Application of the Probability of Extreme Sea Levels at Selected Baltic Sea Tide Gauge Stations
Abstract
1. Introduction
- The filling-up of the Baltic Sea, that is, the initial sea level prior to the occurrence of an extreme event;
- The action of tangential wind stresses within a given area (wind direction, i.e., shore-bound or seaward; wind velocities; and the duration of wind action);
- The deformation of the sea surface by mesoscale deep low-pressure systems rapidly crossing the Baltic Sea, a phenomenon that produces a water cushion (a baric wave) and seiche-like variations in the sea levels of the Baltic Sea. A water cushion is a surge of water caused by sub-pressure associated with a low-pressure system resulting from the inverse barometer effect (where a 1 hPa drop in pressure in the depression center increases the sea level by 1 cm).
2. Materials and Methods
2.1. Research Material
2.2. Determination of the Probability of Theoretical Water Levels—Statistical Distributions
2.3. The Use of ArcGis Software to Visualize the Maximum and Minimum Theoretical Water as Well as to Calculate the Sea Surface and the Length of the Coastline
3. Results and Discussion
3.1. Critical Sea Levels off the Baltic States
3.1.1. Denmark
3.1.2. Sweden
3.1.3. Germany
3.1.4. Poland
3.1.5. Lithuania
3.1.6. Latvia
3.1.7. Estonia
3.1.8. Finland
3.1.9. The Russian Federation
3.2. Geographical Distribution of Theoretical Maximum and Minimum Water Levels of the Baltic Sea
3.3. Comparison of Theoretical Water Heights for the 1900–1960 and 1960–2020 Periods
3.4. Changes in the Area and Length of the Coastline Corresponding to Different Theoretical Water Heights and Different Return Periods in the Baltic Sea
3.5. The Number of Observations of Exceeding the Theoretical Water Height for Different Return Periods
4. Conclusions
- The critical sea levels determined by the national hydrological services of Baltic Sea countries regarding the risk of storm floods are very diverse. This is mainly due to the locations of the tide gauge stations, bathymetric conditions, and hydrotechnical development.
- Over the last 60 years, a stable trend of an increase in both the theoretical and observed maximum water levels in the Baltic Sea has been visible. The sea level rise averaged for the entire Baltic Sea coast was 15.6 cm (2.6 mm/year). At the same time, the return period for the Baltic tide gauge stations reduced by about 50% (on average). It can be concluded that hydrological hazards in the Baltic Sea region now appear twice as often as they did in the first half of the 20th century.
- For the maximum theoretical water level with a 200-year return period, as much as 19.1% of the Baltic Sea surface and 23.8% of its coastline length may be influenced by extremely high sea levels (≥200 cm). These are the areas in the inner parts of the gulfs: Finland, Riga, Bothnian Bay, Mecklemurg Bay, and Kiel Bay. For these areas, the critical water levels are lower than 200 cm, indicating a potential risk of storm floods.
- Pärnu Bay, within which lies Pärnu station, is the most hydrologically dangerous basin of the Baltic Sea. In 1960 to 2020, there were three cases of exceedances of the theoretical water level with 20-, 50-, and 100-year return periods and one case of an exceedance of the theoretical water level with a 200-year return period. This distinguishes Pärnu from other tide gauge stations in the Baltic Sea.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tide Gauge | Number of Observations of Exceedances | |||
---|---|---|---|---|
20 Years Return Period | 50 Years Return Period | 100 Years Return Period | 200 Years Return Period | |
Smögen (SE) | - | - | - | - |
Klagshamn (SE) | 1 | - | - | - |
Ystad-Skanör (SE) | 2 | 1 | - | - |
Kungsholmsfort (SE) | - | - | - | - |
Oskarshamn (SE) | 1 | - | - | - |
Visby (SE) | 8 | - | - | - |
Marviken (SE) | 5 | - | - | - |
Landsort (SE) | 3 | - | - | - |
Stockholm (SE) | 4 | 2 | - | - |
Forsmark (SE) | 1 | 1 | - | - |
Spikarna (SE) | 2 | - | - | - |
Ratan (SE) | 1 | - | - | - |
Furuögrund (SE) | 2 | - | - | - |
Frederikshavn (DK) | 7 | 1 | - | - |
Aarhus (DK) | 5 | - | - | - |
Hornbaek (DK) | 1 | 1 | - | - |
Fynshav (DK) | 2 | - | - | - |
Korsor (DK) | 2 | 2 | - | - |
Gedser (DK) | 1 | - | - | - |
Wismar (DE) | 5 | 1 | - | - |
Warnemunde (DE) | 4 | - | - | - |
Sassnitz (DE) | - | - | - | - |
Greifswald (DE) | 4 | - | - | - |
Świnoujście | 2 | - | - | - |
Kołobrzeg (PL) | - | - | - | - |
Ustka (PL) | 1 | - | - | - |
Władysławowo (PL) | 1 | - | - | - |
Gdańsk (PL) | - | - | - | - |
Kłajpeda (LT) | 2 | - | - | - |
Pärnu (EE) | 3 | 3 | 3 | 1 |
Ristna (EE) | 4 | 1 | 1 | - |
Tallinn (EE) | - | - | - | - |
Narva (EE) | - | - | - | - |
Hamina (FI) | 1 | - | - | - |
Helsinki (FI) | 1 | - | - | - |
Hanko (FI) | 2 | - | - | - |
Degerby (FI) | - | - | - | - |
Mäntyluoto (FI) | 1 | - | - | - |
Vaasa (FI) | - | - | - | - |
Kemi (FI) | 4 | 1 | - | - |
Daugavgrīva (LV) | 3 | 2 | 1 | - |
Ventspils (LV) | 2 | - | - | - |
References
- Suursaar, Ü.; Sooäär, J. Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus 2007, 59, 249–260. [Google Scholar] [CrossRef]
- Gräwe, U.; Burchard, H. Storm surges in the Western Baltic Sea: The present and a possible future. Clim. Dyn. 2012, 39, 165–183. [Google Scholar] [CrossRef]
- Johansson, M.; Boman, H.; Kahma, K.; Launiainen, J. Trends in sea level variability in the Baltic Sea. Boreal Environ. Res. 2001, 6, 159–179. [Google Scholar]
- Meier, M. Baltic Sea climate in the late twenty-first century: A dynamical downscaling approach using two global models and two emission scenarios. Clim. Dyn. 2006, 27, 39–68. [Google Scholar] [CrossRef]
- Lowe, J.A.; Gregory, J.M. The effects of climate change on storm surges around the United Kingdom. Philos. Trans. R. Soc. 2005, 363, 1313–1328. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, C.; Gröger, M.; Arneborg, L.; Andersson, H.C. Extreme sea levels in the Baltic Sea under climate change scenarios–Part 1: Model validation and sensitivity. Ocean Sci. 2019, 15, 1399–1418. [Google Scholar] [CrossRef]
- Pugh, D.T. Changing Sea Levels: Effects of Tides, Weather and Climate; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Pirazzoli, P.A.; Tomasin, A. Estimation of return periods for extreme sea levels: A simplified empirical correction of the joint probabilities method with examples from the French Atlantic coast and three ports in the southwest of the UK. Ocean. Dyn. 2007, 57, 91–107. [Google Scholar] [CrossRef]
- Rayner, R.; MacKenzie, B. A first-order assessment of the impact of long-term trends in extreme sea levels on offshore structures and coastal refineries. In Understanding Sea-Level Rise and Variability; Church, J.A., Woodworth, P.L., Aadrup, T., Wilson, W.S., Eds.; Wiley-Blackwell: Oxford, UK, 2010; pp. 52–60. [Google Scholar]
- Højvandsstatistikker. Kystdirektoratet. 2024. Available online: https://kyst.dk/media/ikykmzej/hoejvandsstatistikker-2024-05-11-2024.pdf (accessed on 30 September 2024).
