A Review on Uses of Lemna minor, a Beneficial Plant for Sustainable Water Treatments, in Relation to Bioeconomy Aspects
Abstract
:1. Introduction
- Description of Lemna minor and its various applications, including wastewater treatment.
- The review of wastewater and potential remediation techniques.
- The outline of key aspects of circular bioeconomy.
- The illustration of L. minor use in circular bioeconomy systems.
2. Materials and Methods
3. Lemna minor—Description and Applications
3.1. Plant Species Short Description
3.2. Applications
3.2.1. Ecotoxicity
3.2.2. Bioremediation
3.2.3. Feedstock
3.2.4. Protein and Starch Source
3.2.5. Biofuels and Biochar
3.2.6. Genetic Modification
4. Wastewater and Treatment Methods
5. Bioeconomy and Circular Economy Aspects in Relation to Wastewater Management
6. Use of Lemna minor for Wastewater Treatment in a Circular Bioeconomy System
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramírez-Morales, D.; Fajardo-Romero, D.; Rodríguez-Rodríguez, C.E.; Cedergreen, N. Single and mixture toxicity of selected pharmaceuticals to the aquatic macrophyte Lemna minor. Ecotoxicology 2022, 31, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.; Avishek, K.; Pathak, G. Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale. Environ. Monit. Assess. 2012, 184, 4301–4307. [Google Scholar] [CrossRef]
- Park, J.; Yoo, E.-J.; Shin, K.; Depuydt, S.; Li, W.; Appenroth, K.-J.; Lillicrap, A.D.; Xie, L.; Lee, H.; Kim, G.; et al. Interlaboratory validation of toxicity testing using the duckweed Lemna minor root-regrowth test. Biology 2022, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Sosa, D.; Alves, F.M.; Prieto, M.A.; Pedrosa, M.C.; Heleno, S.A.; Barros, L.; Feliciano, M.; Carocho, M. Lemna minor: Unlocking the value of this duckweed for the food and feed industry. Foods 2024, 13, 1435. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.C.; Le, H.A.T.; Le, T.T. Effects of enzyme types and extraction conditions on protein recovery and antioxidant properties of hydrolysed proteins derived from defatted Lemna minor. Appl. Sci. Eng. Prog. 2021, 14, 360–369. [Google Scholar] [CrossRef]
- Guo, L.; Fang, Y.; Jin, Y.; He, K.; Zhao, H. High starch duckweed biomass production and its highly-efficient conversion to bioethanol. Environ. Technol. Innov. 2023, 32, 103296. [Google Scholar] [CrossRef]
- Abdullah, A.M.; Alwan, L.H.; Ahmed, A.A.; Abed, R.N. Optical and physical properties for the nanocomposite poly(vinyl chloride) with affected of carbon nanotube and nano carbon. Prog. Color Color. Coat. 2023, 16, 331–345. [Google Scholar] [CrossRef]
- Web of Science—Advanced Search Query Builder. Available online: https://www.webofscience.com/wos/woscc/advanced-search (accessed on 28 March 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and adoption challenges of AI in the construction industry: A PRISMA review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Ansar, A.; Du, J.; Javed, Q.; Adnan, M.; Javaid, I. Biodegradable Waste in Compost Production: A Review of Its Economic Potential. Nitrogen 2025, 6, 24. [Google Scholar] [CrossRef]
- Toplicean, I.-M.; Datcu, A.-D. An overview on bioeconomy in agricultural sector, biomass production, recycling methods, and circular economy considerations. Agriculture 2024, 14, 1143. [Google Scholar] [CrossRef]
- VOSviewer. Available online: https://www.vosviewer.com/ (accessed on 19 November 2024).
- PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 19 November 2024).
- MapChart. Available online: https://www.mapchart.net/index.html (accessed on 29 November 2024).
- Integrated Taxonomic Information System. Integrated Taxonomic Information System—Report Araceae. Available online: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=42521#null (accessed on 25 November 2024).
