A Study on the Response of Precipitation to Climatic and Ecological Factors in the Middle and Lower Reaches of the Yellow River Based on Wavelet Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Multiple Wavelet Transform Methods
2.3.1. Wavelet Analysis
2.3.2. Crossed Wavelets (XWT)
2.3.3. Wavelet Coherence (WTC)
3. Results
3.1. Characteristics of Precipitation Changes
3.2. Wavelet Analysis of the Four Drivers
3.3. Characteristics of Cyclical Changes in Precipitation and Drivers
4. Discussions
5. Conclusions
- Precipitation shares a common periodic signal with all influencing factors at the 3–6-year timescale and additionally exhibits pronounced low-frequency co-variability with the ENSO, the ESAM, and the WPSH at the 18–20-year timescale.
- ENSO, EASM, and WPSH are identified as the primary drivers regulating precipitation variability in the middle and lower reaches of the Yellow River. The underlying physical mechanisms are complex, and the phase relationships among these drivers and precipitation are not unique and vary across different temporal scales.
- Non-significant influence of vegetation cover: The study region is predominantly cropland, resulting in minimal interannual variability in vegetation indices such as the NDVI, which consequently exerts no discernible multi-scale feedback on precipitation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef]
- Sohoulande, C.; Djebou, S.; Singh, V. Impact of climate change on the hydrologic cycle and implications for society. Environ. Soc. Psychol. 2016, 1, 36–49. [Google Scholar] [CrossRef]
- Chongfeng, R.; Zhehao, L.; Hongbo, Z. Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. J. Clean. Prod. 2019, 210, 12–24. [Google Scholar] [CrossRef]
- Deng, S.; Zhao, D.; Chen, Z.; Liu, L.; Zhu, Y.; Wang, K.; Gao, X.; Wu, H.; Zheng, D. Global Distribution and Projected Variations of Compound Drought-Extreme Precipitation Events. Earth’s Future 2024, 12, e2024EF004809. [Google Scholar] [CrossRef]
- Rind, D.; Rosenzweig, C.; Goldberg, R. Modelling the hydrological cycle in assessments of climate change. Nature 1992, 358, 119–122. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef]
- Chang, X.; Wang, B.; Yan, Y.; Hao, Y.; Zhang, M. Characterizing effects of monsoons and climate teleconnections on precipitation in China using wavelet coherence and global coherence. Clim. Dyn. 2019, 52, 5213–5228. [Google Scholar] [CrossRef]
- Tao, W.; Chao, S.; Xiaohong, C. Clarifying the relationship between annual maximum daily precipitation and climate variables by wavelet analysis. Atmos. Res. 2023, 295, 106981. [Google Scholar]
- Wen, N.; Liu, Z.; Li, L. Direct ENSO impact on East Asian summer precipitation in the developing summer. Clim. Dyn. 2019, 52, 6799–6815. [Google Scholar] [CrossRef]
- Cao, D.; Tam, C.-Y.; Xu, K. Impacts of El Niño diversity on East Asian summertime precipitation extremes. Clim. Dyn. 2024, 62, 4171–4187. [Google Scholar] [CrossRef]
- Fan, L.; Yang, Q.; Fu, H.H. Understanding the interdecadal changes in the teleconnection pattern of the East Asian summer monsoon precipitation with concurrent ENSO. Geophys. Res. Lett. 2024, 51, e2024GL111723. [Google Scholar] [CrossRef]
- Rathinasamy, M.; Agarwal, A.; Parmar, V.; Khosa, R.; Bairwa, A.K.; Physics, O. Partial wavelet coherence analysis for understanding the standalone relationship between Indian Precipitation and Teleconnection patterns. arXiv 2017. [Google Scholar] [CrossRef]
- Xavier, A.K.; Varikoden, H.; Babu, C.A.; Reshma, T. Influence of PDO and ENSO with Indian summer monsoon rainfall and its changing relationship before and after 1976 climate shift. Clim. Dyn. 2023, 61, 5465–5482. [Google Scholar] [CrossRef]
