Towards a Structured Approach to Advance Sustainable Water Management in Higher Education Institutions: A Review
Abstract
1. Introduction
2. Methods
- -
- Water conservation.
- -
- Mitigation of pollution due to contaminated water release.
3. Results
3.1. Overview of the Identified Core Actions for Sustainable Water Management in University Campuses
- (a)
- Monitoring of consumed water (Section 3.2.1),
- (b)
- Monitoring of rain and storm waters (Section 3.2.2),
- (c)
- Harvesting of rain and storm waters (Section 3.2.3),
- (d)
- Water reuse from rain and storm waters (Section 3.2.3),
- (e)
- Treatment of rain and storm waters (Section 3.2.4),
- (f)
- Reduction in urban runoff (Section 3.2.5),
- (g)
- Wastewater treatment (Section 3.2.6),
- (h)
- Water reuse from treated wastewater (Section 3.2.6),
- (i)
- Monitoring of groundwater (Section 3.2.7),
- (j)
- Sustainable water supply (Section 3.2.8).
3.2. Analysis of Sustainable Water Management Measures by HEIs Emerged from the Literature
3.2.1. Monitoring of Water Consumption
- (1)
- The energy sources employed for extraction, pumping and purification,
- (2)
- The water source and water quality policies determining the intensity of the purification treatments required,
- (3)
- The height of buildings,
- (4)
- The amount of water consumed,
- (5)
- The amount of hot water consumed.
- -
- Drinking,
- -
- Cooking in universities’ kitchens,
- -
- Research laboratories,
- -
- Gardening,
- -
- Washing (e.g., hand washing in washbasins),
- -
- Sanitation (e.g., toilet and urinal flushing),
- -
- Cleaning,
- -
- Bathing,
- -
- Dish washing.
- -
- A total of 72% for personal use, such as water used in toilets, urinals, washbasins, showers and fountains of which toilet water consumption contributes 58% on total personal use,
- -
- A total of 19% for cleaning activities,
- -
- A total of 9% for other water consumptions.
- (a)
- Ensuring quality standards of distributed water,
- (b)
- Guaranteeing reliability of water supply,
- (c)
- Avoiding water wastages (e.g., by detecting leakages),
- (d)
- Maintaining water infrastructure,
- (e)
- Reducing the cost of water and of electricity used for water pumping,
- (f)
- Engaging consumers in water conservation practices.
3.2.2. Rain and Storm Water Monitoring
Quality Monitoring of Rain and Storm Waters
Quantity Monitoring of Rain and Storm Waters
3.2.3. Rain and Storm Water Harvesting and Reuse
3.2.4. Rain and Storm Water Treatment
- (1)
- (2)
- (3)
- Floating CWs built up in the following:
- (4)
- Infiltration systems, such as:
- -
- -
- Seepage wells [241],
- -
- Biopower infiltration units [199],
- -
- -
- -
- Biofilters [214,226,238], referred to as biofiltration cells in Grover et al. [210] or as eco-biofilters in Maniquiz-Redillas and Kim [217] and in Maniquiz-Redillas et al. [100], including tree box filters as reported in Geronimo et al. [209], Haque et al. [212] and Houle et al. [213] and rain gardens [53,98,99,101,103,132,137,163,169,186,197,199,200,204,206,207,211,212,216,223,229,231,232,234,235,241,243,302],
- -
- -
- Planter box [228],
- -
- -
- -
- -
- -
- Bioinfiltration ponds [220],
- -
- Bioretention curb extension [225],
- -
- Bioretention planter [225],
- -
- Infiltration planter [212],
- -
- -
- Infiltration wadis [191],
- -
- Infiltration shallow pools [241],
- -
- (5)
- Storage systems such as:
- (6)
3.2.5. Reduction in Urban Runoffs
- -
- -
- Stormwater infiltration systems [30,53,71,98,99,100,101,102,103,104,124,132,137,149,163,165,169,186,191,195,197,198,199,200,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,219,220,221,223,224,225,226,228,229,231,232,234,235,236,237,238,239,241,243,264,301,302,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,332,333,334],
- -
3.2.6. Treatment and Reuse of University Campus Wastewaters
- (a)
- When the university campus is located in places where a connection to a sewer system could result physically and/or economically unfeasible, by preventing the direct discharge of wastewater pollutants into the environment [337],
- (b)
- When the university campus is close to gardens and/or agricultural fields [338], by increasing the chances for water reuse and resource recovery,
- (c)
- When the centralized wastewater treatment plant eventually serving the university campus along with other wastewater streams is under-sized, by reducing the pollutant load to the same facility.
3.2.7. Groundwater Monitoring
3.2.8. Sustainable Water Supply
- (a)
- Installing a reverse-driven centrifugal pump—otherwise known as Pump as Turbine—for water supply, which contextually produces energy from the gravitational flow of supplied water; such produced energy can then be used to pump water at various outlets in the building,
- (b)
- Implementing wood stave pipelines, which makes the water supply system more sustainable given the low-energy material employed, especially if wood is obtained from local forests, compared to steel.
3.3. Summary of Key Findings and Critical Considerations
- Measures minimizing the release of micropollutants in wastewater. With the objective of preventing pollution due to release of contaminated water from university campuses, one topic that did not emerge from this review is the issue of micropollutant release through HEIs’ wastewater in the environment. Among the typical micropollutants released in wastewater that can be input into the water cycle through the human usage of PPCPs, such as detergents for the cleaning of toilets and other washroom accessories as well as soaps used for personal hygiene, there are several molecules that are persistent and therefore cannot be removed from wastewater through conventional treatment technologies, nor undergo significant degradation in the environment. Specific energy-demanding treatment processes would need to be installed [457]. If not removed from wastewaters, these molecules accumulate in bodies of water [457], thereby potentially threatening fish species and humans [458]. This problem has become such a concern that the recast of urban wastewater treatment directive in the European Union has prescribed quaternary treatment for the removal of a selected list of micropollutants from urban wastewaters [459]. The input of persistent micropollutants into water bodies by HEIs can be particularly concerning given the fact that people tend to spend a large portion of the day in them and hygiene measures require, in most cases, that toilets and washbasins be cleaned daily, contrary to what happens to domestic household infrastructures, besides frequent handwashing [460]. Therefore, preventing water micro-pollution is key to reducing the workload of wastewater treatment plants and safeguarding the environment and can be considered a core action for water sustainability in HEIs. Specific actions that can be undertaken by HEIs are as follows:
- (i)
- Sensitizing students and academic staff regarding the use of soap for handwashing, discouraging usages beyond the normal need;
- (ii)
- Sensitizing cleaning staff regarding proper usage of detergents for toilet and washbasin cleaning, avoiding overuse;
- (iii)
- (iv)
- Teaching HEIs’ staff and students about the environmental and health hazards of the micropollutants typically contained in PPCPs;
- (v)
- Researching and teaching to increase the understanding and awareness of the side effects of micropollutants on the environment and on human health;
- (vi)
- Researching and teaching about sustainable technologies for micropollutant removal from wastewater.
- Measures for water pollution prevention from waste mismanagement. Besides micropollutants, another source of water pollution in HEIs can derive from waste mismanagement. HEIs tend to produce various amounts of organic waste from the canteen leftovers of various sources. If mismanaged, percolate generated by stormwater infiltration into organic waste can infiltrate underground, thus contaminating underground water reservoirs [463]. Mismanaged waste can also in some cases be carried by runoffs to surface water bodies, thereby compromising the living organisms inhabiting them and their eventual human consumption [464,465]. Contamination of stormwater by mismanaged waste in a university campus was studied only by Akpanke et al. [143]. The issue of stormwater contamination by mismanaged waste highlights the interconnection between water sustainability and other sustainability actions within HEIs: water sustainability cannot be achieved without sustainability actions on other important items, such as waste management.
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABR | Anaerobic Baffled Reactor |
| AF | Anaerobic Filter |
| AO | Anodic Oxidation |
| AS | Activated Sludge |
| BOD | Biochemical Oxygen Demand |
| COD | Chemical Oxygen Demand |
| CW | Constructed Wetland |
| DWTR | Drinking Water Treatment Residual |
| GHG | Greenhouse Gas |
| GR | Green Roof |
| HEI | Higher Education Institutions |
| HRAP | High-Rate Algal Pond |
| IFAS | Integrated Fixed-film Activated Sludge |
| MBBR | Moving Bed Biofilm Reactors |
| MBR | Membrane Bioreactor |
| NbS | Nature-based Solutions |
| OSA | Oxic-Settling-Anoxic/anaerobic |
| PAH | Polycyclic Aromatic Hydrocarbon |
| PPCP | Pharmaceutical and Personal Care Product |
| RWH | Rainwater harvesting |
| SWH | Stormwater harvesting |
| SWM | Sustainable Water Management |
| ST | Septic Tank |
| TDS | Total Dissolved Solid |
| TN | Total Nitrogen |
| TOC | Total Organic Carbon |
| TP | Total Phosphorus |
| TSS | Total Suspended Solid |
| UASB | Upflow Anaerobic Sludge Blanket |
| wfSRC | Wastewater fertigated Short Rotation Coppice systems |
| WSP | Waste Stabilization Pond |
References
- Cosgrove, W.J.; Loucks, D.P. Water Management: Current and Future Challenges and Research Directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- United Nations Educational Scientific and Cultural Organization UNITED NATIONS WORLD. WATER DEVELOPMENT REPORT 2023: Partnerships and Cooperation for Water; United Nations Educational Scientific and Cultural Organization: Paris, France, 2023. [Google Scholar]
- Gawel, E.; Bedtke, N. Economic Requirements and Instruments for Sustainable Urban Water Management. In Urban Water Management for Future Cities. Future City; Köster, S., Reese, M., Zuo, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-030-01488-9. [Google Scholar]
- Braden, J.B.; Van Ierland, E.C. Balancing: The Economic Approach to Sustainable Water Management. Water Sci. Technol. 1999, 39, 17–23. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F.; Manzano-Agugliaro, F. Economic Analysis of Sustainable Water Use: A Review of Worldwide Research. J. Clean. Prod. 2018, 198, 1120–1132. [Google Scholar] [CrossRef]
- Clothier, B.; Jovanovic, N.; Zhang, X. Reporting on Water Productivity and Economic Performance at the Water-Food Nexus. Agric. Water Manag. 2020, 237, 106123. [Google Scholar] [CrossRef]