- Södling, J.; Nerheim, S. Statistisk metodik för beräkning av extrema havsvattenstånd. In Oceanografi 124; SMHI: Norrkoping, Sweden, 2017; Available online: https://smhi.diva-portal.org/smash/get/diva2:1184661/FULLTEXT01.pdf (accessed on 30 December 2024).
- Potvynių Direktyvos Įgyvendinimas, 2018, Potvynių Grėsmės ir Potvynių Rizikos Žemėlapiai (II Etapas). Available online: https://vanduo.old.gamta.lt/cms/index?rubricId=6d87deab-3ecc-412a-9b66-7fd6361f26ba (accessed on 30 September 2024).
- Wiśniewski, B.; Wolski, T. Low water levels in the estuary section of the Oder River. Logistyka 2011, 6, 5069–5087, (In Polish with English Summary). [Google Scholar]
- Wiśniewski, B.; Wolski, T. Physical aspects of extreme storm surges and falls on the Polish coast. Oceanologia 2011, 53, 373–390. [Google Scholar] [CrossRef]
- Wolski, T.; Wiśniewski, B. Characteristics and Long-Term Variability of Occurrences of Storm Surges in the Baltic Sea. Atmosphere 2021, 12, 1679. [Google Scholar] [CrossRef]
- Sztobryn, M.; Weidig, B.; Stanisławczyk, I.; Holfort, J.; Kowalska, B.; Mykita, M.; Kańska, A.; Krzysztofik, K.; Perlet, I. Negative Surges in the Southern Baltic Sea Report No. 45; Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Hamburg: Rostock, Germany, 2009. [Google Scholar]
- Wolski, T.; Wiśniewski, B. Geographical diversity in the occurrence of extreme sea levels on the coasts of the Baltic Sea. J. Sea Res. 2020, 159, 101890. [Google Scholar] [CrossRef]
- Wiśniewski, B.; Wolski, T. Occurrence probability of maximum sea levels in Polish ports of Baltic Sea coast. Pol. Marit. Res. 2009, 16, 62–69. [Google Scholar] [CrossRef]
- Wiśniewski, B.; Wolski, T. Katalogi Wezbrań i Obniżeń Sztormowych Poziomów Morza oraz Ekstremalne Poziomy Wód na Polskim Wybrzeżu [Catalogues of Sea Level Storm Surges and Falls and Extreme Water Levels on the Polish Coast]; Akademia Morska: Szczecin, Poland, 2009; p. 158. (In Polish) [Google Scholar]
- Anghel, C.G. Revisiting the Use of the Gumbel Distribution: A Comprehensive Statistical Analysis Regarding Modeling Extremes and Rare Events. Mathematics 2024, 12, 2466. [Google Scholar] [CrossRef]
- Coles, S. Classical Extreme Value Theory and Models. In An Introduction to Statistical Modeling of Extreme Values; Springer Series in Statistics; Springer: London, UK, 2001. [Google Scholar] [CrossRef]
- Gumbel Distribution. Available online: https://www.sciencedirect.com/topics/mathematics/gumbel-distribution (accessed on 30 December 2024).
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis, An Approach Based on L-Moments; Cambridge University Press, The Edinburgh Building: Cambridge, UK, 1997. [Google Scholar]
- Thompson, E.M.; Hewlett, J.B.; Baise, L.G.; Vogel, R.M. The Gumbel hypothesis test for left censored observations using regional earthquake records as an example. Nat. Hazards Earth Syst. Sci. 2011, 11, 115–126. [Google Scholar] [CrossRef]
- Gumbell, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar]
- Koutsoyiannis, D. On the appropriateness of the Gumbel distribution for modeling extreme rainfall. In Proceedings of the ESF LESC Exploratory Workshop, Hydro Risk, Bologna, Italy, 24–25 October 2003. [Google Scholar]
- Kaczmarek, Z. Statistical Methods in Hydrology and Meteorology; Komunikacji i Łączności: Warszawa, Poland, 1970; (In Polish with English Summary). [Google Scholar]
- Griffis, V.W.; Stedinger, J.R. Log-Pearson type 3 distribution and its application in flood frequency analysis. I: Distribution characteristics. J. Hydrol. Eng. 2007, 12, 482–491. [Google Scholar] [CrossRef]
- Rao, A.R.; Hamed, K.H. Flood Frequency Analysis; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Singh, V.P. Entropy-Based Parameter Estimation in Hydrology; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Neslihan, S.; Recep, Y.; Tefaruk, H.; Ahmet, D. Comparison of probability weighted moments and maximum likelihood methods used in flood frequency analysis for Ceyhan River basin. Arab. J. Sci. Eng. 2010, 35, 49–69. [Google Scholar]
- Hosking, J.R.M. L-moments: Analysis and Estimation of Distributions using Linear, Combinations of Order Statistics. J. R. Statist. Soc. 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Gubareva, T.S.; Gartsman, B.I. Estimating Distribution Parameters of Extreme Hydrometeorological Characteristics by L-Moment Method. Water Resour. 2010, 37, 437–445. [Google Scholar] [CrossRef]
- Stack Exchange. Available online: https://stats.stackexchange.com/questions/80380/examples-where-method-of-moments-can-beat-maximum-likelihood-in-small-samples?utm_source=chatgpt.com (accessed on 30 December 2024).
