Multi-Approaches for Flash Flooding Hazard Assessment of Rabigh Area, Makkah Province, Saudi Arabia: Insights from Geospatial Analysis
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- First, use ArcGIS to delineate the area into basins, which will make it easier to identify and define locations with varying levels of flash flood severity.
- Define the morphometric parameters for each single basin, as illustrated in Figure 6, to evaluate each basin’s vulnerability to flash floods. For morphometric analysis, four elements were taken into consideration: fundamental (basic geometries), aerial, relief, and linear characteristics. Table 1 lists the morphometric parameters and their formulae.
- Apply the morphometric results to the three different methods (general level approach, El-Shamy approach, and ranging approach).
- Assign a model for each approach.
- Combine these three models and produce one overall map.
- Define the basins for flash flood risk assessment based on the overall map in addition to an effective topographic index.
3.1. Flash Flooding Approaches
3.1.1. Morphometric Analysis
3.1.2. General Level Approach
3.1.3. El-Shamy Approach
3.1.4. Ranked Approach
4. Results and Discussion
4.1. Analysis of the Morphometric Parameters
4.1.1. Stream Number (Ns)
4.1.2. Stream Order (Os)
4.1.3. Stream Length (Ls)
4.1.4. Bifurcation Ratio (Rb)
4.1.5. Stream Frequency (Fs)
4.1.6. Form Factor (Ff)
4.1.7. Drainage Texture (Rt)
4.1.8. Drainage Density (Dd)
4.1.9. Infiltration Number (If)
4.1.10. Basin Relief (Br)
4.1.11. Ruggedness Number (Nr)
4.1.12. Elevation-Relief Ratio (Rr)
4.2. Accuracy Assessment and Methodological Considerations
4.3. Evaluation of Flash Flooding Hazards Using a General Level Approach
4.4. Evaluation of Flash Flooding Hazards Using the El-Shamy Approach
4.5. Evaluation of Flash Flooding Hazards Using the Ranked Approach
4.6. Overall Assessment Utilizing Combination Approaches
4.7. Assessment of the Topographic Position Index (TPI)
4.8. Assessment of the Flash Flood Risk Susceptibility
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnous, M.O.; El-Rayes, A.E.; El-Nady, H.; Helmy, A.M. Flash flooding hazard assessment, modeling, and management in the coastal zone of Ras Ghareb City, Gulf of Suez, Egypt. J. Coast. Conserv. 2022, 26, 77. [Google Scholar] [CrossRef]
- Manzoor, Z.; Ehsan, M.; Khan, M.B.; Manzoor, A.; Akhter, M.M.; Sohail, M.T.; Hussain, A.; Shafi, A.; Abu-Alam, T.; Abioui, M. Floods and flood management and its socio-economic impact on Pakistan: A review of the empirical literature. Front. Environ. Sci. 2022, 10, 1021862. [Google Scholar] [CrossRef]
- Dhiman, R.; VishnuRadhan, R.; Eldho, T.I.; Inamdar, A. Flood risk and adaptation in Indian coastal cities: Recent scenarios. Appl. Water Sci. 2019, 9, 5. [Google Scholar] [CrossRef]
- Arnous, M.O.; Omar, A.E. Hydrometeorological hazards assessment of some basins in Southwestern Sinai area, Egypt. J. Coast. Conserv. 2018, 22, 721–743. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G.; Chikodzi, D. Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa. GeoJournal 2022, 87, 453–468. [Google Scholar] [CrossRef]
- Cotti, D.; Harb, M.; Hadri, A.; Aboufirass, M.; Chaham, K.R.; Libertino, A.; Campo, L.; Trasforini, E.; Krätzschmar, E.; Bellert, F.; et al. An Integrated Multi-Risk Assessment for Floods and Drought in the Marrakech-Safi Region (Morocco). Front. Water 2022, 4, 886648. [Google Scholar] [CrossRef]