- Torrijos, V.; Soto, M.; Calvo Dopico, D. SOSTAUGA Project: Reduction of Water Consumption and Evaluation of Potential Uses for Endogenous Resources. Int. J. Sustain. High. Educ. 2020, 21, 1391–1411. [Google Scholar] [CrossRef]
- Bui, T.T.; Nguyen, D.C.; Han, M.; Kim, M.; Park, H. Rainwater as a Source of Drinking Water: A Resource Recovery Case Study from Vietnam. J. Water Process Eng. 2021, 39, 101740. [Google Scholar] [CrossRef]
- Dao, A.D.; Nguyen, V.A.; Han, M. Benefit of the Drinking Water Supply System in Office Building by Rainwater Harvesting: A Demo Project in Hanoi, Vietnam. Environ. Eng. Res. 2013, 18, 103–108. [Google Scholar] [CrossRef]
- Anderson, E.P.; Jackson, S.; Tharme, R.E.; Douglas, M.; Flotemersch, J.E.; Zwarteveen, M.; Lokgariwar, C.; Montoya, M.; Wali, A.; Tipa, G.T.; et al. Understanding Rivers and Their Social Relations: A Critical Step to Advance Environmental Water Management. Wiley Interdiscip. Rev. Water 2019, 6, e1381. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. The Role of Governance Modes and Meta-Governance in the Transformation towards Sustainable Water Governance. Environ. Sci. Policy 2019, 91, 6–16. [Google Scholar] [CrossRef]
- Sharp, L. Reconnecting People and Water: Public Engagement and Sustainable Urban Water Management; Routledge: London, UK, 2017; ISBN 9781315851679. [Google Scholar]
- Schiavon, M.; Giurea, R.; Ionescu, G.; Magaril, E.; Cristina, E. Agro-Tourism Structures, SARS-CoV-2: The Role of Water. Matec Web Conf. 2022, 354, 00070. [Google Scholar] [CrossRef]
- Bogardi, J.J.; Dudgeon, D.; Lawford, R.; Flinkerbusch, E.; Meyn, A.; Pahl-Wostl, C.; Vielhauer, K.; Vörösmarty, C. Water Security for a Planet under Pressure: Interconnected Challenges of a Changing World Call for Sustainable Solutions. Curr. Opin. Environ. Sustain. 2012, 4, 35–43. [Google Scholar] [CrossRef]
- Ankareddy, S.; Dorfleitner, G.; Zhang, L.; Ok, Y.S. Embedding Sustainability in Higher Education Institutions: A Review of Practices and Challenges. Clean. Environ. Syst. 2025, 17, 100279. [Google Scholar] [CrossRef]
- United Nations Statistics Division. United Nations The Sustainable Development Goals Report; United Nations Statistics Division: New York, NY, USA, 2023. [Google Scholar]
- Alshuwaikhat, H.M.; Abubakar, I. An Integrated Approach to Achieving Campus Sustainability: Assessment of the Current Campus Environmental Management Practices. J. Clean. Prod. 2008, 16, 1777–1785. [Google Scholar] [CrossRef]
- Munaro, M.R.; John, V.M. Towards More Sustainable Universities: A Critical Review and Reflections on Sustainable Practices at Universities Worldwide. Sustain. Prod. Consum. 2025, 56, 284–310. [Google Scholar] [CrossRef]
- Rauen, T.R.S.; Lezana, Á.G.R.; da Silva, V. Environmental Management: An Overview in Higher Education Institutions. Procedia Manuf. 2015, 3, 3682–3688. [Google Scholar] [CrossRef]
- Obara, A.T.; Kovalski, M.L.; Regina, V.B.; Riva, P.B.; Hidalgo, M.R.; Galvão, C.B.; Takahashi, B.T. Environmental Education for Sustainable Management of the Basins of the Rivers Pirapó, Paranapanema III and Parapanema IV. Braz. J. Biol. 2015, 75, S137–S147. [Google Scholar] [CrossRef]
- Cristiano, E.; Annis, A.; Apollonio, C.; Pumo, D.; Urru, S.; Viola, F.; Deidda, R.; Pelorosso, R.; Petroselli, A.; Tauro, F.; et al. Multilayer Blue-Green Roofs as Nature-Based Solutions for Water and Thermal Insulation Management. Hydrol. Res. 2022, 53, 1129–1149. [Google Scholar] [CrossRef]
- Lazarov, A.S.; Semenescu, A. Education for Sustainable Development (ESD) in Romanian Higher Education Institutions (HEIs) within the SDGs Framework. Int. J. Environ. Res. Public Health 2022, 19, 1998. [Google Scholar] [CrossRef]
- Simon, M.; Blacky, T.; Zoubek, M. Comparison of a Watercooler and Other Alternatives in Terms of Their Environmental Impacts Using the Lca Method. MM Sci. J. 2023, 2023, 6582–6593. [Google Scholar] [CrossRef]
- Bagherianfar, M.; Dolati, A. Strategies for Social Participation of Universities in the Local Community; Perspectives of Internal and External Beneficiaries. J. Appl. Res. High. Educ. 2023, 15, 698–712. [Google Scholar] [CrossRef]
- Weiss, M.; Barth, M.; von Wehrden, H. The Patterns of Curriculum Change Processes That Embed Sustainability in Higher Education Institutions. Sustain. Sci. 2021, 16, 1579–1593. [Google Scholar] [CrossRef]
- Strachan, S.; Logan, L.; Willison, D.; Bain, R.; Roberts, J.; Mitchell, I.; Yarr, R. Reflections on Developing a Collaborative Multi-Disciplinary Approach to Embedding Education for Sustainable Development into Higher Education Curricula. Emerald Open Res. 2021, 3, 24. [Google Scholar] [CrossRef]
- Giurea, R.; Carnevale Miino, M.; Torretta, V.; Rada, E.C. Approaching Sustainability and Circularity along Waste Management Systems in Universities: An Overview and Proposal of Good Practices. Front. Environ. Sci. 2024, 12, 1363024. [Google Scholar] [CrossRef]
- Martínez-Borreguero, G.; Maestre-Jiménez, J.; Mateos-Núñez, M.; Naranjo-Correa, F.L. Water from the Perspective of Education for Sustainable Development: An Exploratory Study in the Spanish Secondary Education Curriculum. Water 2020, 12, 1877. [Google Scholar] [CrossRef]
- Nourredine, H.; Barjenbruch, M.; Million, A.; El Amrani, B.; Chakri, N.; Amraoui, F. Linking Urban Water Management, Wastewater Recycling, and Environmental Education: A Case Study on Engaging Youth in Sustainable Water Resource Management in a Public School in Casablanca City, Morocco. Educ. Sci. 2023, 13, 824. [Google Scholar] [CrossRef]
- Grehl, E.; Kauffman, G. THE UNIVERSITY OF DELAWARE RAIN GARDEN: ENVIRONMENTAL MITIGATION OF A BUILDING FOOTPRINT. J. Green Build. 2007, 2, 53–67. [Google Scholar] [CrossRef]
- Boiocchi, R.; Adami, L.; Rada, E.C.; Schiavon, M. Towards Context-Independent Indicators for an Unbiased Assessment of Environmental Sustainability in Higher Education: An Application to Italian Universities. J. Environ. Manag. 2024, 366, 121658. [Google Scholar] [CrossRef]
- do Rêgo, J.R.S.; Meiguins de Lima, A.M. A Percepção Dos Alunos Do Ensino Fundamental Sobre o Uso Da Água Consumida No Município de Belém-PAThe Perception of Fundamental Education Students on the Use of Consumed Water in the County of Belém-PALa Percepción de Los Alumnos de La Enseñanza. REMEA-Rev. Eletrônica do Mestr. em Educ. Ambient. 2018, 35, 155–172. [Google Scholar] [CrossRef]
- Vehmaa, A.; Karvinen, M.; Keskinen, M. Building a More Sustainable Society? A Case Study on the Role of Sustainable Development in the Education and Early Career of Water and Environmental Engineers. Sustainability 2018, 10, 2605. [Google Scholar] [CrossRef]
- Albornoz, L.L.; Marder, L.; Benvenuti, T.; Bernardes, A.M. Electrodialysis Applied to the Treatment of an University Sewage for Water Recovery. J. Environ. Chem. Eng. 2019, 7, 102982. [Google Scholar] [CrossRef]
- Horn, T.B.; Zerwes, F.V.; Kist, L.T.; Machado, Ê.L. Constructed Wetland and Photocatalytic Ozonation for University Sewage Treatment. Ecol. Eng. 2014, 63, 134–141. [Google Scholar] [CrossRef]
- Kang, S.; Su, X.; Tong, L.; ÙZhang, J.; Zhang, L.; Davies. A Warning from an Ancient Oasis: Intensive Human Activities Are Leading to Potential Ecological and Social Catastrophe. Int. J. Sustain. Dev. World Ecol. 2008, 15, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Bachega, S.J.; Tavares, D.M. Framework Proposal for the Environmental Impact Assessment of Universities in the Context of Green IT. J. Clean. Prod. 2019, 241, 118346. [Google Scholar] [CrossRef]
- Almeida, A.P.; Sousa, V.; Silva, C.M. Methodology for Estimating Energy and Water Consumption Patterns in University Buildings: Case Study, Federal University of Roraima (UFRR). Heliyon 2021, 7, e08642. [Google Scholar] [CrossRef] [PubMed]
- Novita, E.; Andriyani, I.; Hartiningsih, E.S.; Pradana, H.A. Characterisation of Laboratory Wastewater for Planning Wastewater Treatment Plants in a University Campus in Indonesia. Ecol. Environ. Conserv. 2022, 28, S45–S50. [Google Scholar] [CrossRef]
- Hong, Y.; Park, J. Exploring Circular Water Options for a Water-Stressed City: Water Metabolism Analysis for Paju City, South Korea. Sustain. Cities Soc. 2023, 89, 104355. [Google Scholar] [CrossRef]
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef]
- Pasquier, U.; Vahmani, P.; Jones, A.D. Quantifying the City-Scale Impacts of Impervious Surfaces on Groundwater Recharge Potential: An Urban Application of WRF–Hydro. Water 2022, 14, 3143. [Google Scholar] [CrossRef]
- Kamali, M.; Delkash, M.; Tajrishy, M. Evaluation of Permeable Pavement Responses to Urban Surface Runoff. J. Environ. Manag. 2017, 187, 43–53. [Google Scholar] [CrossRef]
- Domingos, J.M.F.; Marques, D.G.; Campos, V.; Nolasco, M.A. Analysis of the Water Indicators in the UI GreenMetric Applied to Environmental Performance in a University in Brazil. Sustainability 2024, 16, 9014. [Google Scholar] [CrossRef]
- Boiocchi, R.; Ragazzi, M.; Torretta, V.; Rada, E.C. Critical Analysis of the GreenMetric World University Ranking System: The Issue of Comparability. Sustainability 2023, 15, 1343. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green Supply Chain Management: A Review and Bibliometric Analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 126, ISBN 0123456789. [Google Scholar]
- Palermo, S.A.; Turco, M.; Principato, F.; Piro, P. Hydrological Effectiveness of an Extensive Green Roof in Mediterranean Climate. Water 2019, 11, 1378. [Google Scholar] [CrossRef]
- Keffala, C.; Jmii, G.; Mokhtar, A.; Zouhir, F.; Liady, N.D.; Tychon, B.; Jupsin, H. Diagnosis and Assessment of a Combined Oxylag and High Rate Algal Pond (COHRAP) for Sustainable Water Reuse: Case Study of the University Campus in Tunisia. Water 2025, 17, 1326. [Google Scholar] [CrossRef]
- Mannina, G.; Alduina, R.; Badalucco, L.; Barbara, L.; Capri, F.C.; Cosenza, A.; Di Trapani, D.; Gallo, G.; Laudicina, V.A.; Muscarella, S.M.; et al. Water Resource Recovery Facilities (WRRFs): The Case Study of Palermo University (Italy). Water 2021, 13, 3413. [Google Scholar] [CrossRef]
- Stefanakis, A.I. Constructed Wetlands for Sustainable Wastewater Treatment in Hot and Arid Climates: Opportunities, Challenges and Case Studies in the Middle East. Water 2020, 12, 1665. [Google Scholar] [CrossRef]
- Bahho, M.; Vale, B. A Demonstration Building Project: Promoting Sustainability Values. J. Green Build. 2020, 15, 91–112. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Wu, L.; She, N.; Lucas, W.; Li, B. Innovative Design of a Suite of Low Impact Development Facilities in Civil Structure Experimental Building Complex. In Proceedings of the 17th International Symposium on Advancement of Construction Management and Real Estate; Springer: Berlin/Heidelberg, Germany, 2014; pp. 859–866. [Google Scholar]
- University Indonesia Green Metric Ranking System. Available online: https://greenmetric.ui.ac.id/ (accessed on 8 October 2025).