- Jaimes Prada, O.; Lora Diaz, O.; Tache Rocha, K. Common duckweed (Lemna minor): Food and environmental potential. Review. Rev. Mex. Cienc. Pecu. 2024, 15, 404–424. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Lemna minor: Traditional uses, chemical constituents and pharmacological effects—A review. IOSR J. Pharm. 2019, 9, 6–11. [Google Scholar]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef]
- Jewell, M.D.; Bell, G. Overwintering and re-emergence in Lemna minor. Aquat. Bot. 2023, 186, 103633. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, W.; Yang, J.; Zhao, X.; Chen, Y.; Yao, L.; Hou, H. Enhanced biomass production and pollutant removal by duckweed in mixotrophic conditions. Bioresour. Technol. 2020, 317, 124029. [Google Scholar] [CrossRef]
- U. S. Environmental Protection Agency. OCSPP 850.4400: Aquatic Plant Toxicity Test Using Lemna spp. 2012. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100IR97.PDF?Dockey=P100IR97.PDF (accessed on 5 February 2025).
- Organization for Economic Cooperation and Development. Test No. 221: Lemna sp. Growth Inhibition Test. OECD Guidel. Test. Chem. 2006, 2, 1–22. [Google Scholar] [CrossRef]
- International Organization for Standardization. Test no. 20079:2005 Water Quality—Determination of the Toxic Effect of Water Constituents and Waste Water on Duckweed (Lemna minor)—Duckweed Growth Inhibition Test. 2005. Available online: https://www.iso.org/standard/34074.html (accessed on 4 February 2025).
- International Organization for Standardization. Test no. 20227:2017 Water quality—Determination of the Growth Inhibition Effects of Waste Waters, Natural Waters and Chemicals on the Duckweed Spirodela Polyrhiza—Method Using a Stock Culture Independent Microbiotest. 2017. Available online: https://www.iso.org/standard/67326.html (accessed on 4 February 2025).
- Boros, B.-V.; Roman, D.-L.; Isvoran, A. Evaluation of the aquatic toxicity of several triazole fungicides. Metabolites 2024, 14, 197. [Google Scholar] [CrossRef]
- Drost, W.; Matzke, M.; Backhaus, T. Heavy metal toxicity to Lemna minor: Studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 2007, 67, 36–43. [Google Scholar] [CrossRef]
- Horvat, T.; Vidaković-Cifrek, Ž.; Oreščanin, V.; Tkalec, M.; Pevalek-Kozlina, B. Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci. Total Environ. 2007, 384, 229–238. [Google Scholar] [CrossRef]
- Boros, B.-V.; Dascalu, D.; Ostafe, V.; Isvoran, A. Assessment of the effects of chitosan, chitooligosaccharides and their derivatives on Lemna minor. Molecules 2022, 27, 6123. [Google Scholar] [CrossRef] [PubMed]
- Boros, B.-V.; Grau, N.I.; Isvoran, A.; Datcu, A.D.; Ianovici, N.; Ostafe, V. A study of the effects of sodium alginate and sodium carboxymethyl cellulose on the growth of common duckweed (Lemna minor L.). J. Serb. Chem. Soc. 2022, 87, 657–667. [Google Scholar] [CrossRef]
- Boros, B.-V.; Ostafe, V. Evaluation of ecotoxicology assessment methods of nanomaterials and their effects. Nanomaterials 2020, 10, 610. [Google Scholar] [CrossRef] [PubMed]
- Mohedano, R.A.; Costa, R.H.R.; Tavares, F.A.; Belli Filho, P. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour. Technol. 2012, 112, 98–104. [Google Scholar] [CrossRef]
- Razinger, J.; Dermastia, M.; Koce, J.D.; Zrimec, A. Oxidative stress in duckweed (Lemna minor L.) caused by short-term cadmium exposure. Environ. Pollut. 2008, 153, 687–694. [Google Scholar] [CrossRef]
- Tront, J.M.; Saunders, F.M. Sequestration of a fluorinated analog of 2,4-dichlorophenol and metabolic products by L. minor as evidenced by 19F NMR. Environ. Pollut. 2007, 145, 708–714. [Google Scholar] [CrossRef]
- Wilson, P.C.; Koch, R. Influence of exposure concentration and duration on effects and recovery of Lemna minor exposed to the herbicide norflurazon. Arch. Environ. Contam. Toxicol. 2013, 64, 228–234. [Google Scholar] [CrossRef]
- Dalton, R.L.; Nussbaumer, C.; Pick, F.R.; Boutin, C. Comparing the sensitivity of geographically distinct Lemna minor populations to atrazine. Ecotoxicology 2013, 22, 718–730. [Google Scholar] [CrossRef]
- Wang, F.; Yi, X.; Qu, H.; Chen, L.; Liu, D.; Wang, P.; Zhou, Z. Enantioselective accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte Lemna minor. Ecotox. Environ. Saf. 2017, 143, 186–192. [Google Scholar] [CrossRef]
- Iqbal, J.; Javed, A.; Baig, M.A. Growth and nutrient removal efficiency of duckweed (Lemna minor) from synthetic and dumpsite leachate under artificial and natural conditions. PLoS ONE 2019, 14, e0221755. [Google Scholar] [CrossRef]
- Walsh, É.; Coughlan, N.E.; O’Brien, S.; Jansen, M.A.K.; Kuehnhold, H. Density dependence influences the efficacy of wastewater remediation by Lemna minor. Plants 2021, 10, 1366. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, N.; Phillips, G.C.; Xu, J. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresour. Technol. 2012, 124, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Muradov, N.; Fidalgo, B.; Gujar, A.C.; T-Raissi, A. Pyrolysis of fast-growing aquatic biomass—Lemna minor (duckweed): Characterization of pyrolysis products. Bioresour. Technol. 2010, 101, 8424–8428. [Google Scholar] [CrossRef] [PubMed]
- Carbon Capture Through Biochar in Soils. Available online: https://www.carboncapturejournal.com/news/carbon-capture-through-biochar-in-soils/2820.aspx (accessed on 10 March 2025).