- Şen, Z.; Khiyami, H.A.; Al-Harthy, S.G.; Al-Ammawi, F.A.; Al-Balkhi, A.B.; Al-Zahrani, M.I.; Al-Hawsawy, H.M. Flash flood inundation map preparation for wadis in arid regions. Arab. J. Geosci. 2013, 6, 3563–3572. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Naik, S.P.; Nappi, R. Remotely Sensed Data, Morpho-Metric Analysis, and Integrated Method Approach for Flood Risk Assessment: Case Study of Wadi Al-Arish Landscape, Sinai, Egypt. Water 2023, 15, 1797. [Google Scholar] [CrossRef]
- Antzoulatos, G.; Kouloglou, I.-O.; Bakratsas, M.; Moumtzidou, A.; Gialampoukidis, I.; Karakostas, A.; Lombardo, F.; Fiorin, R.; Norbiato, D.; Ferri, M.; et al. Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using Satellite Imagery and GIS Data. Sustainability 2022, 14, 3251. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Bachir, H. Morphometric-Hydro Characterization of the Coastal Line between El-Qussier and Marsa-Alam, Egypt: Preliminary Flood Risk Signatures. Appl. Sci. 2022, 12, 6264. [Google Scholar] [CrossRef]
- Smith, K.; Fearnley, C.J.; Dixon, D.; Bird, D.K.; Kelman, I. Environmental Hazards: Assessing Risk and Reducing Disaster, 7th ed.; Taylor & Francis: London, UK, 2023. [Google Scholar] [CrossRef]
- United Nations. GNDAR, Global Natural Disaster Assessment Report 2020. In UN Annual Report; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative geomorphology of drainage basins is channel networks. In Handbook of Applied Hydrology; Chow, V., Ed.; McGraw Hill Book Company: New York, NY, USA, 1964; pp. 439–476. [Google Scholar]
- Sherwood, J.M. Estimation of Flood Volumes and Simulation of Flood Hydrographs for Ungaged Small Rural Streams in Ohio; U.S. Geological Survey: Reston, VA, USA, 1993. [Google Scholar]
- Bathrellos, G.D.; Karymbalis, E.; Skilodimou, H.D.; Gaki-Papanastassiou, K.; Baltas, E.A. Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environ. Earth Sci. 2016, 75, 319. [Google Scholar] [CrossRef]
- Liang, W.; Yongli, C.; Hongquan, C.; Daler, D.; Jingmin, Z.; Juan, Y. Flood disaster in Taihu Basin, China: Causal chain and policy option analyses. Environ. Earth Sci. 2011, 63, 1119–1124. [Google Scholar] [CrossRef]
- Sohail, M.T.; Hussan, A.; Ehsan, M.; Al-Ansari, N.; Akhter, M.M.; Manzoor, Z.; Elbeltagi, A. Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan. Appl. Water Sci. 2022, 12, 267. [Google Scholar] [CrossRef]
- Ahmad, N.; Khan, S.; Ehsan, M.; Rehman, F.U.; Al-Shuhail, A. Estimating the Total Volume of Running Water Bodies Using Geographic Information System (GIS): A Case Study of Peshawar Basin (Pakistan). Sustainability 2022, 14, 3754. [Google Scholar] [CrossRef]
- Vincent, L.T.; Eaton, B.C.; Leenman, A.S.; Jakob, M. Secondary Geomorphic Processes and Their Influence on Alluvial Fan Morphology, Channel Behavior and Flood Hazards. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006371. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, J.; Ge, W.; Li, W.; Song, H.; Guo, X.; Wang, T.; Jiao, Y. Impact evaluation of geomorphic changes caused by extreme floods on inundation area considering geomorphic variations and land use types. Sci. Total Environ. 2021, 754, 142424. [Google Scholar] [CrossRef]
- Dawod, G.M.; Mirza, M.N.; Al-Ghamdi, K.A. GIS-Based Spatial Mapping of Flash Flood Hazard in Makkah City, Saudi Arabia. J. Geogr. Inf. Syst. 2011, 3, 225–231. [Google Scholar] [CrossRef]
- Khalifa, A. Application of Remote sensing techniques in discrimination of rock units and preliminary assessment of tectonic activity using ASTER and ALOSE-PALSAR data at Gabal Delihimmi, Central Eastern Desert, Egypt. Egypt J. Geol. 2023, 67, 287–298. [Google Scholar] [CrossRef]