- Lin, S.; Chu, W.; Liu, A. Characteristics of Dissolved Organic Matter in Two Alternative Water Sources: A Comparative Study between Reclaimed Water and Stormwater. Sci. Total Environ. 2022, 851, 158235. [Google Scholar] [CrossRef]
- National Poly Industries. What Is the Difference Between Stormwater and Rainwater? Available online: https://nationalpolyindustries.com.au/2018/06/14/what-is-the-difference-between-stormwater-and-rainwater/ (accessed on 8 October 2025).
- Parker, E.A.; Grant, S.B.; Sahin, A.; Vrugt, J.A.; Brand, M.W. Can Smart Stormwater Systems Outsmart the Weather? Stormwater Capture with Real-Time Control in Southern California. ACS Environ. Sci. Technol. Water 2022, 2, 10–21. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Björklund, K.; Bondelind, M.; Karlsson, A.; Karlsson, D.; Sokolova, E. Hydrodynamic Modelling of the Influence of Stormwater and Combined Sewer Overflows on Receiving Water Quality: Benzo(a)Pyrene and Copper Risks to Recreational Water. J. Environ. Manag. 2018, 207, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Bdour, A.; Hejab, A.; Almakhadmah, L.; Hawwa, M. Management Strategies for the Efficient Energy Production of Brackish Water Desalination to Ensure Reliability, Cost Reduction, and Sustainability. Glob. J. Environ. Sci. Manag. 2023, 9, 173–192. [Google Scholar] [CrossRef]
- Stec, A.; Piotrowska, B.; Słyś, D. Greywater as an Undervalued Tool for Energy Efficiency Enhancement and Decarbonizing the Construction Sector: A Case Study of a Dormitory in Poland. Energy Build. 2025, 330, 115337. [Google Scholar] [CrossRef]
- Maulidevi, N.U.; Aji, B.S.K.; Hikmawati, E.; Surendro, K. Modeling Integrated Sustainability Monitoring System for Carbon Footprint in Higher Education Buildings. IEEE Access 2023, 11, 135365–135376. [Google Scholar] [CrossRef]
- Kamel, M.M.; Hebala, A.; Hamad, M.S. Carbon Footprint Assessment for Higher Educational Institutions: A Case Study. In Proceedings of the 2024 International Telecommunications Conference, ITC-Egypt 2024, Cairo, Egypt, 22–25 July 2024; pp. 374–379. [Google Scholar]
- Talpur, B.D.; Ullah, A.; Ahmed, S. Water Consumption Pattern and Conservation Measures in Academic Building: A Case Study of Jamshoro Pakistan. SN Appl. Sci. 2020, 2, 1781. [Google Scholar] [CrossRef]
- Sangita Mishra, S.; Shuruthi, B.K.; Jeevan Rao, H. Design of Rooftop Rainwater Harvesting Structure in a University Campus. Int. J. Recent Technol. Eng. 2020, 8, 3591–3595. [Google Scholar] [CrossRef]
- Anchan, S.S.; Shiva Prasad, H.C. Feasibility of Roof Top Rainwater Harvesting Potential - A Case Study of South Indian University. Clean. Eng. Technol. 2021, 4, 100206. [Google Scholar] [CrossRef]
- Mu, L.; Liu, Y.; Wang, C.; Qu, X.; Yu, Y. Enhancing Capacity Building to Climate Adaptation and Water Conservation among Chinese Young People. Environ. Sci. Pollut. Control 2021, 28, 27614–27628. [Google Scholar] [CrossRef]
- Saleki, N.; Kulaksiz, S.B.; Arslan, F.; Guney Coskun, M. The Evaluation of Menus’ Adherence to Sustainable Nutrition and Comparison with Sustainable Menu Example in a Turkish University Refectory. Nutr. Food Sci. 2023, 53, 1293–1303. [Google Scholar] [CrossRef]
- Fatemi, S.F.; Eini-Zinab, H.; Anari, F.M.; Amirolad, M.; Babaei, Z.; Sobhani, S.R. Food Waste Reduction and Its Environmental Consequences: A Quasi-Experimental Study in a Campus Canteen. Agric. Food Secur. 2024, 13, 37. [Google Scholar] [CrossRef]
- Rosa, F.; Kern, A.; Braganca, L. Comparative Analysis of Sustainable Development Environmental Indicators between Worldwide, Portugal and Brazil and between Two Universities within These Countries. IOP Conf. Ser. Earth Environ. Sci. 2020, 503, 012039. [Google Scholar] [CrossRef]
- Masri, R.M. Environmental Management and Monitoring for Education Building Development. J. Phys. Conf. Ser. 2018, 1013, 012105. [Google Scholar] [CrossRef]
- Custódio, D.A.; Ghisi, E. Potential for Potable Water Savings Using Rainwater: A Case Study in a University Building in Southern Brazil. Urban Water J. 2024, 21, 251–258. [Google Scholar] [CrossRef]
- Zang, J.; Kumar, M.; Werner, D. Real-World Sustainability Analysis of an Innovative Decentralized Water System with Rainwater Harvesting and Wastewater Reclamation. J. Environ. Manag. 2021, 280, 111639. [Google Scholar] [CrossRef]
- Bhakar, V.; Sihag, N.; Gieschen, R.; Andrew, S.; Herrmann, C.; Sangwan, K.S. Environmental Impact Analysis of a Water Supply System: Study of an Indian University Campus. Procedia CIRP 2015, 29, 468–473. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Saadeh, O.; Al-Widyan, M.; Al-tal, R.; Abu-Dalo, M. Environmental Sustainability Features in Large University Campuses: Jordan University of Science and Technology (JUST) as a Model of Green University. Int. J. Sustain. High. Educ. 2019, 20, 214–228. [Google Scholar] [CrossRef]
- Velazquez, L.; Munguia, N.; Ojeda, M. Optimizing Water Use in the University of Sonora, Mexico. J. Clean. Prod. 2013, 46, 83–88. [Google Scholar] [CrossRef]
- Antão-Geraldes, A.M.; Ohara, G.; Afonso, M.J.; Albuquerque, A.; Silva, F. Towards Sustainable Water Use in Two University Student Residences: A Case Study. Appl. Sci. 2024, 14, 7559. [Google Scholar] [CrossRef]
- Moghayedi, A.; Michell, K.; Hübner, D.; Le Jeune, K.; Massyn, M. Examine the Impact of Green Methods and Technologies on the Environmental Sustainability of Supportive Education Buildings, Perspectives of Circular Economy and Net-Zero Carbon Operation. Facilities 2024, 42, 201–222. [Google Scholar] [CrossRef]
- Soares, A.E.P.; Silva, J.K.D.; Nunes, L.G.C.F.; Rios Ribeiro, M.M.; Silva, S.R.D. Water Conservation Potential within Higher Education Institutions: Lessons from a Brazilian University. Urban Water J. 2023, 20, 1429–1437. [Google Scholar] [CrossRef]
- Parece, T.E.; Grossman, L.; Geller, E.S. Reducing Carbon Footprint of Water Consumption: A Case Study of Water Conservation at a University Campus. In Climate Change and Water Resources. The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2013; Volume 25, pp. 199–218. ISBN 9783642375859. [Google Scholar]
- Lanchipa-Ale, T.; Bruz-Baltuano, A.; Molero-Yañez, N.; Chucuya, S.; Vera-Barrios, B.; Pino-Vargas, E. Assessment of Greywater Reuse in a University Building in a Hyper-Arid Region: Quantity, Quality, and Social Acceptance. Sustainability 2024, 16, 3088. [Google Scholar] [CrossRef]
- Simmhan, Y.; Ravindra, P.; Chaturvedi, S.; Hegde, M.; Ballamajalu, R. Towards a Data-Driven IoT Software Architecture for Smart City Utilities. Softw.-Pract. Exp. 2018, 48, 1390–1416. [Google Scholar] [CrossRef]
- Fortes, S.; Santoyo-Ramón, J.A.; Palacios, D.; Baena, E.; Mora-García, R.; Medina, M.; Mora, P.; Barco, R. The Campus as a Smart City: University of Málaga Environmental, Learning, and Research Approaches. Sensors 2019, 19, 1349. [Google Scholar] [CrossRef] [PubMed]
- Barroso, S.; Bustos, P.; Núñez, P. Towards a Cyber-Physical System for Sustainable and Smart Building: A Use Case for Optimising Water Consumption on a SmartCampus. J. Ambient Intell. Humaniz. Comput. 2023, 14, 6379–6399. [Google Scholar] [CrossRef]
- Singh, S.; Choudhary, M.; Sørensen, K. Demonstration of Real-Time Monitoring in Smart Graded-Water Supply Grid: An Institutional Case Study. AQUA Water Infrastruct. Ecosyst. Soc. 2023, 72, 2152–2169. [Google Scholar] [CrossRef]
- Abdul Aziz, N.A.A.; Musa, T.A.; Musliman, I.A.; Omar, A.H.; Wan Aris, W.A. Smart Water Network Monitoring: A Case Study at Universiti Teknologi Malaysia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2022, 46, 3–7. [Google Scholar] [CrossRef]
- Ayeni, O.C.; Olaleye, T.O.; Arogundade, O.T.; Ifeanacho, F.; Adesemowo, A.K. Contextual Use of IoT Based Water Quality Control System. In Proceedings of the Co-Creating for Context in the Transfer and Diffusion of IT, Maynooth, Ireland, 15–16 June 2022; pp. 204–217. [Google Scholar]
- Zang, J.; Royapoor, M.; Acharya, K.; Jonczyk, J.; Werner, D. Performance Gaps of Sustainability Features in Green Award-Winning University Buildings. Build. Environ. 2022, 207, 108417. [Google Scholar] [CrossRef]
- Lall, A.K.; Terala, A.; Goyal, A.; Chaudhari, S.; Rajan, K.S.; Chouhan, S.S. Behavioural Analysis of Water Consumption Using IoT-Based Smart Retrofit Meter. IEEE Access 2024, 12, 113597–113607. [Google Scholar] [CrossRef]
- Zarpellon, B.O.; De Oro Arenas, L.; Paciencia Godoy, E.; Pinhabel Marafao, F.; Morales Paredes, H.K. Design and Implementation of a Smart Campus Flexible Internet of Things Architecture on a Brazilian University. IEEE Access 2024, 12, 113705–113725. [Google Scholar] [CrossRef]
- Carrera-Villacrés, D.V.; Gallegos Rios, D.F.; Chiliquinga López, Y.A.; Córdova Córdova, J.J.; Arroba Giraldo, A.M. The Implementation of IoT Sensors in Fog Collector Towers and Flowmeters for the Control of Water Collection and Distribution. Appl. Sci. 2024, 14, 8334. [Google Scholar] [CrossRef]
- Farah, E.; Shahrour, I. Use of Data-Driven Methods for Water Leak Detection and Consumption Analysis at Microscale and Macroscale. Water 2024, 16, 2530. [Google Scholar] [CrossRef]