- Abbas, H.F.; Wan Daud, W.M.A. Thermocatalytic decomposition of methane using palm shell based activated carbon: Kinetic and deactivation studies. Fuel Process. Technol. 2009, 90, 1167–1174. [Google Scholar] [CrossRef]
- Muradov, N. Thermocatalytic CO2-free production of hydrogen from hydrocarbon fuels. In Proceedings of the 2000 Hydrogen Program Review, NREL/CP-570-28890, 2000, San Ramon, CA, USA, 9–11 May 2000. [Google Scholar]
- Muradov, N.; Smith, F.; T-Raissi, A. Catalytic activity of carbons for methane decomposition reaction. Catal. Today 2005, 102–103, 225–233. [Google Scholar] [CrossRef]
- Domínguez, A.; Fernández, Y.; Fidalgo, B.; Pis, J.J.; Menéndez, J.A. Biogas to syngas by microwave-assisted dry reforming in the presence of char. Energ. Fuel 2007, 21, 2066–2071. [Google Scholar] [CrossRef]
- Song, Q.; Xiao, R.; Li, Y.; Shen, L. Catalytic carbon dioxide reforming of methane to synthesis gas over activated carbon catalyst. Ind. Eng. Chem. Res. 2008, 47, 4349–4357. [Google Scholar] [CrossRef]
- Fidalgo, B.; Domínguez, A.; Pis, J.J.; Menéndez, J.A. Microwave-assisted dry reforming of methane. Int. J. Hydrogen Energ. 2008, 33, 4337–4344. [Google Scholar] [CrossRef]
- Yamamoto, Y.T.; Rajbhandari, N.; Lin, X.; Bergmann, B.A.; Nishimura, Y.; Stomp, A.-M. Genetic transformation of duckweed Lemna gibba and Lemna minor. Vitr. Cell. Dev. Biol.-Plant 2001, 37, 349–353. [Google Scholar] [CrossRef]
- Van Hoeck, A.; Horemans, N.; Monsieurs, P.; Cao, H.X.; Vandenhove, H.; Blust, R. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol. Biofuels 2015, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, D.; Rocha, A.C.; Pereira, L.; Verdelhos, T. Microalgae water bioremediation: Trends and hot topics. Appl. Sci. 2020, 10, 1886. [Google Scholar] [CrossRef]
- Malik, O.A.; Hsu, A.; Johnson, L.A.; de Sherbinin, A. A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs). Environ. Sci. Policy 2015, 48, 172–185. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Duncan, M. Domestic Wastewater Treatment in Developing Countries, 1st ed.; Routledge: London, UK, 2003; p. 210. [Google Scholar]
- Jaramillo, M.F.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Saria, L.; Shimaoka, T.; Miyawaki, K. Leaching of heavy metals in acid mine drainage. Waste Manag. Res. 2006, 24, 134–140. [Google Scholar] [CrossRef]
- Aderibigbe, D.O.; Giwa, A.-R.A.; Bello, I.A. Characterization and treatment of wastewater from food processing industry: A review. Imam J. Appl. Sci. 2017, 2, 27–36. [Google Scholar] [CrossRef]
- Scherhag, P.; Ackermann, J.-U. Removal of sugars in wastewater from food production through heterotrophic growth of Galdieria sulphuraria. Eng. Life Sci. 2021, 21, 233–241. [Google Scholar] [CrossRef]
- Adamowicz, M. Bioeconomy as a concept for the development of agriculture and agribusiness. Probl. Agricol. Econ. 2020, 365, 135–155. [Google Scholar] [CrossRef]
- Aguilar, A.; Twardowski, T.; Wohlgemuth, R. Bioeconomy for sustainable development. Biotechnol. J. 2019, 14, 1800638. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Research and Innovation. Innovating for Sustainable Growth—A Bioeconomy for Europe. Available online: https://data.europa.eu/doi/10.2777/6462 (accessed on 14 November 2024).