- Bhatt, S.; Ahmed, S.A. Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto Int. 2014, 29, 878–894. [Google Scholar] [CrossRef]
- Wilford, D.J.; Sakals, M.E.; Innes, J.L.; Sidle, R.C.; Bergerud, W.A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef]
- Arnous, M.O.; Green, D.R. GIS and remote sensing as tools for conducting geo-hazards risk assessment along Gulf of Aqaba coastal zone, Egypt. J. Coast. Conserv. 2011, 15, 457–475. [Google Scholar] [CrossRef]
- Farhan, Y.; Anaba, O.; Salim, A. Morphometric Analysis and Flash Floods Assessment for Drainage Basins of the Ras En Naqb Area, South Jordan Using GIS. J. Geosci. Environ. Prot. 2016, 4, 9–33. [Google Scholar] [CrossRef]
- Hasnaoui, Y.; Tachi, S.E.; Bouguerra, H.; Benmamar, S.; Gilja, G.; Szczepanek, R.; Navarro-Pedreño, J.; Yaseen, Z.M. Enhanced machine learning models development for flash flood mapping using geospatial data. Euro Mediterr. J. Environ. Integr. 2024, 9, 1087–1107. [Google Scholar] [CrossRef]
- Alarifi, S.S.; Abdelkareem, M.; Abdalla, F.; Alotaibi, M. Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia. Sustainability 2022, 14, 14145. [Google Scholar] [CrossRef]
- Azeez, O.; Elfeki, A.; Kamis, A.S.; Chaabani, A. Dam break analysis and flood disaster simulation in arid urban environment: The Um Al-Khair dam case study, Jeddah, Saudi Arabia. Nat. Hazards 2020, 100, 995–1011. [Google Scholar] [CrossRef]
- Shah, S.M.H.; Mustaffa, Z.; Teo, F.Y.; Imam, M.A.H.; Yusof, K.W.; Al-Qadami, E.H.H. A review of the flood hazard and risk management in the South Asian Region, particularly Pakistan. Sci. Afr. 2020, 10, e00651. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; van de Giesen, N. Floods and flood management in Pakistan. Phys. Chem. Earth Parts A/B/C 2012, 47–48, 11–20. [Google Scholar] [CrossRef]
- Ahmad, F.; Kazmi, S.F.; Pervez, T. Human response to hydro-meteorological disasters: A case study of the 2010 flash floods in Pakistan. J. Geogr. Reg. Plan. 2011, 4, 518. [Google Scholar]
- Lepesteur, M.; Wegner, A.; Moore, S.A.; McComb, A. Importance of public information and perception for managing recreational activities in the Peel-Harvey estuary, Western Australia. J. Environ. Manag. 2008, 87, 389–395. [Google Scholar] [CrossRef]
- Jamshed, A.; Birkmann, J.; McMillan, J.M.; Rana, I.A.; Feldmeyer, D.; Sauter, H. How do rural-urban linkages change after an extreme flood event? Empirical evidence from rural communities in Pakistan. Sci. Total Environ. 2021, 750, 141462. [Google Scholar] [CrossRef]
- Ullah, F.; Saqib, S.E.; Ahmad, M.M.; Fadlallah, M.A. Flood risk perception and its determinants among rural households in two communities in Khyber Pakhtunkhwa, Pakistan. Nat. Hazards 2020, 104, 225–247. [Google Scholar] [CrossRef]
- Niyazi, B.; Khan, A.A.; Masoud, M.; Elfeki, A.; Basahi, J.; Zaidi, S. Morphological-hydrological relationships and the geomorphological instantaneous unit hydrograph of Makkah Al-Mukarramah watersheds. Arab. J. Geosci. 2021, 14, 751. [Google Scholar] [CrossRef]
- Maidment, D.R. Arc Hydro: GIS for Water Resources; ESRI, Inc.: Redlands, CA, USA, 2002. [Google Scholar]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Patton, P.C.; Baker, V.R. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour. Res. 1976, 12, 941–952. [Google Scholar] [CrossRef]