- Walsh, B.P.; Murray, S.N.; O’Sullivan, D.T.J. The Water Energy Nexus, an ISO50001 Water Case Study and the Need for a Water Value System. Water Resour. Ind. 2015, 10, 15–28. [Google Scholar] [CrossRef]
- Verma, P.; Kumar, A.; Rathod, N.; Jain, P.; Mallikarjun, S.; Subramanian, R.; Amrutur, B.; Kumar, M.M.; Sundaresan, R. Towards and IoT Based Water Management System. In Proceedings of the 2015 IEEE First International Smart Cities Conference (ISC2), Guadalajara, Mexico, 25–28 October 2015; pp. 1–6. [Google Scholar]
- Yu, H.; Lv, H.; Yang, Y.; Zhao, R. Water Demand Prediction Model of University Park Based on BP-LSTM Neural Network. Water 2025, 17, 2729. [Google Scholar] [CrossRef]
- Ige, O.O.; Owolabi, T.A.; Fatoyinbo, I.O.; Ayodele, O.E.; Obasaju, D.O. Characterization of Factors Influencing Water Quality in Federal University of Agriculture Abeokuta and Its Environ, Southwestern Nigeria. Int. J. Energy Water Resour. 2021, 5, 205–218. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Yang, B.; Zhang, X.; Mahmud, S.; Zhang, X.; Yu, B.; Zhu, Y. Permeable Pavement Design Framework for Urban Stormwater Management Considering Multiple Criteria and Uncertainty. J. Clean. Prod. 2021, 293, 126114. [Google Scholar] [CrossRef]
- Xiong, H.; Sun, Y.; Ren, X. Comprehensive Assessment of Water Sensitive Urban Design Practices Based on Multi-Criteria Decision Analysis via a Case Study of the University of Melbourne, Australia. Water 2020, 12, 2885. [Google Scholar] [CrossRef]
- Dietz, M.E.; Arnold, C.L.; Milardo, K.D.; Miller, R.A. The Care and Feeding of a Long-Term Institutional Commitment to Green Stormwater Infrastructure: A Case Study at the University of Connecticut. J. Green Build. 2015, 10, 1–13. [Google Scholar] [CrossRef]
- Maniquiz-Redillas, M.C.; Geronimo, F.K.F.; Kim, L.H. Investigation on the Effectiveness of Pretreatment in Stormwater Management Technologies. J. Environ. Sci. 2014, 26, 1824–1830. [Google Scholar] [CrossRef]
- Amur, A.; Wadzuk, B.; Traver, R. Analyzing the Performance of a Rain Garden over 15 Years: How Predictable Is the Rain Garden’s Response? In Proceedings of the International Low Impact Development Conference 2020, Bethesda, MD, USA, 20–24 July 2020; pp. 151–162. [Google Scholar]
- Papuga, S.A.; Seifert, E.; Kopeck, S.; Hwang, K. Ecohydrology of Green Stormwater Infrastructure in Shrinking Cities: A Two-Year Case Study of a Retrofitted Bioswale in Detroit, MI. Water 2022, 14, 3064. [Google Scholar] [CrossRef]
- Li, S.; Kazemi, H.; Rockaway, T.D. Performance Assessment of Stormwater GI Practices Using Artificial Neural Networks. Sci. Total Environ. 2019, 651, 2811–2819. [Google Scholar] [CrossRef]
- Toran, L. Water Level Loggers as a Low-Cost Tool for Monitoring of Stormwater Control Measures. Water 2016, 8, 346. [Google Scholar] [CrossRef]
- Rachmayani, A.N. Urban Runoff and Pollutant Reduction by Retrofitting Green Infrastructures in Storm Water Management System. In Proceedings of the World Environmental and Water Resources Congress 2019, Pittsburgh, PA, USA, 19–23 May 2019; pp. 93–104. [Google Scholar]
- Chen, Y.; Niu, S.; Yu, J.; Wu, J.; Wang, T. Microplastics and Microorganisms in Sediments from Stormwater Drain System. Sci. Total Environ. 2023, 889, 164284. [Google Scholar] [CrossRef] [PubMed]
- Chiang, V.C.; Kao, M.H.; Liu, J.C. Assessment of Rainwater Harvesting Systems at a University in Taipei. Water Sci. Technol. 2013, 67, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Dronjak, L.; Kanan, S.; Ali, T.; Mortula, M.M.; Mohammed, A.; Ramos, J.N.; Aga, D.S.; Samara, F. Stormwater in the Desert: Unveiling Metal Pollutants in Climate-Intensified Flooding in the United Arab Emirates. Water 2025, 17, 2457. [Google Scholar] [CrossRef]
- Dufault, R.; Batal, K.; Decoteau, D. Design, Construction, and Operation of a Demonstration Rainwater Harvesting System for Greenhouse Irrigation at McGill University, Canada. Horttechnology 2013, 23, 220–226. [Google Scholar] [CrossRef]
- Fernando, A.; Rathnayake, U. Stormwater Runoff Quality in Malabe, Sri Lanka. Eng. Appl. Sci. Res. 2018, 45, 70–73. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.; Wang, Y.; Jv, X.; Dzakpasu, M.; Wang, X.C. Evolution of Water Quality in Rainwater Harvesting Systems during Long-Term Storage in Non-Rainy Seasons. Sci. Total Environ. 2024, 912, 168784. [Google Scholar] [CrossRef]
- Gispert, M.Í.; Hernández, M.A.A.; Climent, E.L.; Flores, M.F.T. Rainwater Harvesting as a Drinking Water Option for Mexico City. Sustainability 2018, 10, 3890. [Google Scholar] [CrossRef]
- Hazizan, A.b.A.; Ahmed, A.N.; Hayder, G. Assessment of Stormwater Runoff Quality in Various Location in University Campus. Water Resour. Dev. Manag. 2020, 1, 398–407. [Google Scholar] [CrossRef]
- Ikehata, K.; Espindola, C.A.; Ashraf, A.; Adams, H. Augmentation of Reclaimed Water with Excess Urban Stormwater for Direct Potable Use. Sustainability 2024, 16, 7917. [Google Scholar] [CrossRef]
- Kabbashi, N.A.; Jami, M.S.; Abdurahman, N.H.; Puad, N.I.M. Rainwater Harvesting Quality Assessment and Evaluation: IIUM Case Study. IIUM Eng. J. 2020, 21, 12–22. [Google Scholar] [CrossRef]
- Köster, S.; Hadler, G.; Opitz, L.; Thoms, A. Using Stormwater in a Sponge City as a NewWing of Urban Water Supply—A Case Study. Water 2023, 15, 1893. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Liu, F.; Tong, L.; Li, K.; Yang, H.; Zhang, L. Volatile Organic Compounds in Stormwater from a Community of Beijing, China. Environ. Pollut. 2018, 239, 554–561. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, S.; Zhang, X.; Shen, Z. Transport Process and Source Contribution of Nitrogen in Stormwater Runoff from Urban Catchments. Environ. Pollut. 2021, 289, 117824. [Google Scholar] [CrossRef] [PubMed]
- Marko, I.; Škultétyová, I.; Hrudka, J.; Rózsa, G. Studying the effect of urban runoff from the roadway and analysis of the chemical composition of stormwater. Int. Multidiscip. Sci. GeoConference Surv. Geol. Min. Ecol. Manag. SGEM 2020, 20, 257–264. [Google Scholar] [CrossRef]
- Marszałek, A.; Puszczało, E.; Szymańska, K.; Sroka, M.; Kudlek, E.; Generowicz, A. Application of Mesoporous Silicas for Adsorption of Organic and Inorganic Pollutants from Rainwater. Materials 2024, 17, 2917. [Google Scholar] [CrossRef]
- Maykot, J.K.; Martins Vaz, I.C.; Ghisi, E. Characterisation of First Flush for Rainwater Harvesting Purposes in Buildings. Water 2025, 17, 1772. [Google Scholar] [CrossRef]
- McElmurry, S.P.; Long, D.T.; Voice, T.C. Stormwater Dissolved Organic Matter: Influence of Land Cover and Environmental Factors. Environ. Sci. Technol. 2014, 48, 45–53. [Google Scholar] [CrossRef]
- Naddeo, V.; Scannapieco, D.; Belgiorno, V. Enhanced Drinking Water Supply through Harvested Rainwater Treatment. J. Hydrol. 2013, 498, 287–291. [Google Scholar] [CrossRef]
- Nyaupane, N.; Bhandari, S.; Mafuzur Rahaman, M.; Wagner, K.; Kalra, A.; Ahmad, S.; Gupta, R. Evaluating the Effectiveness of Bioswales and Catch Basin Inserts for Treating Urban Stormwater Runoff in Detroit, Michigan. In Proceedings of the World Environmental and Water Resources Congress 2019, Pittsburgh, PA, USA, 19–23 May 2019; pp. 124–131. [Google Scholar]
- Osawa, T.M.; Pereira, M.C.S.; Leite, B.C.C.; Martins, J.R.S. Impact of an Aged Green Roof on Stormwater Quality and First-Flush Dynamics. Buildings 2025, 15, 1763. [Google Scholar] [CrossRef]
- Ramadhan, A.; Chandra, I.; Setyawati, W.; Tanti, D.A.; Indrawati, A.; Alawi, A.F.; Karo, B.F.B.; Sabilla, V.A.; Prihatini, A.P.A. Central Tendency Data Real-Time Acid Rain Measurement to Evaluate Tool’s Performance Using Statistical Analysis. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 1161–1169. [Google Scholar] [CrossRef]
- Ross, T.T.; Alim, M.A.; Rahman, A. Simple and Effective Filtration System for Drinking Water Production from Harvested Rainwater in Rural Areas. J. Environ. Manag. 2025, 373, 123887. [Google Scholar] [CrossRef] [PubMed]
- Shafiquzzaman, M.; Haider, H.; Ghazaw, Y.M.; Alharbi, F.; Alsaleem, S.S.; Almoshaogeh, M. Evaluation of a Low-Cost Ceramic Filter for Sustainable Reuse of Urban Stormwater in Arid Environments. Water 2020, 12, 460. [Google Scholar] [CrossRef]
- Shafiquzzaman, M.; Uddin, B. Evaluating Preamble Clay Bricks for Mitigating Urban Heat Island Effects and Stormwater Pollution. Sci. Rep. 2025, 15, 23450. [Google Scholar] [CrossRef]
- Souza de Carvalho, J.; Bello-Mendoza, R.; O’Sullivan, A. Field Performance of an Innovative Downpipe Roof Runoff Treatment System: Effect of Roof Material, Stormwater Characteristics, and System Age on Heavy Metals Removal. Water Air Soil Pollut. 2025, 236, 133. [Google Scholar] [CrossRef]
- Stamm, G.; Bhattacharjee, A.; Basapuram, G.; Dutta, A.; Duttagupta, S. Molecular and Ionic Signatures in Rainwater: Unveiling Sources of Atmospheric Pollution. Environments 2025, 12, 351. [Google Scholar] [CrossRef]
- Tan, Y.; Cheng, Q.; Lyu, F.; Liu, F.; Liu, L.; Su, Y.; Yuan, S.; Xiao, W.; Liu, Z.; Chen, Y. Hydrological Reduction and Control Effect Evaluation of Sponge City Construction Based on One-Way Coupling Model of SWMM-FVCOM: A Case in University Campus. J. Environ. Manag. 2024, 349, 119599. [Google Scholar] [CrossRef]
