Modeling Dependence Structures in Hydrodynamic Landslide Deformation via Hierarchical Archimedean Copula Framework: Case Study of the Donglinxin Landslide
Abstract
:1. Introduction
2. Proposed Method
Theory
3. Model Construction
3.1. Data Preprocessing
3.2. Parameter Estimation
3.3. Conditional Probability, Risk Threshold, and Return Period
4. A Case Study: DLX Landslide
4.1. Data Source and Description
4.2. Correlation Structure Among the Variables of the Hydrodynamic Landslide
4.3. Conditional Probability and Risk Analysis
4.4. Conditional Return Period
5. Conclusions
- (1)
- Hydrodynamic landslide variables exhibit significant tail-dependent correlations, with a distinct asymmetry in their joint probability distributions. Specifically, the variables show pronounced upper-tail dependence and weaker lower-tail dependence. This reflects the complex nature of hydrodynamic landslide deformation, where extreme events (e.g., large displacement increments) are strongly associated with extreme changes in reservoir water levels, but lower-level fluctuations show less pronounced correlation.
- (2)
- The strongest pairwise correlation was identified between monthly displacement increments and monthly reservoir water level drops. This finding underscores the critical role of reservoir water level fluctuations in influencing landslide deformation, with large displacement increments closely linked to significant water level drawdowns. The results suggest that monitoring and managing the reservoir water levels is crucial for assessing and mitigating the landslide risks in the affected regions.
- (3)
- The HAC model demonstrated its ability to effectively quantify the deformation correlations at the DLX landslide, aligning closely with the field observations. The VaR metrics and conditional return period analyses offer valuable insights for optimizing the landslide monitoring schemes, formulating targeted prevention measures, and enhancing the risk management strategies. These findings provide a solid foundation for improving the early-warning systems and disaster mitigation efforts in reservoir-affected regions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di, G.; Ercoli, M.; Vassallo, M.; Porreca, M. Investigation of the Norcia basin (Central Italy) through ambient vibration measurements and geological surveys. Eng. Geol. 2020, 267, 105501. [Google Scholar] [CrossRef]
- Pant, N.; Rai, S.P.; Singh, R.; Kumar, S.; Saini, R.K.; Purushothaman, P.; Nijesh, P.; Rawat, Y.S.; Sharma, M.; Pratap, K. Impact of geology and anthropogenic activities over the water quality with emphasis on fluoride in water scarce Lalitpur district of Bundelkhand region, India. Chemosphere 2021, 279, 130496. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, B. Concentration-concentration fractal modelling: A novel insight for correlation between variables in response to changes in the underlying controlling geological-geochemical processes. Ore Geol. Rev. 2021, 128, 103875. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Han, Z. Comprehensive assessment of geological hazard safety along railway engineering using a novel method: A case study of the Sichuan-Tibet railway, China. Geomat. Nat. Hazards Risk 2019, 11, 1–21. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, F.; Yang, X.; Yang, Y.; Lu, P. Comprehensive analyses of the initiation and landslide-generated wave processes of the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir, China. Landslides 2016, 13, 589–601. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Xu, W.; Zhu, Q.; Wang, S. Risk analysis of building damage induced by landslide impact disaster. Eur. J. Environ. Civ. Eng. 2013, 17 (Suppl. S1), s126–s143. [Google Scholar] [CrossRef]
- Rüschendorf, L. On the distributional transform, Sklar’s theorem, and the empirical copula process. J. Stat. Plan Inference 2009, 139, 3921–3927. [Google Scholar] [CrossRef]