- Smith, K.G. Standards for grading texture of erosional topography. Am. J. Sci. 1950, 248, 655–668. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Öğretmen, N. Morpho-tectonic assessment of the abu-dabbab area, eastern desert, egypt: Insights from remote sensing and geospatial analysis. ISPRS Int. J. Geoinf. 2021, 10, 784. [Google Scholar] [CrossRef]
- Hadley, R.F.; Schumm, S.A. Sediment sources and drainage basin characteristics in upper Cheyenne River basin. Water Supply 1961, 1531, 198. [Google Scholar]
- Melton, F.A. Aerial Photographs and Structural Geomorphology. J. Geol. 1959, 67, 351–370. [Google Scholar] [CrossRef]
- Weiss, A. Topographic Position and Landforms Analysis, Poster Presentation. In Proceedings of the ESRI User Conference, San Diego, CA, USA, 9–13 July 2001; Volume 64. [Google Scholar]
- Alam, A.; Ahmed, B.; Sammonds, P. Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quat. Int. 2021, 575–576, 295–307. [Google Scholar] [CrossRef]
- Abdalla, F.; El Shamy, I.; Bamousa, A.O.; Mansour, A.; Mohamed, A.; Tahoon, M. Flash Floods and Groundwater Recharge Potentials in Arid Land Alluvial Basins, Southern Red Sea Coast, Egypt. Int. J. Geosci. 2014, 5, 971–982. [Google Scholar] [CrossRef]
- Abdelkareem, M. Targeting flash flood potential areas using remotely sensed data and GIS techniques. Nat. Hazards 2017, 85, 19–37. [Google Scholar] [CrossRef]
- Tan, Q.; Huang, Y.; Hu, J.; Zhou, P.; Hu, J. Application of artificial neural network model based on GIS in geological hazard zoning. Neural Comput. Appl. 2021, 33, 591–602. [Google Scholar] [CrossRef]
- Shamy, E. Recent recharge and flash flooding opportunities in the Eastern Desert, Egypt. Ann. Geol. Surv. Egypt 1992, 18, 323–334. [Google Scholar]
- Bajabaa, S.; Masoud, M.; Al-Amri, N. Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arab. J. Geosci. 2014, 7, 2469–2481. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; Vascular; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Mesa, L.M. Morphometric analysis of a subtropical Andean basin (Tucumán, Argentina). Environ. Geol. 2006, 50, 1235–1242. [Google Scholar] [CrossRef]
- Reddy, G.P.O.; Maji, A.K.; Gajbhiye, K.S. Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—A remote sensing and GIS approach. Int. J. Appl. Earth Obs. Geoinf. 2004, 6, 1–16. [Google Scholar] [CrossRef]
- Tukura, N.G.; Akalu, M.M.; Hussein, M.; Befekadu, A. Morphometric analysis and sub-watershed prioritization of Welmal watershed, Ganale-Dawa River Basin, Ethiopia: Implications for sediment erosion. J. Sediment. Environ. 2021, 6, 121–130. [Google Scholar] [CrossRef]
- Gregory, K.J.; Walling, D.E. Drainage Basin Form and Process: A Geomorphological Approach; Edward Arnold: London, UK, 1973. [Google Scholar] [CrossRef]
- Hajam, R.A.; Hamid, A.; Bhat, S. Application of Morphometric Analysis for Geo-Hydrological Studies Using Geo-Spatial Technology—A Case Study of Vishav Drainage Basin. Hydrol. Current Res. 2013, 4, 157. [Google Scholar] [CrossRef]
- Azor, A.; Keller, E.A.; Yeats, R.S. Geomorphic indicators of active fold growth: South Mountain—Oak Ridge anticline, Ventura basin, southern California. Bull. Geol. Soc. Am. 2002, 114, 745–753. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azor, A.; Azañón, J.M.; Keller, E.A. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 2010, 119, 74–87. [Google Scholar] [CrossRef]
- Kabite, G.; Gessesse, B. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. Int. Soil Water Conserv. Res. 2018, 6, 175–183. [Google Scholar] [CrossRef]
- Hare, P.W.; Gardner, T.W. Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula Costa Rica. In Tectonic Geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium; Allen and Unwin: Boston, MA, USA, 1985; Volume 4, pp. 123–134. [Google Scholar]