- Santanello, J.A.; Dirmeyer, P.A.; Ferguson, C.R.; Findell, K.L.; Tawfik, A.B.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B.P.; van Heerwaarden, C.; et al. Land–Atmosphere Interactions: The LoCo Perspective. Bull. Am. Meteorol. Soc. 2018, 99, 1253–1272. [Google Scholar] [CrossRef]
- Emmerichs, T.; Lu, Y.S.; Taraborrelli, D. The influence of plant water stress on vegetation–atmosphere exchanges: Implications for ozone modelling. Biogeosciences 2024, 21, 3251–3269. [Google Scholar] [CrossRef]
- Wang, J.; Ya, H.; Ha, J.; Ji, W.; Sun, J.; Wei, X.; Li, Z. Vegetation change impacts on moisture recycling are closely linked to plant water uptake strategies in the Loess-covered region in China. Geoderma 2026, 465, 117654. [Google Scholar] [CrossRef]
- Miralles, D.G.; Vilà-Guerau de Arellano, J.; McVicar, T.R.; Mahecha, M.D. Vegetation-climate feedbacks across scales. Ann. N. Y. Acad. Sci. 2025, 1544, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Lian, X.; Huntingford, C.; Gimeno, L.; Wang, T.; Ding, J.; He, M.; Xu, H.; Chen, A.; Gentine, P.J.N.G. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nature 2022, 15, 982–988. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Tang, Z. Projection of Future Summer Precipitation over the Yellow River Basin: A Moisture Budget Perspective. Atmosphere 2020, 11, 1307. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Zhang, J.; Chen, H.; Shu, Z.; Chen, X.; Jin, J.; Guan, T.; Liu, C.; He, R.; et al. Projecting Future Precipitation in the Yellow River Basin Based on CMIP6 Models. J. Appl. Meteorol. Climatol. 2022, 61, 1399–1417. [Google Scholar] [CrossRef]
- Lan, G.; Liang, Y.; Ma, Y. Assessment of precipitation reanalysis product ERA5 on summer extreme precipitation in the Yellow River Basin. Dyn. Atmos. Ocean. 2025, 112, 101603. [Google Scholar] [CrossRef]
- Guo, C.; Ning, N.; Guo, H.; Tian, Y.; Bao, A.; De Maeyer, P. Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin? Atmosphere 2024, 15, 1254. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Li, J.; Yang, X.; Zhang, N.; Chen, H. Diurnal Variations in Summer Precipitation over the Yellow River Basin. Adv. Meteorol. 2019, 2019, 2482656. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Li, C.; Li, Z.; Wang, Y.; Ye, Q. The effects of increased evapotranspiration on precipitation in the Yellow River Basin. J. Hydrol. 2026, 664, 134453. [Google Scholar] [CrossRef]
- Haoriwa; Zhalagahu; Zhou, R. Spatiotemporal variation of drought and its influential factors in the Yellow River Basin, China based on vegetation health index. J. Arid Land 2025, 17, 1361–1377. [Google Scholar] [CrossRef]
- Sheng, K.; Li, R.; Zhang, F.; Chen, T.; Liu, P.; Hu, Y.; Li, B.; Song, Z. Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province. Water 2025, 17, 2342. [Google Scholar] [CrossRef]
- Lang, Y.; Jiang, Z.; Wu, X. Investigating the Linkage between Extreme Rainstorms and Concurrent Synoptic Features: A Case Study in Henan, Central China. Water 2022, 14, 1065. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Pak, E.W.; Tucker, C.J.; Bhatt, U.S.; Frost, G.V.; Macander, M.J. Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022 (Version 1); ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2023. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, X.L.; Qu, P.C.; Wu, Y.Z.; Wang, S.P. Temporal Variations in Karst Spring Flow and Its Response to Climate Change in the Taihang Mountains, China. J. Hydrol. Eng. 2021, 26, 05021026. [Google Scholar] [CrossRef]
- Hao, Y.H.; Liu, G.L.; Li, H.M.; Li, Z.T.; Zhao, J.J.; Yeh, T.C.J. Investigation of karstic hydrological processes of Niangziguan Springs (North China) using wavelet analysis. Hydrol. Process. 2012, 26, 3062–3069. [Google Scholar] [CrossRef]