- Hysa, E.; Kruja, A.; Rehman, N.U.; Laurenti, R. Circular economy innovation and environmental sustainability impact on economic growth: An integrated model for sustainable development. Sustainability 2020, 12, 4831. [Google Scholar] [CrossRef]
- Patermann, C.; Aguilar, A. The origins of the bioeconomy in the European Union. New Biotechnol. 2018, 40, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Ghermec, O.; Ghermec, C. Integrating the Circular Economy in Forming the Future Naval Engineers. In Proceedings of the International Conference on Mechanical Engineering (ICOME 2022); 2023-05-29T21:00:00.000Z; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 306–312. [Google Scholar]
- European Commission. Circular Economy Action Plan. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 12 November 2024).
- European Commission. Circular Economy. Available online: https://environment.ec.europa.eu/topics/circular-economy_en (accessed on 12 November 2024).
- Ghimire, U.; Sarpong, G.; Gude, V.G. Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability. ACS Omega 2021, 6, 11794–11803. [Google Scholar] [CrossRef]
- Salvador, R.; Puglieri, F.N.; Halog, A.; Andrade, F.G.d.; Piekarski, C.M.; De Francisco, A.C. Key aspects for designing business models for a circular bioeconomy. J. Clean. Prod. 2021, 278, 124341. [Google Scholar] [CrossRef]
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’Barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the circular bioeconomy: Drivers and indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- Karuppiah, K.; Sankaranarayanan, B.; Ali, S.M.; Santibanez Gonzalez, E.D.R. Impact of circular bioeconomy on industry’s sustainable performance: A critical literature review and future research directions analysis. Sustainability 2023, 15, 10759. [Google Scholar] [CrossRef]
- Leong, H.Y.; Chang, C.-K.; Khoo, K.S.; Chew, K.W.; Chia, S.R.; Lim, J.W.; Chang, J.-S.; Show, P.L. Waste biorefinery towards a sustainable circular bioeconomy: A solution to global issues. Biotechnol. Biofuels 2021, 14, 87. [Google Scholar] [CrossRef]
- Van der Hoek, J.P.; Duijff, R.; Reinstra, O. Nitrogen recovery from wastewater: Possibilities, competition with other resources, and adaptation pathways. Sustainability 2018, 10, 4605. [Google Scholar] [CrossRef]
- Feleke, S.; Cole, S.M.; Sekabira, H.; Djouaka, R.; Manyong, V. Circular bioeconomy research for development in sub-saharan Africa: Innovations, gaps, and actions. Sustainability 2021, 13, 1926. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green. Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Holden, N.M.; Neill, A.M.; Stout, J.C.; O’Brien, D.; Morris, M.A. Biocircularity: A framework to define sustainable, circular bioeconomy. Circ. Econ. Sustain. 2023, 3, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Delre, A.; ten Hoeve, M.; Scheutz, C. Site-specific carbon footprints of Scandinavian wastewater treatment plants, using the life cycle assessment approach. J. Clean. Prod. 2019, 211, 1001–1014. [Google Scholar] [CrossRef]
- Calvo-Porral, C.; Lévy-Mangin, J.-P. The circular economy business model: Examining consumers’ acceptance of recycled goods. Adm. Sci. 2020, 10, 28. [Google Scholar] [CrossRef]
- Leitão, A. Bioeconomy: The challenge in the management of natural resources in the 21st century. Open J. Soc. Sci. 2016, 4, 26–42. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Oulego, P.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Towards the implementation of circular economy in the wastewater sector: Challenges and opportunities. Water 2020, 12, 1431. [Google Scholar] [CrossRef]
- Salamanca, M.; Peña, M.; Hernandez, A.; Prádanos, P.; Palacio, L. Forward osmosis application for the removal of emerging contaminants from municipal wastewater: A review. Membranes 2023, 13, 655. [Google Scholar] [CrossRef]