- Delicado, P.; Goria, M.N. A small sample comparison of maximum likelihood, moments and L-moments methods for the asymmetric exponential power distribution. Comput. Stat. Data Anal. 2008, 52, 1661–1673. [Google Scholar] [CrossRef]
- Mazucheli, J.; Menezes, A.F.B. L-moments and maximum likelihood estimation for the complementary beta distribution with applications on temperature extremes. J. Data Sci. 2019, 17, 391–406. [Google Scholar] [CrossRef]
- Kite, G.W. Frequency and Risk Analyses in Hydrology; Water Resources Publications, 1977; 224p. [Google Scholar]
- HEC-SSP User’s Manual—Distribution Fitting and Parameter Estimation. Available online: https://www.hec.usace.army.mil/confluence/sspdocs/sspum/2.3/distribution-fitting-analysis/distribution-fitting-and-parameter-estimation (accessed on 30 December 2024).
- McGrath, D.; Zhang, C.; Carton, O.T. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environ. Pollut. 2004, 127, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Urbański, J. GIS in Environmental Research; Wydawnictwo Uniwersytetu Gdańskiego: Gdańsk, Poland, 2010. (In Polish) [Google Scholar]
- Kokesz, Z. Preparation of isoline maps using the ordinary kriging procedure—Benefits and limitations. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2010, 79, 363–382, (In Polish with English Summary). [Google Scholar]
- Badura, H.; Zawadzki, J.; Fabijańczyk, P. Block kriging and GIS methodsin geostatistical modeling of methane gas content in coal mines. Rocz. Geomatyki 2012, 10, 17–26, (In Polish with English Summary). [Google Scholar]
- Administrative Units 2016. Available online: https://ec.europa.eu/eurostat/web/gisco/geodata/administrative-units (accessed on 30 September 2024).
- DMI, Varsler. Danish Meteorological Institute. 2024. Available online: https://www.dmi.dk/dmis-vejrprodukter/varsler/ (accessed on 30 September 2024).
- DMI, Stormflodsvarsling. Danish Meteorological Institute. 2024. Available online: https://www.dmi.dk/hav-og-is/temaforside-stormflod/stormflodsvarsling/ (accessed on 30 September 2024).
- SMHI, Varningsdefinitioner. Swedish Meteorological and Hydrological Institute. 2024. Available online: http://www.lokaltvader.se/budskar/smhi-varningar-def.php (accessed on 30 September 2024).
- Schöld, S.; Hellström, S.; Ivarsson, C.-L.; Kållberg, P.; Lindow, H.; Nerheim, S.; Schimanke, S.; Södling, J.; Wern, L. Vattenståndsdynamik längs Sveriges kust. In Oceanografi 123; SMHI. 2017. Available online: https://smhi.diva-portal.org/smash/get/diva2:1184660/FULLTEXT01.pdf (accessed on 30 December 2024).
- BSH. Wasserstandsvorhersage an der Ostsee. Bundesamt für Seeschifffahrt und Hydrographie. 2024. Available online: https://www.bsh.de/DE/THEMEN/Wasserstand_und_Gezeiten/Ostsee/ostsee_node.html (accessed on 30 September 2024).
- IMGW, Hydro. Institute of Meteorology and Water Management. 2024. Available online: https://hydro.imgw.pl/#map/18.4239,53.6505,7.333333333333333,true,false,false,false,false,false (accessed on 30 September 2024).
- Lietuvos Respublikos Aplinkos Ministro. Dėl Stichinių, Katastrofinių Meteorologinių Ir Hidrologinių Reiškinių Rodiklių Patvirtinimo. Isakymu Nr. D1-870. 2024. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.412088/hQMHFCRIAW (accessed on 30 September 2024).
- LEGMC. Brīdinājumi. Latvian Environment, Geology and Meteorology Centre. 2024. Available online: https://bridinajumi.meteo.lv/doc/Apraksts_par_bridinajumu_sistemu_LV-LV_2024-05.pdf (accessed on 30 December 2024).
- EEA. Hoiatuste kriteeriumid. Estonian Environment Agency. 2024. Available online: https://www.ilmateenistus.ee/ilmatarkus/kasulik-teada/hoiatuste-kriteeriumid/ (accessed on 30 September 2024).
- FMI. Meriveden Korkeusvaroitus. Finnish Meteorological Institute. 2024. Available online: https://www.ilmatieteenlaitos.fi/tietoa-merivedenkorkeusvaroitus,/ (accessed on 30 December 2024).
- Kulikov, E.A.; Medvedev, I.P. Variability of the Baltic Sea level and floods in the Gulf of Finland. Oceanology 2013, 53, 145–151. [Google Scholar] [CrossRef]
- Leppäranta, M.; Myrberg, K. Physical Oceanography of the Baltic Sea; Springer Science & Business Media: Berlin/Heideberg, Germany; New York, NY, USA, 2009. [Google Scholar]
- Averkiev, A.S.; Klevanny, K.A. Case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland. Cont. Shelf Res. 2010, 30, 707–714. [Google Scholar] [CrossRef]
- Suursaar, Ü.; Kullas, T.; Kuusik, T. Possible changes in hydrodynamic regime in the Estonian coastal waters (the Baltic Sea) as a result of changes in wind climate. J. Coast. Res. (Proc. Aust.) 2007, 247–252. Available online: https://www.jstor.org/stable/26481592?seq=1 (accessed on 30 December 2024).