- Khan, A.; Hassan, D.; Raza, S.M.M.; Amjad, M.; Mian, K. Applications of wavelet transform in climatic time series: A case study of Gilgit-Baltistan, Pakistan. Int. J. Environ. Sci. Technol. 2025, 22, 13749–13768. [Google Scholar] [CrossRef]
- Labat, D.; Ababou, R.; Mangin, A. Rainfall-runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution. J. Hydrol. 2000, 238, 149–178. [Google Scholar] [CrossRef]
- David, L. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Huang, S.Z.; Li, P.; Huang, Q.; Leng, G.Y.; Hou, B.B.; Ma, L. The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Wang, J.J.; Shi, B.; Pan, X.Y.; Liu, L.F. Multi-scale Characteristics of Precipitation and Its Relationship with ENSO and AO. J. Coast. Res. 2020, 104, 23–28. [Google Scholar] [CrossRef]
- Ren, L.; Dong, X.H. Spatio-Temporal Characteristics of Drought and Its Relationship with El Nino-Southern Oscillation in the Songhua River Basin from 1960 to 2019. Water 2022, 14, 866. [Google Scholar] [CrossRef]
- Zhang, J.H.; Ju, X.P.; Wang, S.; Li, F.P.; Zhao, Z.Y. Variations in Precipitation at the Shimantan Reservoir, China. Water 2023, 15, 4313. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Rui, X.P.; Zhou, Y.; Sun, W.; Xie, W.Y.; Gao, C.J.; Ren, Y.C. Analysis of the Response of Shallow Groundwater Levels to Precipitation Based on Different Wavelet Scales-A Case Study of the Datong Basin, Shanxi. Water 2024, 16, 2920. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J. Geophys. Res. Atmos. 2003, 108, 4677. [Google Scholar] [CrossRef]
- Dremin, I.M.; Ivanov, O.V.; Nechitailo, V.A. Wavelets and their applications. Uspekhi Fiz. Nauk 2001, 171, 465–501. [Google Scholar] [CrossRef]
- Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J.O.; Jenouvrier, S.; Stenseth, N.C. Wavelet analysis of ecological time series. Oecologia 2008, 156, 287–304. [Google Scholar] [CrossRef]
- Dong, Y.Y.; Zhai, J.Q.; Zhao, Y.; Li, H.H.; Wang, Q.M.; Jiang, S.; Chang, H.Y.; Ding, Z.Y. Teleconnection patterns of precipitation in the Three-River Headwaters region, China. Environ. Res. Lett. 2020, 15, 104050. [Google Scholar] [CrossRef]
- Ren, Y.T.; Cheng, Q.P.; Jin, H.Y. Evolution of Wet and Dry Spells Based on Original and Corrected Precipitation Data in Southwest China, 1961–2019. Water 2022, 14, 3090. [Google Scholar] [CrossRef]
- Molavi-Arabshahi, M.; Eskandari, S. Analyzing the cyclical impact of sunspot activity and ENSO on precipitation patterns in Gilan province: A wavelet-based approach. Sci. Rep. 2025, 15, 22184. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.N.; Chen, J.; Zhou, Z.Q.; Shi, H.Y. Investigating the spatiotemporal variations of extreme rainfall and its potential driving factors with improved partial wavelet coherence. Front. Environ. Sci. 2022, 10, 951468. [Google Scholar] [CrossRef]
- Lee, E.J.; Ha, K.J.; Jhun, J.G. Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents. Clim. Dyn. 2014, 42, 2585–2601. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Lau, K.M. Interannual Variability of the Asian Summer Monsoon: Contrasts between the Indian and the Western North Pacific–East Asian Monsoons. J. Clim. 2001, 14, 4073–4090. [Google Scholar] [CrossRef]
- Jin, D.; Guan, Z.; Cai, J.; Weiya, T. Interannual variations of regional summer precipitation in Mainland China and their possible relationships with different teleconnections in the past five decades. J. Meteorol. Soc. Japan 2015, 93, 265–283. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Rong, X.; Li, T. Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China. Clim. Dyn. 2014, 43, 1257–1269. [Google Scholar] [CrossRef]
