGls3Oja-oFH2PN3G4qn11ltppo3G2JMXYcObAhFLJmddPKBqc6Pi7YfxoYXL0gefxlgb3Q==&uniplatform=NZKPT&language=CHS (accessed on 1 March 2025).
- Kangas, L. Urinary elimination of nitrazepam and its main metabolites. Acta Pharmacol. Toxicol. 1979, 45, 16–19. [Google Scholar] [CrossRef]
- Drover, D.R. Comparative pharmacokinetics and pharmacodynamics of short-acting hypnosedatives: Zaleplon, zolpidem and zopiclone. Clin. Pharmacokinet. 2004, 43, 227–238. [Google Scholar] [CrossRef]
- Reidy, L.; Nolan, B.; Ramos, A.R.; Walls, H.C.; Steele, B.W. Zolpidem Urine Excretion Profiles and Cross-Reactivity with ELISA (R) Kits in Subjects Using Zolpidem or Ambien (R) CR as a Prescription Sleep Aid. J. Anal. Toxicol. 2011, 35, 294–301. [Google Scholar] [CrossRef]
- Atanasov, V.N.; Kanev, K.P.; Mitewa, M.I. Detection and identification of atypical quetiapine metabolite in urine. Cent. Eur. J. Med. 2008, 3, 327–331. [Google Scholar] [CrossRef]
Compounds | Influent Concentration | Effluent Concentration | Load a | ||||||
---|---|---|---|---|---|---|---|---|---|
Freq | Range | Mean ± SD | Median | Freq | Range | Mean ± SD | Median | Mean ± SD | |
Alprazolam | 93.9 | <LOD~2.5 | 0.9 ± 0.5 | 0.8 | 99.0 | <LOD~1.9 | 0.8 ± 0.4 | 0.7 | 0.2 ± 0.2 |
α-Hydroxy alprazolam | 30.1 | <LOD~16.8 | 2.1 ± 3.7 | <LOD | 26.4 | <LOD~18.8 | 1.9 ± 3.7 | <LOD | 0.8 ± 0.9 |
Clonazepam | 19.8 | <LOD~14.5 | 0.8 ± 2.2 | <LOD | 14.1 | <LOD~11.0 | 0.4 ± 1.3 | <LOD | 0.2 ± 0.6 |
7-Aminoclonazepam | 16.9 | <LOD~3.4 | 0.2 ± 0.5 | <LOD | 4.7 | <LOD~0.7 | 0.01 ± 0.02 | <LOD | 0.03 ± 0.1 |
Diazepam | 100 | 0.7~52.8 | 6.7 ± 7.9 | 4.2 | 100 | 0.7~18.4 | 4.0 ± 3.0 | 3.0 | 1.7 ± 2.3 |
Nordiazepam | 19.8 | <LOD~1.7 | 0.1 ± 0.2 | <LOD | 21.6 | <LOD~0.5 | 0.1 ± 0.1 | <LOD | 0.04 ± 0.1 |
Temazepam | 2.83 | <LOD~0.8 | 0.01 ± 0.1 | <LOD | 25.4 | <LOD~0.6 | 0.1 ± 0.1 | <LOD | 0.002 ± 0.01 |
Oxazepam | 12.2 | <LOD~4.6 | 0.2 ± 0.7 | <LOD | 23.5 | <LOD~6.2 | 0.4 ± 0.9 | <LOD | 0.02 ± 0.1 |
Estazolam | 35.8 | <LOD~0.8 | 0.1 ± 0.2 | <LOD | 39.6 | <LOD~0.8 | 0.1 ± 0.1 | <LOD | 0.03 ± 0.1 |
Flunitrazepam | 3.5 | <LOD | <LOD | <LOD | 3.5 | <LOD~2.3 | 0.07 ± 0.4 | <LOD | - |
Lormetazepam | 13.2 | <LOD~0.8 | 0.04 ± 0.1 | <LOD | 2.8 | <LOD~0.3 | <LOD | <LOD | 0.01 ± 0.03 |
Lorazepam | 6.6 | <LOD~5.1 | 0.2 ± 0.8 | <LOD | 28.3 | <LOD~10.9 | 1.3 ± 2.4 | <LOD | 0.1 ± 0.2 |
Midazolam | 17.9 | <LOD~0.2 | 0.01 ± 0.03 | <LOD | 10.3 | <LOD~0.2 | <LOD | <LOD | 0.004 ± 0.01 |
Nitrazepam | 3.7 | <LOD~0.2 | 0.01 ± 0.03 | <LOD | 1.8 | <LOD~4.9 | 0.1 ± 0.6 | <LOD | 0.04 ± 0.3 |
Nimetazepam | 39.6 | <LOD~3.7 | 0.4 ± 0.7 | <LOD | 50.0 | <LOD~2.3 | 0.3 ± 0.4 | 0.052 | 0.1 ± 0.2 |
7-Aminonimetazepam | 4.7 | <LOD~0.9 | 0.03 ± 0.1 | <LOD | 5.6 | <LOD~0.5 | 0.01 ± 0.03 | <LOD | 0.01 ± 0.04 |
Triazolam | 0 | <LOD | <LOD | <LOD | 0 | <LOD | <LOD | <LOD | - |
Chlorodiazepam | 0 | <LOD | <LOD | <LOD | 0 | <LOD | <LOD | <LOD | - |
Delorazepam | 0.9 | <LOD~0.1 | <LOD | <LOD | 0 | <LOD | <LOD | <LOD | - |
Etizolam | 0 | <LOD | <LOD | <LOD | 0 | <LOD | <LOD | <LOD | - |
Flubromazepam | 0.9 | <LOD~0.4 | <LOD | <LOD | 2.8 | <LOD~0.4 | 0.01 ± 0.01 | <LOD | 0.001 ± 0.01 |