- Nelsen, R.B. Dependence and Order in Families of Archimedean Copulas. J. Multivar. Anal. 1997, 60, 111–122. [Google Scholar] [CrossRef]
- Nelsen, R.B.; Quesada-Molina, J.J.; Rodríguez-Lallena, J.A.; Úbeda-Flores, M. Distribution functions of copulas: A class of bivariate probability integral transforms. Stat. Probab. Lett. 2001, 54, 277–282. [Google Scholar] [CrossRef]
- Ma, J.; Niu, X.; Tang, H.; Wang, Y.; Wen, T.; Zhang, J. Displacement Prediction of a Complex Landslide in the Three Gorges Reservoir Area (China) Using a Hybrid Computational Intelligence Approach. Complexity 2020, 2020, 2624547. [Google Scholar] [CrossRef]
- Motamedi, M.; Liang, R.Y. Probabilistic landslide hazard assessment using Copula modeling technique. Landslides 2013, 11, 565–573. [Google Scholar] [CrossRef]
- Li, H.; Xu, Q.; He, Y.; Deng, J. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models. Landslides 2018, 15, 2047–2059. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Tang, H. Estimation of Risk Thresholds for a Landslide in the Three Gorges Reservoir Based on a KDE-Copula-VaR Approach. Geofluids 2020, 2020, 8030264. [Google Scholar] [CrossRef]
- Bezak, N.; Šraj, M.; Mikoš, M. Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. J. Hydrol. 2016, 541, 272–284. [Google Scholar] [CrossRef]
- Okhrin, O.; Okhrin, Y.; Schmid, W. On the structure and estimation of hierarchical Archimedean copulas. J. Econom. 2013, 173, 189–204. [Google Scholar] [CrossRef]
- Cossette, H.; Gadoury, S.-P.; Marceau, É.; Mtalai, I. Hierarchical Archimedean copulas through multivariate compound distributions. Insur. Math. Econ. 2017, 76, 1–13. [Google Scholar] [CrossRef]
- Corbella, S.; Stretch, D.D. Simulating a multivariate sea storm using Archimedean copulas. Coast Eng. 2013, 76, 68–78. [Google Scholar] [CrossRef]
- Le Breton, M.; Bontemps, N.; Guillemot, A.; Baillet, L.; Larose, É. Landslide monitoring using seismic ambient noise correlation: Challenges and applications. Earth-Sci. Rev. 2021, 216, 103518. [Google Scholar] [CrossRef]
- Tsai, J.T.; Lo, C.-L. Modeling underwriting risk: A copula regression analysis on U.S. property-casualty insurance byline loss ratios. Pac. Basin Financ. J. 2024, 83, 102206. [Google Scholar] [CrossRef]
- Fascista, A.; Coluccia, A.; Ricci, G. A Pseudo Maximum likelihood approach to position estimation in dynamic multipath environments. Signal Process. 2021, 181, 107907. [Google Scholar] [CrossRef]
- Meimandi, J.; Bazrafshan, O.; Esmaeilpour, Y.; Zamani, H.; Shekari, M. Risk assessment of meteo-groundwater drought using copula approach in the arid region. Stoch. Environ. Res. Risk Assess. 2024, 38, 1523–1540. [Google Scholar] [CrossRef]
- Erdemir, Ö.K. An adjusted iterative algorithmic approach for maximum likelihood estimation of the pseudo-copula regression: P-MBP. Soft Comput. 2023, 27, 11227–11241. [Google Scholar] [CrossRef]
- Alquier, P.; Chérief-Abdellatif, B.-E.; Derumigny, A.; Fermanian, J.-D. Estimation of Copulas via Maximum Mean Discrepancy. J. Am. Stat. Assoc. 2022, 118, 1997–2012. [Google Scholar] [CrossRef]
- Savu, C.; Trede, M. Hierarchies of Archimedean copulas. Quant. Financ. 2009, 10, 295–304. [Google Scholar] [CrossRef]
- Genest, C.; Nešlehová, J. A Primer on Copulas for Count Data. ASTIN Bull. 2007, 37, 475–515. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Walker, S.G. Bayesian Nonparametric Inference for a Multivariate Copula Function. Methodol. Comput. Appl. 2013, 16, 747–763. [Google Scholar] [CrossRef]
Parameters | Gumbel-HAC | Clayton-HAC | Frank-HAC |
---|---|---|---|
θ1 | 1.142 | 0.283 | 1.130 |
θ2 | 1.209 | 0.428 | 1.594 |
θ3 | 1.218 | 0.436 | 1.654 |
θ4 | 1.252 | 0.445 | 1.884 |
θ5 | 1.267 | 0.535 | 1.971 |
Type | Gumbel-HAC | Clayton-HAC | Frank-HAC |
---|---|---|---|
AIC | −647.701 | −469.100 | −476.101 |
BIC | −637.884 | −459.283 | −466.284 |
RMSE | 0.022 | 0.062 | 0.060 |
Variables | Items |
---|---|
u1 | Monthly displacement increment |