- Wang, S.; He, Q.; Ai, H.; Wang, Z.; Zhang, Q. Pollutant Concentrations and Pollution Loads in Stormwater Runoff from Different Land Uses in Chongqing. J. Environ. Sci. 2013, 25, 502–510. [Google Scholar] [CrossRef]
- Wang, S.M.; Yu, H. Spatial and Temporal Distribution of Heavy Metals Concentration in Urban Stormwater Runoff. Adv. Mater. Res. 2013, 726–731, 1801–1804. [Google Scholar] [CrossRef]
- Wijewantha, H.L.S.S.; Dharaka, B.D.P.; Deeyamulla, M.P.; Priyantha, N. Monitoring of Rainwater Quality in Kandy and Peradeniya, Sri Lanka. Environ. Monit. Assess. 2024, 196, 218. [Google Scholar] [CrossRef]
- Ahmed, F.; Loc, H.H.; Babel, M.S.; Stamm, J. A Community-Scale Study on Nature-Based Solutions (NBS) for Stormwater Management under Tropical Climate: The Case of the Asian Institute of Technology (AIT), Thailand. J. Hydroinformatics 2024, 26, 1080–1099. [Google Scholar] [CrossRef]
- Yan, D.; Li, H.; Li, J.; Jiang, C.; Jia, B.; Cheng, B. Cumulative Risk of Heavy Metals in Long-Term Operational Rain Garden. Water 2025, 17, 955. [Google Scholar] [CrossRef]
- Yulistyorini, A.; Idfi, G.; Fahmi, E.D. Enhanced Rooftop Rainwater Harvesting Quality through Filtration Using Zeolite and Activated Carbon. MATEC Web Conf. 2018, 204, 03016. [Google Scholar] [CrossRef]
- Zanin, G.; Bortolini, L.; Borin, M. Assessing Stormwater Nutrient and Heavy Metal Plant Uptake in an Experimental Bioretention Pond. Land 2018, 7, 150. [Google Scholar] [CrossRef]
- Zhan, Y.; Hong, N.; Yang, B.; Du, Y.; Wu, Q.; Liu, A. Toxicity Variability of Urban Road Stormwater during Storage Processes in Shenzhen, China: Identification of Primary Toxicity Contributors and Implications for Reuse Safety. Sci. Total Environ. 2020, 745, 140964. [Google Scholar] [CrossRef]
- Zuraini, N.A.; Alias, N.; Abd Rahman, N.; Harun, S.; Ibrahim, Z.; Azman, S.; Jumain, M. Influence of Rainfall Characteritics on Total Suspended Solid Concentration. J. Phys. Conf. Ser. 2018, 1049, 012039. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Ho, Y.W.; Fang, J.K.H.; Li, Y. Characterization and Ecological Risks of Microplastics in Urban Road Runoff. Sci. Total Environ. 2024, 954, 176590. [Google Scholar] [CrossRef]
- Akpanke, J.; Henry, I.I.; Ugbadu, J.I.; Abuh, S.A. In Vitro Antibiotics Resistance Patterns of Selected Genera of Bacteria from Waste Collection Sites in University of Calabar Campus, Cross River State, Nigeria. Malays. J. Microbiol. 2023, 19, 254–260. [Google Scholar] [CrossRef]
- Al-Amoush, H.; Al-Ayyash, S.; Shdeifat, A. Harvested Rain Water Quality of Different Roofing Material Types in Water Harvesting System at Al Al-Bayt University/Jordan. Jordan J. Civ. Eng. 2018, 12, 228–244. [Google Scholar]
- Allameh, Z.; Kouchakzadeh, M.; Imteaz, M.A. Investigation of Stormwater Quality from Successive First Flush Diverted from Roof for Different Roofing Materials. Int. J. Environ. Sci. Technol. 2025, 22, 8149–8166. [Google Scholar] [CrossRef]
- Awang Ali, A.N.; Bolong, N. Determination of Water Quality in Universiti Malaysia Sabah (UMS), Kota Kinabalu: The Effectiveness of Stormwater Management Systems. Mater. Today Proc. 2021, 46, 1848–1854. [Google Scholar] [CrossRef]
- Carpio-Vallejo, E.; Düker, U.; Nogueira, R. Rainwater Management and Associated Health Risks: Case Study on the Welfengarten Campus of the Leibniz University of Hannover, Germany. Front. Water 2025, 7, 1590548. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.; Gao, S.; Dzakpasu, M.; Wang, X.C. Optimizing Roof-Harvested Rainwater Storage: Impact of Dissolved Oxygen Regime on Self-Purification and Quality Dynamics. Sci. Total Environ. 2024, 954, 176574. [Google Scholar] [CrossRef] [PubMed]
- Maniquiz-Redillas, M.C.; Kim, L.H. Understanding the Factors Influencing the Removal of Heavy Metals in Urban Stormwater Runoff. Water Sci. Technol. 2016, 73, 2921–2928. [Google Scholar] [CrossRef]
- Oberascher, M.; Kinzel, C.; Kastlunger, U.; Schöpf, M.; Grimm, K.; Plaiasu, D.; Rauch, W.; Sitzenfrei, R. Smart Water Campus—A Testbed for Smart Water Applications. Water Sci. Technol. 2022, 86, 2834–2847. [Google Scholar] [CrossRef]
- Zha, X.; Fang, W.; Zhu, W.; Wang, S.; Mu, Y.; Wang, X.; Luo, P.; Zainol, M.R.R.M.A.; Zawawi, M.H.; Chong, K.L.; et al. Optimizing the Deployment of LID Facilities on a Campus-Scale and Assessing the Benefits of Comprehensive Control in Sponge City. J. Hydrol. 2024, 635, 131189. [Google Scholar] [CrossRef]
- Badriyyah, M.N.; Adistya, N.; Sagita, S.D.; Saputri, U.S.; Sari, N.K.; Marifah, S.L. Analysis of Rainwater Harvesting for Toilet and Landscaping Needs of Building B, Nusa Putra University. BIO Web Conf. 2025, 148, 5–7. [Google Scholar] [CrossRef]
- Mogano, M.M.; Okedi, J. Toward a Water-Sensitive Precinct with Stormwater Harvesting: A Case Study in South Africa. Water Supply 2024, 27, 2367–2382. [Google Scholar] [CrossRef]
- Anker, Y.; Ne’eman, N.; Gimburg, A.; Benenson, I. Integrative Runoff Infiltration Modeling of Mountainous Urban Karstic Terrain. Hydrology 2025, 12, 222. [Google Scholar] [CrossRef]
- You, J.; Wang, S.; Ha, M.; Kang, A.; Lei, X.; Chen, B.; Yu, Y.; Chai, B. Comparative Hydrologic Performance of Cascading and Distributed Green-Gray Infrastructure: Experimental Evidence for Spatial Optimization in Urban Waterlogging Mitigation. J. Hydrol. 2025, 662, 133979. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Xue, C.; Qiu, R.; Sun, S.; Yang, Z.; Qiao, Y. Assessing the Effectiveness of a Residential-Scale Detention Tank Operated in a Multi-Objective Approach Using SWMM. Water Sci. Technol. 2024, 89, 54–70. [Google Scholar] [CrossRef] [PubMed]
- McGauley, M.W.; Zaremba, G.; Wadzuk, B.M. A Complete Water Balance of a Constructed Stormwater Wetland. Water Resour. Res. 2025, 61, e2024WR039045. [Google Scholar] [CrossRef]
- Sebicho, S.W.; Lou, B.; Anito, B.S. A Multi-Parameter Flexible Smart Water Gauge for the Accurate Monitoring of Urban Water Levels and Flow Rates. Eng 2024, 5, 198–216. [Google Scholar] [CrossRef]
- Yakimov, B.N.; Zaznobina, N.I.; Kuznetsova, I.M.; Bolshakova, A.D.; Kovaleva, T.A.; Markelov, I.N.; Onishchenko, V.V. University Campuses as Vital Urban Green Infrastructure: Quantifying Ecosystem Services Based on Field Inventory in Nizhny Novgorod, Russia. Land 2025, 14, 2073. [Google Scholar] [CrossRef]
- Ismail, F.B.; Fahmy, M.I.; Abed, A.M.; Kazem, H.A.; Chaichan, M.T.; Rahmat, M.A.A. Malaysian Rainwater Harvesting System for In-House Power Generation. Appl. Mech. Mater. 2024, 922, 123–134. [Google Scholar] [CrossRef]
- Misra, A.K.; Dolui, S.; Dutta, K.; Baruah, B.; Ranjan, R.K.; Wanjari, N. Sustainable Water Management in Sikkim Himalayan Region: Innovative Solutions for Rainwater Harvesting Reservoirs. Geol. Ecol. Landsc. 2024, 9, 1127–1140. [Google Scholar] [CrossRef]
- Van Mazijk, R.; Smyth, L.K.; Weideman, E.A.; West, A.G. Isotopic Tracing of Stormwater in the Urban Liesbeek River. Water SA 2018, 44, 674–679. [Google Scholar] [CrossRef]
- Welker, A.L.; Mandarano, L.; Greising, K.; Mastrocola, K. Application of a Monitoring Plan for Storm-Water Control Measures in the Philadelphia Region. J. Environ. Eng. 2013, 139, 1108–1118. [Google Scholar] [CrossRef]
- Gnecco, I.; Palla, A.; Lanza, L.G.; La Barbera, P. The Role of Green Roofs as a Source/Sink of Pollutants in Storm Water Outflows. Water Resour. Manag. 2013, 27, 4715–4730. [Google Scholar] [CrossRef]
- de Macedo, M.B.; do Lago, C.A.F.; Mendiondo, E.M. Stormwater Volume Reduction and Water Quality Improvement by Bioretention: Potentials and Challenges for Water Security in a Subtropical Catchment. Sci. Total Environ. 2019, 647, 923–931. [Google Scholar] [CrossRef]
- Bortolini, L.; Zanin, G. The Experimental and Educational Rain Gardens of the Agripolis Campus (North-East Italy): Preliminary Results on Hydrological and Plant Behavior. Acta Hortic. 2017, 1189, 531–536. [Google Scholar] [CrossRef]
- Nagchaudhuri, A.; Mitra, M.; Ford, T.; Pandya, J.R. Towards Efficient Irrigation Management with Solar-Powered Wireless Soil Moisture Sensors and Real-Time Monitoring Capability. In Proceedings of the 2021 ASEE Annual Conference and Exposition, Conference Proceedings, Virtual, 26 July 2021. [Google Scholar]
- Wojciechowska, E.; Gajewska, M.; Nawrot, N.; Kilanowska, M.; Obarska-Pempkowiak, H. Combination of architectural, environmental and social aspects in urban stormwater management. A case study of the university campus. Int. J. Conserv. Sci. 2021, 12, 681–700. [Google Scholar]
- Amur, A.; Wadzuk, B.; Traver, R. Exploring Storm Intensities and the Implications on Green Stormwater Infrastructure Design. Hydrol. Process. 2024, 38, e15333. [Google Scholar] [CrossRef]
- Merchán-Sanmartín, B.; Carrión-Mero, P.; Suárez-Zamora, S.; Aguilar-Aguilar, M.; Cruz-Cabrera, O.; Hidalgo-Calva, K.; Morante-Carballo, F. Stormwater Sewerage Masterplan for Flood Control Applied to a University Campus. Smart Cities 2023, 6, 1279–1302. [Google Scholar] [CrossRef]