- Dahiya, D.; Sharma, H.; Rai, A.K.; Nigam, P.S. Application of biological systems and processes employing microbes and algae to Reduce, Recycle, Reuse (3Rs) for the sustainability of circular bioeconomy. AIMS Microbiol. 2022, 8, 83–102. [Google Scholar] [CrossRef]
- Lai, Y.H.; Chew, I.M.L. Wastewater system integration: A biogenic waste biorefinery eco-industrial park. Sustainability 2022, 14, 16347. [Google Scholar] [CrossRef]
- Central Pollution Control Board. Performance Status of Common Effluent Treatment Plants in India; Ministry of Environment & Forests, Government of India: New Delhi, India, 2005. [Google Scholar]
- Kharat, D.D.S.; Kumar, L.; Kumar, P.; Mahwar, R.; Ansari, P.M.; Sengupta, B. Advance Methods for Treatment of Textile Industry Effluents; Central Pollution Control Board, Ministry of Environment & Forests: New Delhi, India, 2007. [Google Scholar]
- Mehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated approach for wastewater treatment and biofuel production in microalgae biorefineries. Energies 2021, 14, 2282. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Vadiveloo, A.; Ogbonna, C.N.; Ubi, B.E.; Ogbonna, J.C.; Moheimani, N.R. Algal cultivation for treating wastewater in African developing countries: A review. CLEAN–Soil Air Water 2020, 48, 2000052. [Google Scholar] [CrossRef]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 1991; Volume 4. [Google Scholar]
- Agrahari, S.; Kumar, S. Phytoremediation: A shift towards sustainability for dairy wastewater treatment. ChemBioEng Rev. 2024, 11, 115–135. [Google Scholar] [CrossRef]
- Fiordelmondo, E.; Ceschin, S.; Magi, G.E.; Mariotti, F.; Iaffaldano, N.; Galosi, L.; Roncarati, A. Effects of partial substitution of conventional protein sources with duckweed (Lemna minor) meal in the feeding of rainbow trout (Oncorhynchus mykiss) on growth performances and the quality product. Plants 2022, 11, 1220. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.H.; Memiș, D. Utilization of duckweeds (Lemna minor) as an extractive species in rearing juvenile rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) using the open system. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Regni, L.; Del Buono, D.; Miras-Moreno, B.; Senizza, B.; Lucini, L.; Trevisan, M.; Morelli Venturi, D.; Costantino, F.; Proietti, P. Biostimulant effects of an aqueous extract of duckweed (Lemna minor L.) on physiological and biochemical traits in the olive tree. Agriculture 2021, 11, 1299. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Clark, W.D.; Sharma, J.G.; Goswami, R.K.; Shrivastav, A.K.; Tocher, D.R. Mass production of Lemna minor and its amino acid and fatty acid profiles. Front. Chem. 2018, 6, 479. [Google Scholar] [CrossRef]
- Ozengin, N.; Elmaci, A. Performance of duckweed (Lemna minor L.) on different types of wastewater treatment. J. Environ. Biol. 2007, 28, 307–314. [Google Scholar]
- Ceschin, S.; Crescenzi, M.; Iannelli, M.A. Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environ. Sci. Pollut. Res. 2020, 27, 15806–15814. [Google Scholar] [CrossRef]
- Ali, H.; Min, Y.; Yu, X.; Kooch, Y.; Marnn, P.; Ahmed, S. Composition of the microbial community in surface flow-constructed wetlands for wastewater treatment. Front. Microbiol. 2024, 15, 1421094. [Google Scholar] [CrossRef]
- Chusov, A.; Maslikov, V.; Badenko, V.; Zhazhkov, V.; Molodtsov, D.; Pavlushkina, Y. Biogas potential assessment of the composite mixture from duckweed biomass. Sustainability 2022, 14, 351. [Google Scholar] [CrossRef]
- Bokhari, S.H.; Iftikhar, A.; Muhammad, M.-U.-H.; Mohammad, A. Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat. 2016, 18, 25–32. [Google Scholar] [CrossRef]
- Imron, M.F.; Kurniawan, S.B.; Soegianto, A.; Wahyudianto, F.E. Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon 2019, 5, e02206. [Google Scholar] [CrossRef] [PubMed]