- Adnan, M.S.G.; Dewan, A.; Zannat, K.E.; Abdullah, A.Y.M. The use of watershed geomorphic data in flash flood susceptibility zoning: A case study of the Karnaphuli and Sangu River basins of Bangladesh. Nat. Hazards 2019, 99, 425–448. [Google Scholar] [CrossRef]
- Pawluszek, K.; Borkowski, A. Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland. Nat. Hazards 2017, 86, 919–952. [Google Scholar] [CrossRef]
- Jebur, M.N.; Pradhan, B.; Tehrany, M.S. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens. Environ. 2014, 152, 150–165. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Moradi, H.R.; Aghda, S.M.F.; Gokceoglu, C.; Pradhan, B. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arab. J. Geosci. 2014, 7, 1857–1878. [Google Scholar] [CrossRef]
- Görüm, T. Tectonic, topographic and rock-type influences on large landslides at the northern margin of the Anatolian Plateau. Landslides 2019, 16, 333–346. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Woods, R.A.; Sivapalan, M. A connection between topographically driven runoff generation and channel network structure. Water Resour. Res. 1997, 33, 2939–2950. [Google Scholar] [CrossRef]
- Bashir, B.; Alsalman, A. Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques. Sustainability 2024, 16, 23. [Google Scholar] [CrossRef]
Indices | Description | References |
---|---|---|
Basin Area in km2 (A) | Area from the drainage division to the basin outpoint point | [39] |
Basin perimeter in km (P) | Basin boundary’s whole length. | [10,39] |
Basin length in km (Lb) | The longest stretch of the basin, as measured along the main river that flows through it | [39] |
Stream number (Ns) | Ns = N1 + N2 + N3 + N4 + Nn | [40] |
Stream length (Ls) in km | Ls = L1 + L2 + L3 + L4 + Ln | [40] |
Stream order (Os) | Hierarchical rank | [24] |
Bifurcation ratio (Rb) | Rb = Ns/Ns + 1, as Ns + 1 indicates the number value of the streams in any given order as well as the value of the number for the next higher order. | [8] |
Stream frequency (Fs) | Fs = Ns/A | [13] |
Form factor (Ff) | Ff = A/Lb2 | [41] |
Drainage texture ratio (Rt) | Rt = Ns/P | [42] |
Drainage density (Dd) | Dd = Ls/A | [43] |
Infiltration number (If) | If = Fs/Dd | [6] |
Basin relief (Br) in m | Br = Hx. − Hm., where Hx. and Hm. denote the planned basin’s highest and lowest elevations, respectively. | [44] |
Ruggedness number (Rn) | Rn = Dd × (Br/1000), where Br is the basin relief and Dd represents the drainage density. | [45] |
Elevation-relief ratio (Rr) | Rr = Br/Lb | [39] |
Topographic Position Index (TPI) | , where n is the total number of surrounding points included in the evaluation, The model point under the evaluation’s elevation is M0, and the grid’s elevation is Mn. | [46] |
Basins | Area in km2 (A) | Perimeter in km (P) | Basin Length in km (Lb) | Mx. Elevation in m | Mn. Elevation in m |
---|---|---|---|---|---|
Dulaidila | 1095.59 | 227.76 | 49.30 | 1365 | 0 |
Ri Harshah | 1160.66 | 216.33 | 39.76 | 456 | 0 |
Rabigh | 194.14 | 95.06 | 22.16 | 161 | 0 |
Algud | 156.49 | 77.74 | 19.89 | 78 | 0 |
AlNuaibeaa | 240.18 | 83.80 | 31.40 | 515 | 25 |
Haqqaq | 1341.47 | 270.37 | 52.23 | 1267 | 25 |
Hajar | 449.35 | 131.19 | 27.74 | 1326 | 421 |
Al Jehfa | 743.09 | 183.27 | 38.33 | 584 | 0 |
Ofoq | 142.93 | 109.03 | 28.54 | 104 | 0 |
Saabar | 873.51 | 330.94 | 94.2 | 1344 | 0 |