- Yu, Z.; Jianfeng, Z.; Fang, Z.; Ji, C. Improvement of Numerical Simulation of Typhoon Rananim (0414) by Using Doppler Radar Data. J. Trop. Meteorol. 2008, 14, 89–92. [Google Scholar]
- Zhou, T.; Yu, R.; Zhang, J.; Drange, H.; Cassou, C.; Deser, C.; Hodson, D.L.R.; Sanchez-Gomez, E.; Li, J.; Keenlyside, N.; et al. Why the Western Pacific Subtropical High Has Extended Westward since the Late 1970s. J. Clim. 2009, 22, 2199–2215. [Google Scholar] [CrossRef]
- Lee, Y.C.; Wenig, M.O.; Chan, K.L. Oceanic and atmospheric anomalies associated with extreme precipitation events in China 1983–2020. Air Qual. Atmos. Health 2023, 16, 881–895. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, W.; Li, W. Changed Relationships Between the East Asian Summer Monsoon Circulations and the Summer Rainfall in Eastern China. Meteor. Res. 2014, 28, 1075–1084. [Google Scholar] [CrossRef]
- Shi, J.; Yan, Q.; Wang, H. Timescale dependence of the relationship between the East Asian summer monsoon strength and precipitation over eastern China in the last millennium. Clim. Past 2018, 14, 577–591. [Google Scholar] [CrossRef]
- Li, Z.; Ciais, P.; Wright, J.S.; Wang, Y.; Liu, S.; Wang, J.; Li, L.Z.X.; Lu, H.; Huang, X.; Zhu, L.; et al. Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation. Nat. Commun. 2023, 14, 4096. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lei, H. Tracking the spatio-temporal change of planting area of winter wheat-summer maize cropping system in the North China Plain during 2001–2018. Comput. Electron. Agric. 2021, 187, 106222. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Li, S.; Huang, X. Identifying the Spatio-Temporal Change in Winter Wheat–Summer Maize Planting Structure in the North China Plain between 2001 and 2020. Agronomy 2023, 13, 2712. [Google Scholar] [CrossRef]








| El Niño year | 1987 | 1991 | 1997 | 2002 | 2004 | 2009 | 2015 |
| Niño 3.4 index | 1.5 | 0.62 | 1.86 | 0.9 | 0.69 | 0.57 | 1.87 |
| La Niña year | 1995 | 1998 | 1999 | 2000 | 2007 | 2010 | 2020 |
| Niño 3.4 index | −0.56 | −1.18 | −1.16 | −0.56 | 0.81 | −1.35 | −0.57 |
| El Niño Year | 1987 | 1991 | 1997 | 2002 | 2004 | 2009 | 2015 |
|---|---|---|---|---|---|---|---|
| Niño 3.4 index | 1.5 | 0.62 | 1.86 | 0.9 | 0.69 | 0.57 | 1.87 |
| Precipitation anomaly percentage | −60.80% | 6.25% | −90.11% | −13.99% | 60.74% | 2.71% | −42.30% |
| La Niña Year | 1995 | 1998 | 1999 | 2000 | 2007 | 2010 | 2020 |
|---|---|---|---|---|---|---|---|
| Niño 3.4 index | −-0.56 | −1.18 | −1.16 | −0.56 | −0.81 | −1.35 | −0.57 |
| Precipitation anomaly percentage | 64.03% | 23.60% | −1.08% | 91.90% | 78.29% | 45.09% | 25.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, G.; Ji, Z.; Chen, Q.; Guo, P.; Liu, Z. A Study on the Response of Precipitation to Climatic and Ecological Factors in the Middle and Lower Reaches of the Yellow River Based on Wavelet Analysis. Water 2026, 18, 154. https://doi.org/10.3390/w18020154
Liu G, Ji Z, Chen Q, Guo P, Liu Z. A Study on the Response of Precipitation to Climatic and Ecological Factors in the Middle and Lower Reaches of the Yellow River Based on Wavelet Analysis. Water. 2026; 18(2):154. https://doi.org/10.3390/w18020154
Chicago/Turabian StyleLiu, Guangyi, Zihan Ji, Qingtian Chen, Peng Guo, and Ze Liu. 2026. "A Study on the Response of Precipitation to Climatic and Ecological Factors in the Middle and Lower Reaches of the Yellow River Based on Wavelet Analysis" Water 18, no. 2: 154. https://doi.org/10.3390/w18020154
APA StyleLiu, G., Ji, Z., Chen, Q., Guo, P., & Liu, Z. (2026). A Study on the Response of Precipitation to Climatic and Ecological Factors in the Middle and Lower Reaches of the Yellow River Based on Wavelet Analysis. Water, 18(2), 154. https://doi.org/10.3390/w18020154