- Dosnon-Olette, R.; Michel, C.; Oturan, M.A.; Nihal, O.; Eullaffroy, P. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate. Int. J. Phytoremediat. 2011, 13, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Parra, L.-M.M.; Torres, G.; Arenas, A.D.; Sánchez, E.; Rodríguez, K. Phytoremediation of Low Levels of Heavy Metals Using Duckweed (Lemna minor). In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 451–463. [Google Scholar]
- Farid, M.; Sajjad, A.; Asam, Z.U.Z.; Zubair, M.; Rizwan, M.; Abbas, M.; Farid, S.; Ali, S.; Alharby, H.F.; Alzahrani, Y.M.; et al. Phytoremediation of contaminated industrial wastewater by duckweed (Lemna minor L.): Growth and physiological response under acetic acid application. Chemosphere 2022, 304, 135262. [Google Scholar] [CrossRef]
- Rozman, U.; Jemec Kokalj, A.; Dolar, A.; Drobne, D.; Kalčíková, G. Long-term interactions between microplastics and floating macrophyte Lemna minor: The potential for phytoremediation of microplastics in the aquatic environment. Sci. Total Environ. 2022, 831, 154866. [Google Scholar] [CrossRef]
- Wibowo, Y.G.; Syahnur, M.T.; Al-Azizah, P.S.; Arantha Gintha, D.; Lululangi, B.R.G.; Sudibyo. Phytoremediation of high concentration of ionic dyes using aquatic plant (Lemna minor): A potential eco-friendly solution for wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100849. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Kareem, S.L. Evaluation of the effectiveness of phytoremediation technologies utilizing Lemna minor in constructed wetlands for wastewater treatment. Biomass Convers. Biorefin. 2025, 15, 10513–10525. [Google Scholar] [CrossRef]
- Sarkheil, M.; Safari, O. Phytoremediation of nutrients from water by aquatic floating duckweed (Lemna minor) in rearing of African cichlid (Labidochromis lividus) fingerlings. Environ. Technol. Innov. 2020, 18, 100747. [Google Scholar] [CrossRef]
- Kitamura, R.S.A.; Marques, R.Z.; Kubis, G.C.; Kochi, L.Y.; Barbato, M.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. The phytoremediation capacity of Lemna minor prevents deleterious effects of anti-HIV drugs to nontarget organisms. Environ. Pollut. 2023, 329, 121672. [Google Scholar] [CrossRef]
- Sahi, W.; Megateli, S. Evaluation of Lemna minor phytoremediation performance for the treatment of dairy wastewater. Water Pract. Technol. 2023, 18, 1138–1147. [Google Scholar] [CrossRef]
- Sasmaz, M.; Arslan Topal, E.I.; Obek, E.; Sasmaz, A. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. J. Environ. Manag. 2015, 163, 246–253. [Google Scholar] [CrossRef]
- Zhang, K.; You-Peng, C.; Ting-Ting, Z.; Yun, Z.; Yu, S.; Lei, H.; Xu, G.; Guo, J.-S. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake. Environ. Technol. 2014, 35, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Zhao, J.; Yu, X.; Lv, K.; Wang, Z.; Xing, B. Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. Environ. Pollut. 2018, 243, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-h.; Tang, X.; Yuan, J.; Li, Q.; Qi, L.; Wang, H.; Ye, Z.; Zhao, Q. Activated sludge process enabling highly efficient removal of heavy metal in wastewater. Environ. Sci. Pollut. Res. 2023, 30, 21132–21143. [Google Scholar] [CrossRef] [PubMed]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. The occurrence and removal of selected pharmaceutical compounds in a sewage treatment works utilising activated sludge treatment. Environ. Pollut. 2007, 145, 738–744. [Google Scholar] [CrossRef]
- Ge, H.; Batstone, D.J.; Mouiche, M.; Hu, S.; Keller, J. Nutrient removal and energy recovery from high-rate activated sludge processes—Impact of sludge age. Bioresour. Technol. 2017, 245, 1155–1161. [Google Scholar] [CrossRef]
- Pala, A.; Tokat, E. Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res. 2002, 36, 2920–2925. [Google Scholar] [CrossRef]
- Shokoohi, R.; Ghobadi, N.; Godini, K.; Hadi, M.; Atashzaban, Z. Antibiotic detection in a hospital wastewater and comparison of their removal rate by activated sludge and earthworm-based vermifilteration: Environmental risk assessment. Process Saf. Environ. Prot. 2020, 134, 169–177. [Google Scholar] [CrossRef]