- Pochodyła-Ducka, E.; Glinska-Lewczuk, K.G.; Jaszczak, A. Changes in Stormwater Quality and Heavy Metals Content along the Rainfall–Runoff Process in an Urban Catchment. Water 2023, 15, 3505. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban Rainwater Harvesting Systems: Research, Implementation and Future Perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Saeedi, I.; Goodarzi, M. Rainwater Harvesting System: A Sustainable Method for Landscape Development in Semiarid Regions, the Case of Malayer University Campus in Iran. Environ. Dev. Sustain. 2020, 22, 1579–1598. [Google Scholar] [CrossRef]
- Kosonen, H.; Kim, A. Rainwater System to Concrete Laboratory—An Interdisciplinary Approach to Sustainability Education. In Proceedings of the 6th CSCE-CRC International Construction Specialty Conference 2017 - Held as Part of the Canadian Society for Civil Engineering Annual Conference and General Meeting 2017, Vancouver, WA, Canada, 31 May–3 June 2017; pp. 1226–1227. [Google Scholar]
- Paschoalin, R.; Pace, R.; Isaacs, N. Urban Resilience: Potential for Rainwater Harvesting in a Heritage Building. In Proceedings of the International Conference of Architectural Science Association, Auckland, New Zealand, 26–27 November 2020; pp. 1331–1340. [Google Scholar]
- Almeida, A.P.; Liberalesso, T.; Silva, C.M.; Sousa, V. Dynamic Modelling of Rainwater Harvesting with Green Roofs in University Buildings. J. Clean. Prod. 2021, 312, 127655. [Google Scholar] [CrossRef]
- Stec, A.; Zeleňáková, M. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. Water 2019, 11, 458. [Google Scholar] [CrossRef]
- Wang, W.; Page, D.; Zhou, Y.; Vanderzalm, J.; Dillon, P. Roof Runoff Replenishment of Groundwater in Jinan, China. J. Hydrol. Eng. 2015, 20, B5014005. [Google Scholar] [CrossRef]
- Ariyani, D.; Wulandari, A.; Juniati, A.; Nur Arini, R. Rainwater Harvesting for Water Security in Campus (Case Study Engineering Faculty in University of Pancasila). J. Phys. Conf. Ser. 2021, 1858, 012020. [Google Scholar] [CrossRef]
- Kucukkaya, E.; Kelesoglu, A.; Gunaydin, H.; Kilic, G.A.; Unver, U. Design of a Passive Rainwater Harvesting System with Green Building Approach. Int. J. Sustain. Energy 2020, 40, 175–187. [Google Scholar] [CrossRef]
- Almeida, A.P.; Liberalesso, T.; Silva, C.M.; Sousa, V. Combining Green Roofs and Rainwater Harvesting Systems in University Buildings under Different Climate Conditions. Sci. Total Environ. 2023, 887, 163719. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.G.; Wang, B. Recycled Water Reuse and Rainwater Utilization Project of Jilin Jianzhu University. Appl. Mech. Mater. 2014, 448–453, 1165–1168. [Google Scholar] [CrossRef]
- Temesgen, T.; Han, M.; Park, H.; Kim, T.-I. Design and Technical Evaluation of Improved Rainwater Harvesting System on a University Building in Ethiopia. Water Sci. Technol. Water Supply 2015, 15, 1220–1227. [Google Scholar] [CrossRef]
- Chaimoon, N. The Observation of Rainwater Harvesting Potential in Mahasarakham University (Khamriang Campus). Adv. Mater. Res. 2013, 807–809, 1087–1092. [Google Scholar] [CrossRef]
- Ramana, G.V.; Sudheer, C.S.S.; Suresh Kumar, R. An Identification of Suitable Location to Construct Underground Sump for Rooftop Rainwater Harvesting in the Campus of Debre Tabor University. In Advanced Modelling and Innovations in Water Resources Engineering; Rao, C.M., Patra, K.C., Jhajharia, D., Kumari, S., Eds.; Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2022; p. 176. [Google Scholar]
- Wei, Z.; Sun, S.; Ji, X. The Inspiration of Rainwater Utilization of Foreign Sponge Campus Landscape Planning for Beijing. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 052019. [Google Scholar] [CrossRef]
- Kim, J.J.; Sanchez, M.A.; Del Aguila, M.; Kim, S. Green Building Strategies for LEED Certified Recreational Facilities. J. Green Build. 2017, 12, 149–166. [Google Scholar] [CrossRef]
- Fan, S.; Wen, G.; Liu, A. Urban Stormwater Disinfection, Quality Variability during Storage and Influence on the Freshwater Algae: Implications for Reuse Safety. J. Environ. Sci. 2023, 124, 655–666. [Google Scholar] [CrossRef]
- Soni, P.; Medhi, H.; Sagar, A.; Garg, P.; Singh, A.; Karna, U. Runoff Estimation Using Digital Image Processing for Residential Areas. AQUA Water Infrastruct. Ecosyst. Soc. 2022, 71, 938–948. [Google Scholar] [CrossRef]
- Xie, H.; Wu, Z.; Kong, X.; Chen, W.; Wang, J.; Gao, W. Enhancing Water Reliability and Overflow Control Through Coordinated Operation of Rainwater Harvesting Systems: A Campus–Residential Case in Kitakyushu, Japan. Buildings 2025, 15, 3592. [Google Scholar] [CrossRef]
- Wu, X.; Moustakas, S.; Bezak, N.; Radinja, M.; Alivio, M.B.; Mikoš, M.; Dohnal, M.; Bares, V.; Willems, P. Assessing the Performance of Blue-Green Solutions through a Fine-Scale Water Balance Model for an Urban Area. Sci. Total Environ. 2024, 948, 174750. [Google Scholar] [CrossRef]
- Zacki, A.; Pathirana, S. Effect of Green Building Features on Energy Efficiency of University Buildings in Tropical Climate. Sustain. Future 2025, 10, 101069. [Google Scholar] [CrossRef]
- Cintura, I.; Arenas, A. Multi-Scale Assessment of Rainwater Harvesting Availability across the Continental U.S. J. Environ. Manag. 2024, 366, 121776. [Google Scholar] [CrossRef]
- Cupido, A.; Steinberg, L.; Baetz, B. Water Conservation: Observations from a Higher Education Facility Management Perspective. J. Green Build. 2016, 11, 162–182. [Google Scholar] [CrossRef]
- Wu, X.; Willems, P. Assessing Blue-Green Infrastructures for Urban Flood and Drought Mitigation under Changing Climate Scenarios. J. Hydrol. Reg. Stud. 2025, 62, 102798. [Google Scholar] [CrossRef]
- Ahn, C.; Schmidt, S. Designing Wetlands as an Essential Infrastructural Element for Urban Development in the Era of Climate Change. Sustainability 2019, 11, 1920. [Google Scholar] [CrossRef]
- Al Mehedi, M.A.; Amur, A.; Metcalf, J.; McGauley, M.; Smith, V.; Wadzuk, B. Predicting the Performance of Green Stormwater Infrastructure Using Multivariate Long Short-Term Memory (LSTM) Neural Network. J. Hydrol. 2023, 625, 130076. [Google Scholar] [CrossRef]
- Ament, M.R.; Roy, E.D.; Yuan, Y.; Hurley, S.E. Phosphorus Removal, Metals Dynamics, and Hydraulics in Stormwater Bioretention Systems Amended with Drinking Water Treatment Residuals. J. Sustain. Water Built Environ. 2022, 8, 04022003. [Google Scholar] [CrossRef]
- Barnett-Itzhaki, Z.; Tifferet, S.; Berkowic, D.; Arviv, T.; Daya, A.; Carasso Romano, G.H.; Levi, A. Strategies and Challenges for Green Campuses. Front. Sustain. Cities 2025, 7, 1469274. [Google Scholar] [CrossRef]
- Bumgarner, N.R.; Ludwig, A.L.; Collett, B.P.; Stewart, C.E. Establishing Campus Rain Gardens That Link Student Experiential Learning with Stakeholder Education and Outreach. Acta Hortic. 2017, 1189, 537–540. [Google Scholar] [CrossRef]
- Canfield, D.C.; Thomas, S.; Rotz, R.R.; Missimer, T.M. Stormwater Pond Evolution and Challenges in Measuring the Hydraulic Conductivity of Pond Sediments. Water 2023, 15, 1122. [Google Scholar] [CrossRef]
- Cao, S.; Bensi, M.; Davis, A.P.; Kjellerup, B.V. Polychlorinated Biphenyls (PCBs) in Dissolved and Particulate Phases of Urban Stormwater before and after Bioretention Treatment. ACS ES T Water 2023, 3, 3235–3243. [Google Scholar] [CrossRef]
- Chandrasena, G.I.; Deletic, A.; McCarthy, D.T. Survival of Escherichia coli in Stormwater Biofilters. Environ. Sci. Pollut. Res. 2014, 21, 5391–5401. [Google Scholar] [CrossRef]
- Chandrasena, G.I.; Deletic, A.; McCarthy, D.T. Biofiltration for Stormwater Harvesting: Comparison of Campylobacter Spp. and Escherichia Coli Removal under Normal and Challenging Operational Conditions. J. Hydrol. 2016, 537, 248–259. [Google Scholar] [CrossRef]
- Croft, K.; Kjellerup, B.V.; Davis, A.P. Interactions of Particulate- and Dissolved-Phase Heavy Metals in a Mature Stormwater Bioretention Cell. J. Environ. Manag. 2024, 352, 120014. [Google Scholar] [CrossRef]
- Duan, X.; Wang, S.; Li, J. Accumulation Characteristics and Risk of Heavy Metals and Microbial Community Composition in Bioretention Systems: A Case Study of a University Campus. Ecol. Eng. 2023, 193, 106996. [Google Scholar] [CrossRef]
- Flynn, K.M.; Traver, R.G. Green Infrastructure Life Cycle Assessment: A Bio-Infiltration Case Study. Ecol. Eng. 2013, 55, 9–22. [Google Scholar] [CrossRef]
- Galella, J.G.; Kaushal, S.S.; Mayer, P.M.; Maas, C.M.; Shatkay, R.R.; Stutzke, R.A. Stormwater Best Management Practices: Experimental Evaluation of Chemical Cocktails Mobilized by Freshwater Salinization Syndrome. Front. Environ. Sci. 2023, 11, 1020914. [Google Scholar] [CrossRef]
- Geronimo, F.K.F.; Maniquiz-Redillas, M.C.; Kim, L.-H. Treatment of Suspended Solids and Heavy Metals from Urban Stormwater Runoff by a Tree Box Filter. Desalin. Water Treat. 2013, 51, 4044–4049. [Google Scholar] [CrossRef]
- Grover, S.P.P.; Cohan, A.; Chan, H.S.; Livesley, S.J.; Beringer, J.; Daly, E. Occasional Large Emissions of Nitrous Oxide and Methane Observed in Stormwater Biofiltration Systems. Sci. Total Environ. 2013, 465, 64–71. [Google Scholar] [CrossRef]
- Guo, C.; Li, J.; Li, H.; Li, Y. Influences of Stormwater Concentration Infiltration on the Heavy Metal Contents of Soil in Rain Gardens. Water Sci. Technol. 2020, 81, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.T.; Geronimo, F.K.F.; Robles, M.E.L.; Vispo, C.; Kim, L.H. Comparative Evaluation of the Carbon Storage Capacities in Urban Stormwater Nature-Based Technologies. Ecol. Eng. 2025, 212, 107539. [Google Scholar] [CrossRef]