u2 | Monthly reservoir water level drop |
u3 | Monthly reservoir water level rise |
u4 | Monthly groundwater level drop |
u5 | Monthly groundwater level rise |
u6 | Monthly precipitation |
Variable Levels | Monthly Displacement Increment (mm) | ||
---|---|---|---|
u1 ≤ 2 | 2 < u1 ≤ 8 | u1 > 8 | |
Monthly reservoir water level drops by 10 m | 0.1964 | 0.6454 | 0.1582 |
Monthly reservoir water level drops by 15 m | 0.1528 | 0.6294 | 0.2178 |
Monthly reservoir water level drops by 20 m | 0.1180 | 0.5739 | 0.3081 |
Monthly reservoir water level rises by 10 m | 0.2126 | 0.6355 | 0.1519 |
Monthly reservoir water level rises by 15 m | 0.1756 | 0.6324 | 0.1920 |
Monthly reservoir water level rises by 20 m | 0.1518 | 0.6139 | 0.2343 |
Monthly groundwater level drops by 5 m | 0.2175 | 0.6338 | 0.1487 |
Monthly groundwater level drops by 7.5 m | 0.1746 | 0.6308 | 0.1946 |
Monthly groundwater level drops by 10 m | 0.1547 | 0.6158 | 0.2295 |
Monthly groundwater level rises by 5 m | 0.2346 | 0.6286 | 0.1368 |
Monthly groundwater level rises by 7.5 m | 0.2028 | 0.6359 | 0.1613 |
Monthly groundwater level rises by 10 m | 0.1711 | 0.6290 | 0.1999 |
Monthly precipitation of 100 mm | 0.2264 | 0.6189 | 0.1547 |
Monthly precipitation of 150 mm | 0.2053 | 0.6223 | 0.1724 |
Monthly precipitation of 200 mm | 0.1835 | 0.6173 | 0.1992 |
Variables | VaR and Corresponding Displacement Increments |
---|---|
Monthly reservoir water level drop | 15.52 m (3.26 mm) |
Monthly reservoir water level rise | 19.64 m (2.84 mm) |
Monthly groundwater level drop | 6.33 m (2.59 mm) |
Monthly groundwater level rise | 12.94 m (2.28 mm) |
Monthly precipitation | 227.71 mm (2.07 mm) |
Variable Levels | Monthly Displacement Increment (mm) | |||
---|---|---|---|---|
2 | 4 | 6 | 8 | |
Monthly reservoir water level drops by 10 m | 1.25 | 1.71 | 2.74 | 6.47 |
Monthly reservoir water level drops by 15 m | 1.19 | 1.54 | 2.29 | 4.92 |
Monthly reservoir water level drops by 20 m | 1.13 | 1.36 | 1.82 | 3.25 |
Monthly reservoir water level rises by 10 m | 1.27 | 1.75 | 2.82 | 6.59 |
Monthly reservoir water level rises by 15 m | 1.22 | 1.60 | 2.42 | 5.27 |
Monthly reservoir water level rises by 20 m | 1.17 | 1.46 | 2.07 | 4.03 |
Monthly groundwater level drops by 5 m | 1.28 | 1.77 | 2.87 | 6.73 |
Monthly groundwater level drops by 7.5 m | 1.22 | 1.62 | 2.48 | 5.46 |
Monthly groundwater level drops by 10 m | 1.18 | 1.49 | 2.14 | 4.28 |
Monthly groundwater level rises by 5 m | 1.28 | 1.82 | 2.95 | 6.82 |
Monthly groundwater level rises by 7.5 m | 1.25 | 1.68 | 2.62 | 5.80 |
Monthly groundwater level rises by 10 m | 1.20 | 1.56 | 2.29 | 4.71 |
Monthly precipitation of 100 mm | 1.29 | 1.80 | 2.87 | 6.46 |
Monthly precipitation of 150 mm | 1.26 | 1.70 | 2.65 | 5.80 |
Monthly precipitation of 200 mm | 1.22 | 1.60 | 2.38 | 4.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Tang, L.; Yang, Y.; Sun, N.; Wang, Y. Modeling Dependence Structures in Hydrodynamic Landslide Deformation via Hierarchical Archimedean Copula Framework: Case Study of the Donglinxin Landslide. Water 2025, 17, 1399. https://doi.org/10.3390/w17091399
Wang R, Tang L, Yang Y, Sun N, Wang Y. Modeling Dependence Structures in Hydrodynamic Landslide Deformation via Hierarchical Archimedean Copula Framework: Case Study of the Donglinxin Landslide. Water. 2025; 17(9):1399. https://doi.org/10.3390/w17091399
Chicago/Turabian StyleWang, Rubin, Luyun Tang, Yue Yang, Ning Sun, and Yunzi Wang. 2025. "Modeling Dependence Structures in Hydrodynamic Landslide Deformation via Hierarchical Archimedean Copula Framework: Case Study of the Donglinxin Landslide" Water 17, no. 9: 1399. https://doi.org/10.3390/w17091399
APA StyleWang, R., Tang, L., Yang, Y., Sun, N., & Wang, Y. (2025). Modeling Dependence Structures in Hydrodynamic Landslide Deformation via Hierarchical Archimedean Copula Framework: Case Study of the Donglinxin Landslide. Water, 17(9), 1399. https://doi.org/10.3390/w17091399