- Battistoni, P.; Fava, G.; Ruello, M.L. Heavy metal shock load in activated sludge uptake and toxic effects. Water Res. 1993, 27, 821–827. [Google Scholar] [CrossRef]
- Feng, D.; Malleret, L.; Chiavassa, G.; Boutin, O.; Soric, A. Biodegradation capabilities of acclimated activated sludge towards glyphosate: Experimental study and kinetic modeling. Biochem. Eng. J. 2020, 161, 107643. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Oturan, N.; Oturan, M.A. Electrochemically assisted remediation of pesticides in soils and water: A review. Chem. Rev. 2014, 114, 8720–8745. [Google Scholar] [CrossRef]
- Tran, N.; Patrick, D.; Linh, D.T.; Son, L.T.; Nguyen, H.C. Electrochemical degradation and mineralization of glyphosate herbicide. Environ. Technol. 2017, 38, 2939–2948. [Google Scholar] [CrossRef] [PubMed]
- Fadillah, G.; Saleh, T.A.; Wahyuningsih, S.; Ninda Karlina Putri, E.; Febrianastuti, S. Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chem. Eng. J. 2019, 378, 122140. [Google Scholar] [CrossRef]
- Bashir, M.J.K.; Isa, M.H.; Kutty, S.R.M.; Awang, Z.B.; Aziz, H.A.; Mohajeri, S.; Farooqi, I.H. Landfill leachate treatment by electrochemical oxidation. Waste Manag. 2009, 29, 2534–2541. [Google Scholar] [CrossRef]
- Guo, M.; Feng, L.; Liu, Y.; Zhang, L. Electrochemical simultaneous denitrification and removal of phosphorus from the effluent of a municipal wastewater treatment plant using cheap metal electrodes. Environ. Sci. Water Res. Technol. 2020, 6, 1095–1105. [Google Scholar] [CrossRef]
- Tran, T.-K.; Leu, H.-J.; Chiu, K.-F.; Lin, C.-Y. Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions. J. Chin. Chem. Soc. 2017, 64, 493–502. [Google Scholar] [CrossRef]
- Feier, B.; Florea, A.; Cristea, C.; Săndulescu, R. Electrochemical detection and removal of pharmaceuticals in waste waters. Curr. Opin. Electrochem. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Mais, L.; Melis, N.; Vacca, A.; Mascia, M. Electrochemical removal of PET and PE microplastics for wastewater treatment. Environ. Sci. Water Res. Technol. 2024, 10, 399–407. [Google Scholar] [CrossRef]
- Jasper, J.T.; Yang, Y.; Hoffmann, M.R. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater. Environ. Sci. Technol. 2017, 51, 7111–7119. [Google Scholar] [CrossRef]
- Bukhari, A.A. Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater. Bioresour. Technol. 2008, 99, 914–921. [Google Scholar] [CrossRef]
- Song, Z.; Williams, C.J.; Edyvean, R.G.J. Sedimentation of tannery wastewater. Water Res. 2000, 34, 2171–2176. [Google Scholar] [CrossRef]
- Rout, S.K. Wastewater treatment technologies. Int. J. Water Res. Environ. Sci. 2013, 2, 20–23. [Google Scholar] [CrossRef]
- Domopoulou, A.E.; Gudulas, K.H.; Papastergiadis, E.S.; Karayannis, V.G. Coagulation/flocculation/sedimentation applied to marble processing wastewater treatment. Mod. Appl. Sci. 2015, 9, 137. [Google Scholar] [CrossRef]
- Bezirgiannidis, A.; Aikaterini, P.-E.; Spyridon, N.; Melidis, P. Combined chemically enhanced primary sedimentation and biofiltration process for low cost municipal wastewater treatment. J. Environ. Sci. Health A 2019, 54, 1227–1232. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Poiger, T.; Keller, M.; Buerge, I.J.; Balmer, M.E. Behavior of Glyphosate in Wastewater Treatment Plants. Chimia 2020, 74, 156. [Google Scholar] [CrossRef]
- Kooijman, G.; de Kreuk, M.K.; Houtman, C.; van Lier, J.B. Perspectives of coagulation/flocculation for the removal of pharmaceuticals from domestic wastewater: A critical view at experimental procedures. J. Water Process Eng. 2020, 34, 101161. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Sayanthan, S.; Hasan, H.A.; Abdullah, S.R.S. Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy. Water 2024, 16, 870. [Google Scholar] [CrossRef]