- Houle, J.J.; Roseen, R.M.; Ballestero, T.P.; Puls, T.A.; Sherrard, J. Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef]
- Hung, W.C.; Rugh, M.; Feraud, M.; Avasarala, S.; Kurylo, J.; Gutierrez, M.; Jimenez, K.; Truong, N.; Holden, P.A.; Grant, S.B.; et al. Influence of Soil Characteristics and Metal(Loid)s on Antibiotic Resistance Genes in Green Stormwater Infrastructure in Southern California. J. Hazard. Mater. 2022, 424, 127469. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Ahsan, A.; Rahman, A.; Mekanik, F. Modelling Stormwater Treatment Systems Using MUSIC: Accuracy. Resour. Conserv. Recycl. 2013, 71, 15–21. [Google Scholar] [CrossRef]
- Kravchenko, M.; Trach, Y.; Trach, R.; Tkachenko, T.; Mileikovskyi, V. Improving the Efficiency and Environmental Friendliness of Urban Stormwater Management by Enhancing the Water Filtration Model in Rain Gardens. Water 2024, 16, 1316. [Google Scholar] [CrossRef]
- Maniquiz-Redillas, M.; Kim, L.H. Fractionation of Heavy Metals in Runoff and Discharge of a Stormwater Management System and Its Implications for Treatment. J. Environ. Sci. 2014, 26, 1214–1222. [Google Scholar] [CrossRef]
- Maranan, C.; Cruz, G.; Santos, F. Quantifying Blue, Green, and Gray Water Footprints in a Mixed Land Use Urban Catchment for Sustainable Urban Water Management. Front. Water 2025, 7, 1655691. [Google Scholar] [CrossRef]
- McPhillips, L.; Goodale, C.; Walter, M.T. Nutrient Leaching and Greenhouse Gas Emissions in Grassed Detention and Bioretention Stormwater Basins. J. Sustain. Water Built Environ. 2018, 4. [Google Scholar] [CrossRef]
- Navickis-Brasch, A.S.; Bormann, N.E.; Niezgoda, S.L.; Zarecor, M. Expanding the Presence of Stormwater Management in Undergraduate Civil Engineering. In Proceedings of the ASEE Annual Conference and Exposition, Conference Proceedings, Indianapolis, IN, USA, 15–18 June 2014. [Google Scholar] [CrossRef]
- Nizamutdinova, Z.F.; Potonova, N.A. Determination of Territorial Compactness and Analysis of Optimization of Energy-Efficient Characteristics of the University Campus. IOP Conf. Ser. Earth Environ. Sci. 2021, 751, 012029. [Google Scholar] [CrossRef]
- Nyaupane, N.; Bhandari, S.; Mafuzur Rahaman, M.; Wagner, K.; Kalra, A.; Ahmad, S.; Gupta, R. Improvements to SIU’s Engineering Campus Parking and Walkways along Campus Lake Melissa. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016; pp. 262–271. [Google Scholar]
- Peng, S.; Cui, H.; Ji, M. Sustainable Rainwater Utilization and Water Circulation Model for Green Campus Design at Tianjin University. J. Sustain. Water Built Environ. 2018, 4, 04017015. [Google Scholar] [CrossRef]
- Pinasseau, L.; Wiest, L.; Volatier, L.; Mermillod-Blondin, F.; Vulliet, E. Emerging Polar Pollutants in Groundwater: Potential Impact of Urban Stormwater Infiltration Practices. Environ. Pollut. 2020, 266, 115387. [Google Scholar] [CrossRef] [PubMed]
- Poor, C.; Membrere, T.; Miyasato, J. Impact of Green Stormwater Infrastructure Age and Type on Water Quality. Sustainability 2021, 13, 10484. [Google Scholar] [CrossRef]
- Qu, L.; Dai, Y. Reshaping Resilient Cities from an Educational Perspective: The Case of IZJU. In Sustainable and Smart Cities: Governance, Economy and Society; Routledge: London, UK, 2025; pp. 131–142. ISBN 9781040335857. [Google Scholar]
- Richardson, C.J.; Flanagan, N.E. Water Quality and Wetland Vegetation Responses to Water Level Variations in a University Stormwater Reuse Reservoir: Nature-Based Approaches to Campus Water Sustainability. Sci. Total Environ. 2024, 948, 174616. [Google Scholar] [CrossRef]
- Rippy, M.A.; Pierce, G.; Feldman, D.; Winfrey, B.; Mehring, A.S.; Holden, P.A.; Ambrose, R.; Levin, L.A. Perceived Services and Disservices of Natural Treatment Systems for Urban Stormwater: Insight from the next Generation of Designers. People Nat. 2022, 4, 481–504. [Google Scholar] [CrossRef]
- Sample-Lord, K.M.; Smith, V.; Gallagher, P.; Welker, A.L. Using Your Campus as a Laboratory: An Adaptable Field Trip on Geomorphology for Engineering Geology. In Proceedings of the ASEE Annual Conference and Exposition, Conference Proceedings, Tampa, FL, USA, 15–19 June 2019. [Google Scholar] [CrossRef]
- Shaharuddin, S.; Zakaria, N.A.; Ghani, A.; Wan Maznah, W.O. Assessing Phytoplankton Distribution and Water Quality in Constructed Wetlands during Dry and Wet Periods: A Case Study in USM Engineering Campus. IOP Conf. Ser. Earth Environ. Sci. 2019, 380, 012018. [Google Scholar] [CrossRef]
- Shi, L.; Maruthaveeran, S.; Yusof, M.J.M.; Zhao, J.; Liu, R. Exploring Herbaceous Plant Biodiversity Design in Chinese Rain Gardens: A Literature Review. Water 2024, 16, 1586. [Google Scholar] [CrossRef]
- Smith, V.B.; McGauley, M.W.; Newman, M.; Garzio-Hadzick, A.; Kurzweil, A.; Wadzuk, B.M.; Traver, R. A Relational Data Model for Advancing Stormwater Infrastructure Management. J. Sustain. Water Built Environ. 2023, 9, 04022023. [Google Scholar] [CrossRef]
- Strybos, J.W.; Lanford, M.L. Water Conservation, Management and Re-Use at Northwest Vista College John. In Proceedings of the Water Conservation, Management, and Re-Use at Northwest Vista College, San Antonio, TX, USA, 21 May 2015; pp. 2707–2715. [Google Scholar]
- Veracka, M. Delivering Better Water Quality: Rethinking Storm Water Management. In Proceedings of the 2013 Energy and Sustainability Conference, Farmingdale, NY, USA, 22 March 2013; pp. 1–6. [Google Scholar]
- Yang, H.; Dick, W.A.; McCoy, E.L.; Phelan, P.L.; Grewal, P.S. Field Evaluation of a New Biphasic Rain Garden for Stormwater Flow Management and Pollutant Removal. Ecol. Eng. 2013, 54, 22–31. [Google Scholar] [CrossRef]
- Yuan, C.; Davis, A.P.; Kaya, D.; Kjellerup, B.V. Distribution and Biodegradation Potential of Polycyclic Aromatic Hydrocarbons (PAHs) Accumulated in Media of a Stormwater Bioretention. Chemosphere 2023, 336, 139188. [Google Scholar] [CrossRef] [PubMed]
- Zarezadeh, V.; Lung, T.; Dorman, T.; Shipley, H.J.; Giacomoni, M. Assessing the Performance of Sand Filter Basins in Treating Urban Stormwater Runoff. Environ. Monit. Assess. 2018, 190, 697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, J.; Hu, L. A Type of Rainwater Ecological Treatment Technology: Rainwater Biofiltration System. Appl. Mech. Mater. 2013, 295–298, 1502–1507. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Li, J.; Zhang, L.; Feng, P. Numerical Simulation Study of Urban Hydrological Effects under Low Impact Development with a Physical Experimental Basis. J. Hydrol. 2023, 618, 129191. [Google Scholar] [CrossRef]
- Yoo, C.; Cho, E.; Lee, M.; Kim, S. Observation Experiment of Wind-Driven Rain Harvesting from a Building Wall. Water 2022, 14, 603. [Google Scholar] [CrossRef]
- Luo, P.; Yan, P.; Wang, X.; Wu, Y.; Lyu, J.; He, B.; Duan, W.; Wang, S.; Zha, X. Historical and Comparative Overview of Sponge Campus Construction and Future Challenges. Sci. Total Environ. 2024, 907, 167477. [Google Scholar] [CrossRef]
- Khalid, B.; Alodah, A. Multivariate Analysis of Harvested Rainwater Quality Utilizing Sustainable Solar-Energy-Driven Water Treatment. Sustainability 2023, 15, 14568. [Google Scholar] [CrossRef]
- O’Leary, B.F.; Linn, C.; Hunt, D.; Dabney, B.; Hartrick, J.; Ekhator, K.; Lyon, N.; Miller, C.J.; Mitra, R.; Serreyn, M.; et al. Designing Community Facing Tools for Green Stormwater Infrastructure and Groundwater Monitoring: A Model of Interdisciplinary Action Research. Environ. Res. Commun. 2025, 7, 105012. [Google Scholar] [CrossRef]
- Suárez-Zamora, S.; Velásquez-Molina, A.; Rosales-Serrano, P.; Arias-Hidalgo, M.; Jaya-Montalvo, M.; Aguilar-Aguilar, M. Water Availability in a University Campus: The Role of an Artificial Lake as a Nature-Based Solution. Front. Water 2025, 7, 1631938. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Mazzeo, D.; Bruno, R.; Arcuri, N. Surface Temperature Analysis of an Extensive Green Roof for the Mitigation of Urban Heat Island in Southern Mediterranean Climate. Energy Build. 2017, 150, 318–327. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Mazzeo, D.; Bruno, R.; Arcuri, N. Experimental Investigation of the Thermal Performances of an Extensive Green Roof in the Mediterranean Area. Energy Build. 2016, 122, 63–79. [Google Scholar] [CrossRef]
- Bonoli, A.; Conte, A.; Maglionico, M.; Stojkov, I. Green Roofs for Sustainable Water Management in Urban Areas. Environ. Eng. Manag. J. 2013, 12, 153–156. [Google Scholar]
- Brunetti, G.; Šimůnek, J.; Piro, P. A Comprehensive Analysis of the Variably Saturated Hydraulic Behavior of a Green Roof in a Mediterranean Climate. Vadose Zone J. 2016, 15, vzj2016-04. [Google Scholar] [CrossRef]
- Carson, T.B.; Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Hydrological Performance of Extensive Green Roofs in New York City: Observations and Multi-Year Modeling of Three Full-Scale Systems. Environ. Res. Lett. 2013, 8, 024036. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A Long-Term Hydrological Modelling of an Extensive Green Roof by Means of SWMM. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- Ciriminna, R.; Meneguzzo, F.; Pecoraino, M.; Pagliaro, M. Solar Green Roofs: A Unified Outlook 20 Years On. Energy Technol. 2019, 7, 1900128. [Google Scholar] [CrossRef]