- Richter, A.; Groh, A.; Dietrich, R. Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys. Chem. Earth 2012, 53, 43–53. [Google Scholar] [CrossRef]
- IPCC. Sea Level. In Sixth Assessment Report AR6, Climate Change 2021: The Physical Science Basis, 1st ed.; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Chen, Y., Goldfarb, L., Gomis, M.I., Matthews, J.B.R., Berger, S., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 44–46. [Google Scholar]
- Suursaar, Ü.; Kullas, T. Decadal changes in wave climate and sea level regime: The main causes of therecent intensification of coastal geomorphic processes along the coasts of Western Estonia. WIT Trans. Ecol. Environ. 2009, 126, 105–116. [Google Scholar]
- Heyen, H.; Zorita, E.; von Storch, H. Statistical downscaling of monthly mean North Atlantic air-pressure to sea-level anomalies in the Baltic Sea. Tellus A 1996, 48, 312–323. [Google Scholar] [CrossRef]
- Link, P.; Post, P. Spatial and temporal variance of cyclones in the Baltic Sea region. In Session AW8: Weather Types Classifications, Proceedings of the 5th Annual Meeting of the European Meteorological Society, Utrecht, The Netherlands, 12–16 September 2005; COST Action 733; EU Publications Office: Luxembourg, 2007; pp. 69–76. [Google Scholar]
- Sepp, M.; Post, P.; Jaagus, J. Long-term changes in the frequency of cyclones and their trajectories in Central and Northern Europe. Nord. Hydrol. 2005, 36, 297–309. [Google Scholar] [CrossRef]
- Sepp, M. Changes in frequency of Baltic Sea cyclones and their relationships with NAO and climate in Estonia. Boreal Environ. Res. 2009, 14, 143–151. [Google Scholar]
- Sepp, M.; Mändla, K.; Post, P. On the Origins of Cyclones Entering the Baltic Sea Region. In EMS Annual Meeting Abstracts; European Meteorological Society: Berlin, Germany, 2014; Volume 11. [Google Scholar]
- Kulikov, E.A.; Medvedev, I.P. Extreme statistics of storm surges in the Baltic Sea. Oceanology 2017, 57, 772–783. [Google Scholar] [CrossRef]
- Pärnu Bay. Available online: https://en.wikipedia.org/wiki/P%C3%A4rnu_Bay#cite_note-1,/ (accessed on 30 December 2024).
- Suursaar, Ü.; Kullas, T.; Szava-Kovats, R. Wind and wave storms, storm surges and sea level rise alongthe Estonian coast of the Baltic Sea, Management of Natural Resources, Sustainable Development andEcological Hazards II. WIT Trans. Ecol. Environ. 2009, 127, 149–160. [Google Scholar]
- Post, P.; Kõuts, T. Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea. Oceanologia 2014, 56, 241–258. [Google Scholar] [CrossRef]
- Suursaar, Ü.; Kullas, T.; Otsmann, M.; Saaremäe, I.; Kuik, J.; Merilain, M. Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences inthe Estonian coastal waters. Boreal Environ. Res. 2006, 11, 143–159. [Google Scholar]
- Wolski, T.; Wiśniewski, B.; Giza, A.; Kowalewska-Kalkowska, H.; Boman, H.; Grabbi-Kaiv, S.; Hammarklint, T.; Holfort, J.; Lydeikaite, Z. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 2014, 56, 259–290. [Google Scholar] [CrossRef]
- Suursaar, Ü.; Kullas, T.; Otsmann, M.; Kõuts, T. Extreme sea level events in the coastal waters of western Estonia. J. Sea Res. 2003, 49, 295–303. [Google Scholar] [CrossRef]
Area | High Water Level | Very High Water Level |
---|---|---|
Bothnian Bay, Western and Southern coasts of Sweden | level ≥ 80 cm | level ≥ 120 cm |
Eastern coast except Bothnian Bay | level ≥ 65 cm | level ≥ 100 cm |
Low Tide. Negative Water Level Deviations from Normal Mean Water (NMW) | High Water Positive Water Level Deviations from NMW |
---|---|
|
|
Tide Gauge | Warning Levels [cm] | Alarm Levels [cm] |
---|---|---|