- Sońta, M.; Łozicki, A.; Szymańska, M.; Sosulski, T.; Szara, E.; Wąs, A.; van Pruissen, G.W.P.; Cornelissen, R.L. Duckweed from a biorefinery system: Nutrient recovery efficiency and forage value. Energies 2020, 13, 5261. [Google Scholar] [CrossRef]
- Ardiansyah, A.; Fotedar, R. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (Lemna minor L.) in recirculating aquaculture systems. Lett. Appl. Microbiol. 2016, 63, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Neczaj, E.; Grosser, A. Circular economy in wastewater treatment plant–challenges and barriers. Proceedings 2018, 2, 614. [Google Scholar] [CrossRef]
- Bakan, B.; Bernet, N.; Bouchez, T.; Boutrou, R.; Choubert, J.-M.; Dabert, P.; Duquennoi, C.; Ferraro, V.; García-Bernet, D.; Gillot, S.; et al. Circular economy applied to organic residues and wastewater: Research challenges. Waste Biomass Valorization 2022, 13, 1267–1276. [Google Scholar] [CrossRef]
- Neidoni, D.G.; Nicorescu, V.; Andres, L.; Ihos, M.; Lehr, C.B. The capacity of Lemna minor L. to accumulate heavy metals (zinc, copper, nickel). Rev. Chim. 2018, 69, 3253–3256. [Google Scholar] [CrossRef]
- Sasmaz, M.; Öbek, E.; Sasmaz, A. Bioaccumulation of cadmium and thallium in Pb-Zn tailing waste water by Lemna minor and Lemna gibba. Appl. Geochem. 2019, 100, 287–292. [Google Scholar] [CrossRef]
- Hazmi, N.I.A.; Hanafiah, M.M. Phytoremediation of livestock wastewater using Azolla filliculoides and Lemna minor. Environ. Ecosyst. Sci. 2018, 2, 13–16. [Google Scholar] [CrossRef]
Wastewater Type | Key Aspects | References |
Domestic wastewater |
| [54] |
Agricultural wastewater |
| [55] |
Mining wastewater |
| [56] |
Food processing wastewater |
| [57,58] |
Key Aspects | Lemna minor Phytoremediation | Microbial Systems | Emerging Chemical Techniques | Classical Treatment Methods |
Method overview | Utilizes Lemna minor to absorb pollutants from wastewater Applied in free-floating systems | Based on microbial metabolism to degrade or accumulate pollutants Include activated sludge, microbial bioreactors, etc. | Rely on chemical reactions such as oxidation and reduction to remove pollutants Involve advanced oxidation processes, electrochemical treatments, etc. | Use physical, biological (microbial systems), and chemical phases for pollutant removal Comprise sedimentation, filtration, adsorption, coagulation, flocculation, etc. |
Target contaminants |
|
|
|
|
Economic considerations |
|
|
|
|
Treatment efficiency as removal rates (%) |
|
|
|
|
Feasibility |
|
|
|
|
Key advantages |
|
|
|
|
Main limitations |
|
|
|
|
Applicable wastewater types described in scientific literature |
|
|
|
|
References | [19,21,94,97,98,99,100,101,102,103,104,105,106,107,108,109,110] | [111,112,113,114,115,116,117] | [118,119,120,121,122,123,124,125,126,127] | [128,129,130,131,132,133,134,135,136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulpe, C.-B.; Toplicean, I.-M.; Agachi, B.-V.; Datcu, A.-D. A Review on Uses of Lemna minor, a Beneficial Plant for Sustainable Water Treatments, in Relation to Bioeconomy Aspects. Water 2025, 17, 1400. https://doi.org/10.3390/w17091400
Vulpe C-B, Toplicean I-M, Agachi B-V, Datcu A-D. A Review on Uses of Lemna minor, a Beneficial Plant for Sustainable Water Treatments, in Relation to Bioeconomy Aspects. Water. 2025; 17(9):1400. https://doi.org/10.3390/w17091400
Chicago/Turabian StyleVulpe, Constantina-Bianca, Ioana-Maria Toplicean, Bianca-Vanesa Agachi, and Adina-Daniela Datcu. 2025. "A Review on Uses of Lemna minor, a Beneficial Plant for Sustainable Water Treatments, in Relation to Bioeconomy Aspects" Water 17, no. 9: 1400. https://doi.org/10.3390/w17091400
APA StyleVulpe, C.-B., Toplicean, I.-M., Agachi, B.-V., & Datcu, A.-D. (2025). A Review on Uses of Lemna minor, a Beneficial Plant for Sustainable Water Treatments, in Relation to Bioeconomy Aspects. Water, 17(9), 1400. https://doi.org/10.3390/w17091400