Meclonazepam | 0 | <LOD | <LOD | <LOD | 0 | <LOD | <LOD | <LOD | - |
Pyrazolam | 0 | <LOD | <LOD | <LOD | 0 | <LOD | <LOD | <LOD | - |
Zolpidem | 0 | <LOD | <LOD | <LOD | 0 | <LOD | <LOD | <LOD | - |
Quetiapine fumarate | 97.1 | <LOD~90.0 | 4.4 ± 12.4 | 1.2 | 28.3 | <LOD~0.6 | 0.05 ± 0.1 | <LOD | 1.3 ± 3.7 |
Location | Year | No. of WWTPs | Population (Million) | DDDS (doses/day/1000 people) | |||||
---|---|---|---|---|---|---|---|---|---|
Alprazolam | Diazepam | Oxazepam | Temazepam | Estazolam | Lorazepam | ||||
UK—London [11] | 2011 | 1 | 3.4 | - | ND (7.3 c) | 9.3 (0) e | 58.5 (3.1) | - | - |
Australia—South [67] | 2019 | 4 | 1.2 | 0.2 (1.7) | 1.2 (23.9) | 153.9 (2) | 74.9 (3.4) | - | 2.3 (1.2) |
US—eastern Kentucky [68] | 2018 | 2 | 0.19 | 66 | 3 | 3 | 16 | - | 8 |
0.15 | 68 | <LOQ | 4 | 37 | - | 12 | |||
US—ten states [69] | 2020 | 35 | 5.6 | ND | ND | - | 21.1 (3.1) | - | 44.3 (68) |
US—New York [70] | 2013 | 2 | 0.12 | 1.7 | 0.92 | 4.84 | - | - | 7.74 |
UK—south-west [12] | 2014~18 | - a | 0.89 | - | - | 54.7 | 44.4 | - | - |
Slovakia [13] | 2013 | 8 | 1.11 | - | - | 30.1 | - | - | - |
Norway—Oslo [71] | 2014 | 1 | 0.6 | ND | - | 140.7 | - | - | - |
Norway—Trondheim [71] | 2014 | 1 | 0.18 | 630.2 | - | 106.5 | - | - | - |
India—Saidpur [15] | 2013 | 1 | 0.35 | 0.5 | 0.4 | - | - | - | - |
India—Beur [15] | 2013 | 1 | 0.26 | 0.3 | 0.3 | - | - | - | - |
India—Coimbatore [15] | 2013 | 1 | 0.35 | - | - | 1.6 | - | - | - |
India—Udupi [15] | 2013 | 1 | 0.01 | - | 1.3 | - | - | - | 4.7 |
India—Manipal [15] | 2013 | 1 | 0.01 | 1.2 | 32.6 | 2.3 | - | - | 3.3 |
China—Beijing [30] | 2013 | 13 | 11.6 | 0.5 (0.3 d) | 1.9 (0) | 0.6 (0) | - | - | |
China—Shanghai [43] | 2014 | 5 | 1.0 | 4(19.8) | 2.8 (0.7 c) | 5 (0.1) | 6.9 (0.3) | 1.6 (53.1) | 18.7 (9.5) |
China—Guangdong [29] | 2018~19 | 11 | 3.9 | ND | 0.3 (0.3 c) | 1 (0) | - | ND | - |
China—Taipei [72] | 2022~24 | 4 | 6.5 | 15.12 | 22.22 | - | - | 2.98 | - |
China—Wuhu (this study) | 2020~21 | 4 | 1.8 | 0.2 (1.3 b) | 1.3 (0.1 c) | 0 (0) | 0 (0) | ND (1.2) | ND |
Medical statistics data | 2018~20 | - | (2.37) | (0.08) | (0.0007) | - | (1.2) | (0.02) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhu, Z.; Zhang, R.; Ma, K.; Zhang, L.; Li, D.; Du, P. Wastewater Surveillance for Benzodiazepines in Wuhu, China: Occurrence, Removal, and Consumption Patterns. Water 2025, 17, 1204. https://doi.org/10.3390/w17081204
Zhao M, Zhu Z, Zhang R, Ma K, Zhang L, Li D, Du P. Wastewater Surveillance for Benzodiazepines in Wuhu, China: Occurrence, Removal, and Consumption Patterns. Water. 2025; 17(8):1204. https://doi.org/10.3390/w17081204
Chicago/Turabian StyleZhao, Menglin, Zhu Zhu, Ruyue Zhang, Ke Ma, Lingrong Zhang, Dandan Li, and Peng Du. 2025. "Wastewater Surveillance for Benzodiazepines in Wuhu, China: Occurrence, Removal, and Consumption Patterns" Water 17, no. 8: 1204. https://doi.org/10.3390/w17081204
APA StyleZhao, M., Zhu, Z., Zhang, R., Ma, K., Zhang, L., Li, D., & Du, P. (2025). Wastewater Surveillance for Benzodiazepines in Wuhu, China: Occurrence, Removal, and Consumption Patterns. Water, 17(8), 1204. https://doi.org/10.3390/w17081204