Świnoujście | 60 | 80 |
Kołobrzeg | 70 | 110 |
Ustka | 70 | 100 |
Władysławowo | 50 | 70 |
Gdańsk, Port Północny | 50 | 70 |
Krynica Morska | 60 | 80 |
Tide Gauges | Very High Water Level [cm] | Very Low Water Level [cm] |
---|---|---|
Klaipeda, Nida, Vente | ≥150 | ≤100 |
Tide Gauge | Water Level Below Flooding Threat Level [cm] | High Water Level [cm] | Very High Water Level [cm] | Extreme Water Level [cm] |
---|---|---|---|---|
Riga (Daugavgrīva) | 114 | 115–154 | 155–184 | ≥185 |
Liepājā | 104 | 105–134 | 135–154 | ≥155 |
Ventspils | 94 | 95–134 | 135–154 | ≥155 |
Tide Gauges and Critical Level | Dangerous (Level 1) | Very Dangerous (Level 2) | Extremely Dangerous (Level 3) |
---|---|---|---|
Pärnu +180 cm Haapsalu +160 cm Narva-Jõesuu +180 cm Tallinie Pirita +100 cm Tallinnn Port +140 cm Kuressaare +170 cm | The water level has risen to a critical level | The water level has risen ≥0.5 m above the critical limit (depending on location) | The water level has risen ≥1 m above the critical limit and caused widespread flooding |
Water Area and Tide Gauge | Low Sea Level [cm] | High Level [cm] | Very High Level [cm] | Dangerously High Level [cm] |
---|---|---|---|---|
Once a Year | Once in 5 Years | Once Every 20 Years | ||
Northern part of Bothnian Bay (Kemi, Oulu) | −80 | 115 | 140 | 170 |
Southern part of Bothnian Bay (Raahe, Pietarsaari) | −65 | 85 | 110 | 130 |
Kvarken (Vaasa) | −50 | 85 | 110 | 130 |
Bothnian Sea (Kaskinen, Pori, Rauma) | −50 | 75 | 100 | 120 |
Sea of Åland (Föglö) | −50 | 65 | 85 | 100 |
Archipelago Sea (Turku) and western part of the Gulf of Finland (Hanko) | −50 | 70 | 95 | 110 |
Western part of the Gulf of Finland (Helsinki) | −60 | 80 | 115 | 130 |
Eastern part of the Gulf of Finland (Hamina) | −70 | 110 | 145 | 175 |
T (Years) | P (%) | Tide Gauge Station | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Korsør | Wismar | Ustka | Visby | Pärnu | |||||||
TW | SE | TW | SE | TW | SE | TW | SE | TW | SE | ||
200 | 0.5% | 173.9 | 9.8 | 220.5 | 11.8 | 181.7 | 10.5 | 98.1 | 5.4 | 264.9 | 15.1 |
100 | 1% | 162.3 | 8.6 | 206.4 | 10.4 | 169.3 | 9.3 | 91.7 | 4.8 | 247.0 | 13.3 |
50 | 2% | 150.7 | 7.5 | 192.3 | 9.1 | 156.7 | 8.1 | 85.2 | 4.2 | 229.0 | 11.6 |
20 | 5% | 135.1 | 6.0 | 173.5 | 7.3 | 140.0 | 6.5 | 76.6 | 3.4 | 205.1 | 9.3 |
10 | 10% | 123.1 | 4.9 | 159.0 | 6.0 | 127.1 | 5.1 | 69.9 | 2.7 | 186.5 | 7.6 |
5 | 20% | 110.6 | 3.9 | 143.9 | 4.7 | 113.6 | 4.1 | 63.0 | 2.1 | 167.2 | 5.9 |
4 | 25% | 106.3 | 3.5 | 138.7 | 4.2 | 109.1 | 3.8 | 60.6 | 1.9 | 160.7 | 5.4 |
3.33 | 30% | 102.7 | 3.2 | 134.4 | 3.9 | 105.2 | 3.5 | 58.6 | 1.8 | 155.2 | 5.0 |
2 | 50% | 91.7 | 2.5 | 121.0 | 3.0 | 93.3 | 2.7 | 52.5 | 1.4 | 138.1 | 3.9 |
1.33 | 75% | 80.0 | 2.4 | 106.9 | 2.6 | 80.7 | 2.3 | 46.0 | 1.2 | 120.1 | 3.3 |
1.25 | 80% | 77.6 | 2.4 | 104.0 | 2.6 | 78.2 | 2.3 | 44.7 | 1.2 | 116.4 | 3.3 |
1.11 | 90% | 71.6 | 2.2 | 96.7 | 2.7 | 71.7 | 2.4 | 41.3 | 1.2 | 107.1 | 3.5 |
1.01 | 99% | 60.0 | 2.1 | 82.8 | 2.5 | 59.3 | 2.2 | 34.9 | 1.1 | 89.3 | 3.3 |
T (Years) | P (%) | Tide Gauge Station | |||||||||
Ristna | Helsinki | Narva | Vassa | Kemi | |||||||
TW | SE | TW | SE | TW | SE | TW | SE | TW | SE | ||
200 | 0.5% | 221.1 | 14.5 | 189.0 | 11.4 | 256.0 | 14.9 | 194.9 | 13.0 | 237.3 | 13.8 |
100 | 1% | 203.9 | 12.8 | 175.4 | 10.1 | 238.2 | 13.2 | 179.4 | 11.5 | 220.8 | 12.2 |
50 | 2% | 186.5 | 11.2 | 161.8 | 8.8 | 220.5 | 11.5 | 163.9 | 10.0 | 204.3 | 10.6 |
20 | 5% | 163.4 | 9.0 | 143.6 | 7.1 | 196.7 | 9.2 | 143.2 | 8.1 | 182.3 | 8.6 |
10 | 10% | 145.6 | 7.3 | 129.6 | 5.8 | 178.4 | 7.5 | 127.1 | 6.6 | 165.3 | 7.0 |