Stream Characteristics | Basins | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dulaidila | Ri Harshah | Rabigh | Algud | Al Nuaibeaa | Haqqaq | Hajar | Al Jehfa | Ofoq | Saabar | |
Stream numbers | ||||||||||
Order 1 | 44 | 38 | 6 | 7 | 8 | 43 | 14 | 19 | 6 | 30 |
Order 2 | 12 | 11 | 1 | 2 | 2 | 10 | 3 | 4 | 2 | 7 |
Order 3 | 2 | 2 | 1 | 1 | 1 | 4 | 1 | 2 | 1 | 2 |
Order 4 | 1 | 1 | - | - | - | 1 | - | 1 | - | 1 |
Stream total orders | 59 | 52 | 8 | 9 | 11 | 58 | 18 | 26 | 9 | 40 |
Stream length | 412.54 | 381.96 | 67.68 | 50.53 | 30.74 | 35.41 | 122.82 | 252.24 | 15.50 | 326.16 |
Basins | Ns | Ls | Rb | Fs | Ff | Rt | Dd | If | Br | Rn | Rr |
---|---|---|---|---|---|---|---|---|---|---|---|
Dulaidila | 59 | 412.54 | 3.88 | 5.38 | 0.45 | 0.25 | 3.76 | 20.27 | 1365 | 5.24 | 28.23 |
Ri Harshah | 52 | 381.96 | 3.65 | 4.48 | 0.73 | 0.24 | 3.29 | 14.74 | 456 | 1.55 | 11.86 |
Rabigh | 8 | 67.68 | 3.5 | 4.12 | 0.39 | 0.08 | 3.48 | 14.36 | 161 | 0.59 | 7.71 |
Algud | 9 | 50.53 | 2.75 | 6.39 | 0.39 | 0.12 | 3.22 | 20.63 | 87 | 0.30 | 4.72 |
AlNuaibea’a | 11 | 30.74 | 3 | 4.57 | 0.24 | 0.13 | 1.27 | 5.86 | 490 | 0.62 | 15.60 |
Haqqaq | 58 | 35.41 | 5.4 | 4.32 | 0.49 | 0.21 | 0.26 | 1.14 | 1242 | 0.32 | 23.77 |
Hajar | 18 | 122.82 | 2.55 | 4 | 0.58 | 0.13 | 2.73 | 10.94 | 905 | 2.47 | 32.62 |
Al Jehfa | 26 | 252.24 | 2.91 | 3.49 | 0.50 | 0.14 | 3.39 | 11.87 | 584 | 2.05 | 15.78 |
Ofoq | 9 | 15.50 | 2.5 | 6.29 | 0.17 | 0.08 | 1.08 | 6.83 | 104 | 0.12 | 4.16 |
Saabar | 40 | 326.16 | 3.26 | 5.57 | 0.09 | 0.12 | 3.73 | 17.09 | 1344 | 5.07 | 14.41 |
Basins | Ns | Ls | Rb | Fs | Ff | Rt | Dd | If | Br | Rn | Rr | Average | Ranked Levels |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dulaidila | 3 | 3 | 1.95 | 1.69 | 2.12 | 3 | 1 | 2.96 | 3.1 | 3 | 2.69 | 2.6 | 1 |
Ri Harshah | 2.72 | 2.84 | 1.79 | 2.31 | 3 | 2.88 | 1.26 | 2.39 | 1.53 | 2.44 | 1.54 | 2.26 | 1 |
Rabigh | 1 | 1.26 | 1.68 | 2.56 | 1.93 | 1 | 1.16 | 2.35 | 1.3 | 2.18 | 1.24 | 1.67 | 2 |
Algud | 1.03 | 1.17 | 1.17 | 1 | 1.93 | 1.47 | 1.30 | 3 | 1.4 | 2.92 | 1.03 | 1.62 | 2 |
AlNuaibea’a | 1.11 | 1.07 | 1.34 | 2.25 | 1.46 | 1.58 | 2.42 | 1.48 | 1.61 | 2.80 | 1.80 | 1.72 | 2 |
Haqqaq | 2.96 | 1.10 | 3 | 2.42 | 2.25 | 2.52 | 3 | 1 | 2.76 | 2.92 | 2.37 | 2.39 | 1 |
Hajar | 1.39 | 1.54 | 1.03 | 2.64 | 2.53 | 1.58 | 1.58 | 2 | 2.24 | 2.08 | 3 | 1.96 | 2 |
Al Jehfa | 1.70 | 2.19 | 1.28 | 3 | 2.28 | 1.70 | 1.21 | 2.10 | 1.88 | 2.24 | 1.81 | 1.99 | 2 |
Ofoq | 1.03 | 1 | 1 | 1.06 | 1.25 | 1 | 2.53 | 1.58 | 1.19 | 3 | 1 | 1.42 | 2 |
Saabar | 2.25 | 2.56 | 1.52 | 1.56 | 1 | 1.47 | 1.01 | 2.63 | 2.96 | 1.06 | 1.72 | 1.84 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, B.; Alsalman, A. Multi-Approaches for Flash Flooding Hazard Assessment of Rabigh Area, Makkah Province, Saudi Arabia: Insights from Geospatial Analysis. Water 2024, 16, 2962. https://doi.org/10.3390/w16202962
Bashir B, Alsalman A. Multi-Approaches for Flash Flooding Hazard Assessment of Rabigh Area, Makkah Province, Saudi Arabia: Insights from Geospatial Analysis. Water. 2024; 16(20):2962. https://doi.org/10.3390/w16202962
Chicago/Turabian StyleBashir, Bashar, and Abdullah Alsalman. 2024. "Multi-Approaches for Flash Flooding Hazard Assessment of Rabigh Area, Makkah Province, Saudi Arabia: Insights from Geospatial Analysis" Water 16, no. 20: 2962. https://doi.org/10.3390/w16202962
APA StyleBashir, B., & Alsalman, A. (2024). Multi-Approaches for Flash Flooding Hazard Assessment of Rabigh Area, Makkah Province, Saudi Arabia: Insights from Geospatial Analysis. Water, 16(20), 2962. https://doi.org/10.3390/w16202962