5 | 20% | 127.0 | 5.7 | 114.9 | 4.5 | 159.3 | 5.9 | 110.4 | 5.1 | 147.6 | 5.5 |
4 | 25% | 120.7 | 5.2 | 109.9 | 4.1 | 152.8 | 5.4 | 104.8 | 4.7 | 141.5 | 5.0 |
3.33 | 30% | 115.4 | 4.8 | 105.7 | 3.8 | 147.3 | 4.9 | 100.0 | 4.31 | 136.5 | 4.6 |
2 | 50% | 98.9 | 3.7 | 92.8 | 2.9 | 130.4 | 3.8 | 85.2 | 3.4 | 120.8 | 3.6 |
1.33 | 75% | 81.6 | 3.2 | 79.1 | 2.5 | 112.6 | 3.3 | 69.7 | 2.9 | 104.3 | 3.0 |
1.25 | 80% | 78.0 | 3.2 | 76.3 | 2.5 | 108.9 | 3.3 | 66.5 | 2.9 | 100.9 | 3.0 |
1.11 | 90% | 69.0 | 3.3 | 69.3 | 2.6 | 99.7 | 3.4 | 58.4 | 3.0 | 92.3 | 3.2 |
1.01 | 99% | 52.0 | 3.1 | 55.8 | 2.4 | 82.1 | 3.2 | 43.1 | 2.9 | 76.0 | 3.0 |
T (Years) | P (%) | Tide Gauge Station | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Korsør | Wismar | Ustka | Visby | Pärnu | |||||||
TW | SE | TW | SE | TW | SE | TW | SE | TW | SE | ||
1.01 | 99% | −45.1 | 1.5 | −81.3 | 3.3 | −31.0 | 1.9 | −19.9 | 1.5 | −42.9 | 2.3 |
1.11 | 90% | −55.3 | 1.8 | −90.2 | 3.4 | −42.2 | 2.1 | −29.2 | 1.6 | −54.6 | 2.4 |
1.25 | 80% | −59.9 | 1.6 | −95.9 | 3.5 | −47.4 | 1.9 | −33.3 | 1.5 | −60.5 | 2.3 |
1.33 | 75% | −61.6 | 1.6 | −98.4 | 3.6 | −49.5 | 2.0 | −35.0 | 1.4 | −62.9 | 2.5 |
2 | 50% | −69.2 | 1.6 | −110.8 | 4.2 | −58.4 | 2.1 | −41.7 | 1.5 | −73.4 | 2.7 |
3.33 | 30% | −75.2 | 1.7 | −123.1 | 4.6 | −65.8 | 2.2 | −47.1 | 1.6 | −82.5 | 2.8 |
4 | 25% | −77.2 | 1.8 | −127.2 | 5.1 | −68.2 | 2.3 | −48.9 | 1.7 | −85.5 | 3.0 |
5 | 20% | −79.2 | 1.9 | −131.7 | 6.9 | −70.7 | 2.9 | −50.6 | 2.0 | −88.6 | 3.9 |
10 | 10% | −84.8 | 2.3 | −145.5 | 8.9 | −77.7 | 3.3 | −55.6 | 2.5 | −97.7 | 5.0 |
20 | 5% | −89.4 | 2.9 | −159.2 | 11.2 | −83.6 | 4.76 | −59.6 | 3.3 | −105.7 | 6.4 |
50 | 2% | −94.0 | 3.7 | −172.8 | 12.2 | −89.6 | 5.3 | −63.7 | 3.6 | −113.7 | 7.1 |
100 | 1% | −98.6 | 4.4 | −186.5 | 12.9 | −95.5 | 5.6 | −67.8 | 3.9 | −121.7 | 7.6 |
200 | 0.5% | −102.3 | 5.1 | −199.3 | 14.3 | −100.3 | 6.5 | −71.0 | 4.5 | −128.4 | 8.7 |
T (Years) | P (%) | Tide Gauge Station | |||||||||
Ristna | Helsinki | Narva | Vassa | Kemi | |||||||
TW | SE | TW | SE | TW | SE | TW | SE | TW | SE | ||
1.01 | 99% | −16.4 | 1.6 | −33.2 | 1.8 | −38.5 | 2.1 | −31.2 | 2.1 | −31.1 | 3.2 |
1.11 | 90% | −36.8 | 1.8 | −42.8 | 1.9 | −53.7 | 2.6 | −43.0 | 2.2 | −50.1 | 3.5 |
1.25 | 80% | −44.2 | 1.6 | −47.5 | 1.8 | −60.2 | 2.2 | −48.5 | 2.1 | −58.8 | 3.2 |
1.33 | 75% | −46.8 | 1.9 | −49.4 | 1.9 | −62.7 | 2.1 | −50.8 | 2.1 | −62.3 | 3.2 |
2 | 50% | −56.4 | 2.1 | −57.6 | 2.1 | −72.9 | 2.2 | −60.3 | 2.3 | −76.9 | 3.4 |
3.33 | 30% | −62.5 | 2.2 | −64.6 | 2.2 | −80.8 | 2.3 | −68.1 | 2.4 | −88.8 | 3.5 |
4 | 25% | −64.5 | 2.4 | −67.0 | 2.3 | −83.4 | 2.4 | −70.8 | 2.5 | −92.8 | 3.7 |
5 | 20% | −66.2 | 3.2 | −69.4 | 2.9 | −86.0 | 2.8 | −73.4 | 3.2 | −96.7 | 4.6 |
10 | 10% | −70.5 | 4.3 | −76.3 | 3.7 | −93.0 | 3.5 | −81.0 | 4.0 | −107.9 | 5.8 |
20 | 5% | −73.2 | 6.0 | −82.3 | 4.8 | −98.6 | 4.5 | −87.4 | 5.2 | −117.3 | 7.5 |
50 | 2% | −75.8 | 6.9 | −88.3 | 5.3 | −104.2 | 5.0 | −93.8 | 5.7 | −126.8 | 8.4 |
100 | 1% | −78.5 | 7.5 | −94.3 | 5.7 | −109.8 | 5.4 | −100.3 | 6.1 | −136.2 | 8.9 |
200 | 0.5% | −79.9 | 9.1 | −99.3 | 6.6 | −114.0 | 6.3 | −105.5 | 7.1 | −143.7 | 10.4 |
T (Years) | P (%) | Tide Gauge Station | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Smögen | Kungs-Holmsfort | Landsort | Stockholm | Ratan | Furuö-Grund | Frederikshavn | Aarhus | Hornbaek | Korsør | |||
200 | 0.5% | 13.1 | 7.96 | 24.9 | 20.2 | 28.2 | 34.4 | 16.2 | 12.8 | 16.8 | 10.0 | |
100 | 1% | 12.0 | 8.08 | 22.3 | 18.2 | 26.1 | 32.7 | 14.4 | 12.4 | 15.6 | 9.4 | |
75 | 1.33% | 11.6 | 8.14 | 21.2 | 17.5 | 25.3 | 32.0 | 13.7 | 12.3 | 15.2 | 9.2 | |
50 | 2% | 11.0 | 8.21 | 19.7 | 16.3 | 24.1 | 31.0 | 12.7 | 12.1 | 14.5 | 8.9 | |
20 | 5% | 9.6 | 8.39 | 16.2 | 13.8 | 21.3 | 28.7 | 10.4 | 11.7 | 12.9 | 8.1 | |
10 | 10% | 8.5 | 8.52 | 13.5 | 11.8 | 19.2 | 27.0 | 8.6 | 11.3 | 11.7 | 7.6 | |
5 | 20% | 7.3 | 8.66 | 10.7 | 9.7 | 17.0 | 25.1 | 6.7 | 11.0 | 10.4 | 7.0 | |
4 | 25% | 7.0 | 8.7 | 9.8 | 9.0 | 16.3 | 24.5 | 6.1 | 10.8 | 10.0 | 6.8 | |
3.33 | 30% | 6.6 | 8.75 | 9.0 | 8.4 | 15.6 | 24.0 | 5.6 | 10.7 | 9.7 | 6.6 | |
2 | 50% | 5.6 | 8.86 | 6.5 | 6.6 | 13.7 | 22.3 | 3.9 | 10.4 | 8.5 | 6.1 | |
1.33 | 75% | 4.6 | 9 | 3.9 | 4.7 | 11.6 | 20.6 | 2.2 | 10.1 | 7.4 | 5.6 | |
1.25 | 80% | 4.3 | 9.02 | 3.3 | 4.3 | 11.2 | 20.3 | 1.8 | 10.0 | 7.1 | 5.4 | |
1.11 | 90% | 3.8 | 9.09 | 2.0 | 3.3 | 10.1 | 19.4 | 0.9 | 9.8 | 6.5 | 5.2 | |
1.01 | 99% | 2.8 | 9.22 | −0.6 | 1.4 | 8.1 | 17.7 | −0.8 | 9.5 | 5.4 | 4.6 | |
T (Years) | P (%) | Tide Gauge Station | ||||||||||
Gedser | Frederica | Slipshavn | Copen-hagen | Hirt-hals | Świn-ujście | Kołobrzeg | Gdańsk | Helsinki | Hanko | Vaasa | ||
200 | 0.5% | −5.2 | 2.6 | 22.4 | 34.0 | 5.5 | 5.3 | −2.6 | 29.4 | 45.9 | 34.4 | 36.5 |
100 | 1% | −3.7 | 3.5 | 20.9 | 30.1 | 5.3 | 6.3 | −0.4 | 27.5 | 41.3 | 31.4 | 33.3 |
75 | 1.33% | −3.0 | 3.8 | 20.3 | 28.5 | 5.2 | 6.8 | 0.4 | 26.6 | 39.4 | 30.1 | 32.0 |
50 | 2% | −2.1 | 4.3 | 19.4 | 26.3 | 5.0 | 7.4 | 1.7 | 25.5 | 36.7 | 28.3 | 30.2 |
20 | 5% | −0.1 | 5.5 | 17.4 | 21.1 | 4.7 | 8.8 | 4.6 | 22.8 | 30.6 | 24.2 | 25.9 |
10 | 10% | 1.4 | 6.4 | 15.9 | 17.1 | 4.5 | 9.9 | 6.8 | 20.8 | 25.8 | 21.0 | 22.6 |
5 | 20% | 3.1 | 7.3 | 14.3 | 12.9 | 4.3 | 11.0 | 9.2 | 18.6 | 20.9 | 17.8 | 19.2 |
4 | 25% | 3.6 | 7.6 | 13.8 | 11.5 | 4.2 | 11.4 | 9.9 | 17.9 | 19.2 | 16.6 | 18.0 |
3.33 | 30% | 4.1 | 7.9 | 13.3 | 10.3 | 4.1 | 11.7 | 10.6 | 17.3 | 17.8 | 15.7 | 17.1 |
2 | 50% | 5.5 | 8.7 | 11.9 | 6.6 | 3.9 | 12.7 | 12.7 | 15.4 | 13.4 | 12.8 | 14.0 |
1.33 | 75% | 7.1 | 9.6 | 10.4 | 2.8 | 3.7 | 13.8 | 14.8 | 13.4 | 8.8 | 9.7 | 10.9 |
1.25 | 80% | 7.4 | 9.8 | 10.1 | 2.0 | 3.6 | 14.0 | 15.3 | 13.0 | 7.9 | 9.1 | 10.2 |
1.11 | 90% | 8.2 | 10.2 | 9.3 | 0.0 | 3.5 | 14.6 | 16.4 | 11.9 | 5.5 | 7.5 | 8.5 |
1.01 | 99% | 9.7 | 11.1 | 7.9 | −3.9 | 3.3 | 15.6 | 18.6 | 10.0 | 1.0 | 4.5 | 5.4 |
Tide Gauge | Return Periods Change [Years] | Theoretical Water Change [cm] | SE1 | SE2 | Tide Gauge | Return Periods Change [Years] | Theoretical Water Change [cm] | SE1 | SE2 |
---|---|---|---|---|---|---|---|---|---|
100 → 45 | 149 → 161 | 7.8 | 7.6 | 100 → 79 | 149 → 153 | 7.2 | 7.7 | ||
Smögen (SE) | 50 → 25 | 139 → 150 | 6.7 | 6.6 | Fredericia (DK) | 50 → 37 | 139 → 143 | 6.3 | 6.7 |
(since 1910) | 10 → 6 | 117 → 125 | 4.4 | 4.4 | 10 → 6 | 114 → 121 | 4.1 | 4.4 | |
100 → 56 | 129 → 137 | 7.3 | 7.4 | 100 → 25 | 140 → 161 | 7.8 | 6.5 | ||
Kungsholmsfort (SE) | 50 → 27 | 119 → 127 | 6.4 | 6.4 | Slipshavn (DK) | 50 → 14 | 131 → 151 | 6.7 | 5.6 |
10 → 6 | 95 → 104 | 4.2 | 4.2 | 10 → 4 | 111 → 126 | 4.4 | 3.7 | ||
100 → 16 | 85 → 107 | 6.0 | 4.1 | 100 → 27 | 169 → 199 | 12.0 | 8.9 | ||
Landsort (SE) | 50 → 10 | 79 → 99 | 5.3 | 3.6 | Copenhagen (DK) | 50 → 17 | 157 → 183 | 10.1 | 7.7 |
10 → 4 | 66 → 80 | 3.5 | 2.4 | 10 → 5 | 128 → 145 | 6.9 | 5.1 | ||
100 → 25 | 98 → 117 | 6.5 | 5.1 | 100 → 70 | 148 → 153 | 7.4 | 7.0 | ||
Stockholm (SE) | 50 → 14 | 92 → 108 | 5.7 | 4.5 | Hirthals (DK) | 50 → 35 | 138 → 143 | 6.5 | 6.1 |
10 → 4 | 75 → 87 | 3.7 | 2.9 | 10 → 7 | 116 → 120 | 4.2 | 4.0 | ||
100 → 27 | 142 → 167 | 10.2 | 8.7 | 100 → 73 | 171 → 177 | 9.5 | 10.4 | ||
Ratan (SE) | 50 → 15 | 130 → 154 | 8.9 | 7.6 | Świnoujście (PL) | 50 → 32 | 157 → 164 | 8.3 | 9.1 |
10 → 4 | 102 → 121 | 5.8 | 5.0 | 10 → 6 | 124 → 134 | 5.5 | 6.0 | ||
100 → 20 | 139 → 172 | 9.7 | 9.9 | 100 → 104 | 182 → 181 | 10.0 | 11.6 | ||
Furuögrund (SE) | 50 → 10 | 128 → 159 | 8.5 | 8.6 | Kołobrzeg (PL) | 50 → 46 | 167 → 168 | 8.7 | 10.1 |
(since 1916) | 10 → 3 | 101 → 128 | 5.6 | 5.6 | 10 → 7 | 130 → 137 | 5.7 | 6.6 | |
100 → 47 | 156 → 170 | 8.7 | 7.5 | 100 → 26 | 152 → 179 | 10.4 | 8.9 | ||
Frederikshavn (DK) | 50 → 24 | 146 → 158 | 7.6 | 6.5 | Gdańsk (PL) | 50 → 15 | 140 → 165 | 9.1 | 7.8 |
10 → 6 | 122 → 131 | 5.0 | 4.3 | 10 → 4 | 111 → 132 | 6.0 | 5.1 | ||
100 → 47 | 163 → 176 | 8.1 | 7.9 | 100 → 12 | 134 → 175 | 10.1 | 6.9 | ||
Aarhus (DK) | 50 → 24 | 152 → 164 | 7.1 | 6.9 | Helsinki (FI) | 50 → 8 | 125 → 162 | 8.8 | 6.0 |
10 → 5 | 127 → 139 | 4.7 | 4.5 | (since 1904) | 10 → 3 | 104 → 130 | 5.8 | 4.0 | |
100 → 46 | 186 → 201 | 10.4 | 9.5 | 100 → 15 | 116 → 148 | 8.5 | 6.3 | ||
Hornbaek (DK) | 50 → 25 | 173 → 187 | 9.0 | 8.3 | Hanko (FI) | 50 → 9 | 108 → 136 | 7.4 | 5.5 |
10 → 6 | 143 → 154 | 5.9 | 5.4 | 10 → 3 | 88 → 109 | 4.9 | 3.6 | ||
100 → 57 | 153 → 162 | 8.6 | 8.2 | 100 → 23 | 146 → 179 | 11.5 | 11.3 | ||
Korsør (DK) | 50 → 29 | 142 → 151 | 7.5 | 7.2 | Vaasa (FI) | 50 → 13 | 134 → 164 | 10.0 | 10.0 |
10 → 7 | 116 → 123 | 4.9 | 4.7 | (since 1922) | 10 → 4 | 104 → 127 | 6.6 | 6.5 | |
100 → 125 | 191 → 188 | 9.5 | 10.6 | 100 → 46 | 148 → 165 | 8.9 | 8.2 | ||
Gedser (DK) | 50 → 55 | 177 → 175 | 8.3 | 9.2 | BALTIC SEA | 50 → 23 | 137 → 153 | 7.8 | 7.1 |
10 → 9.8 | 143 → 144 | 5.4 | 6.1 | 10 → 5 | 111 → 125 | 5.1 | 4.7 |
Sea Level Ranges [cm] | 1-Year Return Period | 50-Year Return Period | 100-Year Return Period | 200-Year Return Period | ||||
---|---|---|---|---|---|---|---|---|
Surface [%] | Coastline Length [%] | Surface [%] | Coastline Length [%] | Surface [%] | Coastline Length [%] | Surface [%] | Coastline Length [%] | |
250–300 | - | - | - | - | - | - | 2.5 | 3.0 |
200–250 | - | - | 5.9 | 5.6 | 10.9 | 13.0 | 16.6 | 20.8 |
150–200 | - | - | 44.6 | 48.0 | 61.4 | 53.9 | 65.1 | 54.2 |
100–150 | - | - | 46.2 | 43.8 | 27.0 | 33.0 | 15.8 | 22.0 |
<100 | 100 | 100 | 3.3 | 2.6 | 0.7 | 0.1 | - | - |
Summary: | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Sea Level Ranges [cm] | 1-Year Return Period | 50-Year Return Period | 100-Year Return Period | 200-Year Return Period | ||||
---|---|---|---|---|---|---|---|---|
Surface [%] | Coastline Length [%] | Surface [%] | Coastline Length [%] | Surface [%] | Coastline Length [%] | Surface [%] | Coastline Length [%] | |
−250 to −200 | - | - | - | - | - | - | - | - |
−200 to −150 | - | - | 0.9 | 1.5 | 2.0 | 2.6 | 2.8 | 5.1 |
−150 to −100 | - | - | 30.9 | 34.7 | 36.4 | 41.4 | 40.0 | 46.7 |
>−100 | 100 | 100 | 68.2 | 63.8 | 61.6 | 55.9 | 57.2 | 48.3 |
Summary: | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolski, T.; Giza, A.; Wiśniewski, B. Application of the Probability of Extreme Sea Levels at Selected Baltic Sea Tide Gauge Stations. Water 2025, 17, 291. https://doi.org/10.3390/w17030291
Wolski T, Giza A, Wiśniewski B. Application of the Probability of Extreme Sea Levels at Selected Baltic Sea Tide Gauge Stations. Water. 2025; 17(3):291. https://doi.org/10.3390/w17030291
Chicago/Turabian StyleWolski, Tomasz, Andrzej Giza, and Bernard Wiśniewski. 2025. "Application of the Probability of Extreme Sea Levels at Selected Baltic Sea Tide Gauge Stations" Water 17, no. 3: 291. https://doi.org/10.3390/w17030291
APA StyleWolski, T., Giza, A., & Wiśniewski, B. (2025). Application of the Probability of Extreme Sea Levels at Selected Baltic Sea Tide Gauge Stations. Water, 17(3), 291. https://doi.org/10.3390/w17030291