- Cristiano, E.; Urru, S.; Farris, S.; Ruggiu, D.; Deidda, R.; Viola, F. Analysis of Potential Benefits on Flood Mitigation of a CAM Green Roof in Mediterranean Urban Areas. Build. Environ. 2020, 183, 107179. [Google Scholar] [CrossRef]
- Darkwa, J.; Suba, G.; Kokogiannakis, G. An Investigation into the Thermophysical Properties and Energy Dynamics of an Intensive Green Roof. JP J. Heat Mass Transf. 2013, 7, 65–84. [Google Scholar]
- Darkwa, J.; Kokogiannakis, G.; Suba, G. Effectiveness of an Intensive Green Roof in a Sub-Tropical Region. Build. Serv. Eng. Res. Technol. 2013, 34, 417–432. [Google Scholar] [CrossRef]
- Eksi, M.; Rowe, D.B.; Wichman, I.S.; Andresen, J.A. Effect of Substrate Depth, Vegetation Type, and Season on Green Roof Thermal Properties. Energy Build. 2017, 145, 174–187. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Voyde, E.; Simcock, R.; Hong, Y.S. 4 Living Roofs in 3 Locations: Does Configuration Affect Runoff Mitigation? J. Hydrol. 2013, 490, 11–20. [Google Scholar] [CrossRef]
- Feng, H.; Hewage, K. Energy Saving Performance of Green Vegetation on LEED Certified Buildings. Energy Build. 2014, 75, 281–289. [Google Scholar] [CrossRef]
- Ferrante, P.; La Gennusa, M.; Peri, G.; Rizzo, G.; Scaccianoce, G. Vegetation Growth Parameters and Leaf Temperature: Experimental Results from a Six Plots Green Roofs’ System. Energy 2016, 115, 1723–1732. [Google Scholar] [CrossRef]
- Garofalo, G.; Porti, M.; Carbone, M.; Nigro, G.; Piro, P. Effects of Evapotranspiration in the Energy Performance of a Vegetated Roof: First Experimental Results. In Proceedings of the 15th International Multidisciplinary Scientific GeoConference: SGEM 2015, Albena, Bulgaria, 18–24 June 2015; SGEM: Sofia, Bulgaria, 2015; Volume 2, pp. 429–436. [Google Scholar]
- Gong, Y.; Zhang, X.; Li, J.; Fang, X.; Yin, D.; Xie, P.; Nie, L. Factors Affecting the Ability of Extensive Green Roofs to Reduce Nutrient Pollutants in Rainfall Runoff. Sci. Total Environ. 2020, 732, 139248. [Google Scholar] [CrossRef]
- Hakimdavar, R.; Culligan, P.J.; Finazzi, M.; Barontini, S.; Ranzi, R. Scale Dynamics of Extensive Green Roofs: Quantifying the Effect of Drainage Area and Rainfall Characteristics on Observed and Modeled Green Roof Hydrologic Performance. Ecol. Eng. 2014, 73, 494–508. [Google Scholar] [CrossRef]
- Li, Y.; Babcock, R.W. Green Roofs against Pollution and Climate Change. A Review. Agron. Sustain. Dev. 2014, 34, 695–705. [Google Scholar] [CrossRef]
- Lundholm, J.; Tran, S.; Gebert, L. Plant Functional Traits Predict Green Roof Ecosystem Services. Environ. Sci. Technol. 2015, 49, 2366–2374. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A Review of Nature-Based Solutions for Urban Water Management in European Circular Cities: A Critical Assessment Based on Case Studies and Literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef]
- Osawa, T.M.; Leite, B.C.C.; Martins, J.R.S. Improving Stormwater Retention in Humid Subtropical Cities: Environmental Controls on Green Roof Performance. Blue-Green Syst. 2025, 7, 381. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.E.; Belarbi, R.; Sailor, D.J. Experimental and Numerical Investigation of Urban Street Canyons to Evaluate the Impact of Green Roof inside and Outside Buildings. Appl. Energy 2014, 114, 273–282. [Google Scholar] [CrossRef]
- Pianella, A.; Aye, L.; Chen, Z.; Williams, N.S.G. Effects of Substrate Depth and Native Plants on Green Roof Thermal Performance in South-East Australia. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 022057. [Google Scholar] [CrossRef]
- Piro, P.; Carbone, M.; De Simone, M.; Maiolo, M.; Bevilacqua, P.; Arcuri, N. Energy and Hydraulic Performance of a Vegetated Roof in Sub-Mediterranean Climate. Sustainability 2018, 10, 3473. [Google Scholar] [CrossRef]
- Pirouz, B.; Palermo, S.A.; Maiolo, M.; Arcuri, N.; Piro, P. Decreasing Water Footprint of Electricity and Heat by Extensive Green Roofs: Case of Southern Italy. Sustainability 2020, 12, 10178. [Google Scholar] [CrossRef]
- Pizzuti, G.; Lamonaca, F.; Arcuri, N. Data Acquisition for Green Roof. In Proceedings of the 19th IMEKO TC4 Symposium - Measurements of Electrical Quantities 2013 and 17th International Workshop on ADC and DAC Modelling and Testing, Barcelona, Spain, 18–19 July 2013; pp. 661–665. [Google Scholar]
- Raimondi, A.; Marchioni, M.; Sanfilippo, U.; Becciu, G. Vegetation Survival in Green Roofs without Irrigation. Water 2021, 13, 136. [Google Scholar] [CrossRef]
- Savi, T.; Dal Borgo, A.; Love, V.L.; Andri, S.; Tretiach, M.; Nardini, A. Drought versus Heat: What’s the Major Constraint on Mediterranean Green Roof Plants? Sci. Total Environ. 2016, 566–567, 753–760. [Google Scholar] [CrossRef]
- Sims, A.W.; Robinson, C.E.; Smart, C.C.; Voogt, J.A.; Hay, G.J.; Lundholm, J.T.; Powers, B.; O’Carroll, D.M. Retention Performance of Green Roofs in Three Different Climate Regions. J. Hydrol. 2016, 542, 115–124. [Google Scholar] [CrossRef]
- Skala, V.; Dohnal, M.; Votrubova, J.; Vogel, T.; Dusek, J.; Sacha, J.; Jelinkova, V. Hydrological and Thermal Regime of a Thin Green Roof System Evaluated by Physically-Based Model. Urban For. Urban Green. 2020, 48, 126582. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Metal and Nutrient Dynamics on an Aged Intensive Green Roof. Environ. Pollut. 2014, 184, 33–43. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Rainwater Runoff Retention on an Aged Intensive Green Roof. Sci. Total Environ. 2013, 461–462, 28–38. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Reduction of the Urban Cooling Effects of an Intensive Green Roof Due to Vegetation Damage. Urban Clim. 2013, 3, 40–55. [Google Scholar] [CrossRef]
- Sun, T.; Bou-Zeid, E.; Wang, Z.H.; Zerba, E.; Ni, G.H. Hydrometeorological Determinants of Green Roof Performance via a Vertically-Resolved Model for Heat and Water Transport. Build. Environ. 2013, 60, 211–224. [Google Scholar] [CrossRef]
- Todorov, D.; Driscoll, C.T.; Todorova, S.; Montesdeoca, M. Water Quality Function of an Extensive Vegetated Roof. Sci. Total Environ. 2018, 625, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Walters, S.A.; Midden, K.S. Sustainability of Urban Agriculture: Vegetable Production on Green Roofs. Agriculture 2018, 8, 168. [Google Scholar] [CrossRef]
- Williams, N.S.G.; Rayner, J.P.; Lee, K.E.; Fletcher, T.D.; Chen, D.; Szota, C.; Farrell, C. Developing Australian Green Roofs: Overview of a 5-Year Research Program. Acta Hortic. 2016, 1108, 345–352. [Google Scholar] [CrossRef]
- Xing, Q.; Hao, X.; Lin, Y.; Tan, H.; Yang, K. Experimental Investigation on the Thermal Performance of a Vertical Greening System with Green Roof in Wet and Cold Climates during Winter. Energy Build. 2019, 183, 105–117. [Google Scholar] [CrossRef]
- Yang, W.Y.; Li, D.; Sun, T.; Ni, G.H. Saturation-Excess and Infiltration-Excess Runoff on Green Roofs. Ecol. Eng. 2015, 74, 327–336. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Bruno, R.; Arcuri, N. Green Roofs in a Mediterranean Climate: Energy Performances Based on in-Situ Experimental Data. Renew. Energy 2020, 152, 1414–1430. [Google Scholar] [CrossRef]
- Latif, S.; Alim, M.A.; Rahman, A.; Haque, M.M. A Review on Chlorination of Harvested Rainwater. Water 2023, 15, 2816. [Google Scholar] [CrossRef]
- Latif, S.; Alim, M.A.; Rahman, A. Disinfection Methods for Domestic Rainwater Harvesting Systems: A Scoping Review. J. Water Process Eng. 2022, 46, 102542. [Google Scholar] [CrossRef]
- Gilca, A.F.; Teodosiu, C.; Fiore, S.; Musteret, C.P. Emerging Disinfection Byproducts: A Review on Their Occurrence and Control in Drinking Water Treatment Processes. Chemosphere 2020, 259, 127476. [Google Scholar] [CrossRef]
- Unnisa, S.A.; Deepthi, P. Water Purification: A Sustainable Technology for Rural Development. Int. J. Environ. Technol. Manag. 2010, 13, 161–170. [Google Scholar] [CrossRef]
- Pagsuyoin, S.A.; Santos, J.R.; Barajas, J.S.; Latayan, J.R. A Multi-Attribute Decision-Making Approach to the Selection of Point-of-Use Water Treatment. Environ. Syst. Decis. 2015, 35, 437–452. [Google Scholar] [CrossRef]
- Horn, L.; Shakela, N.; Mutorwa, M.K.; Naomab, E.; Kwaambwa, H.M. Moringa Oleifera as a Sustainable Climate-Smart Solution to Nutrition, Disease Prevention, and Water Treatment Challenges: A Review. J. Agric. Food Res. 2022, 10, 100397. [Google Scholar] [CrossRef]
- Liu, J.; Sample, D.J.; Bell, C.; Guan, Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef]
- Sharma, R.; Malaviya, P. Management of Stormwater Pollution Using Green Infrastructure: The Role of Rain Gardens. WIREs Water 2021, 8, e1507. [Google Scholar] [CrossRef]
- Wang, M.; Zhuang, J.; Sun, C.; Wang, L.; Zhang, M.; Fan, C.; Li, J. The Application of Rain Gardens in Urban Environments: A Bibliometric Review. Land 2024, 13, 1702. [Google Scholar] [CrossRef]
- Malaviya, P.; Singh, A. Constructed Wetlands for Management of Urban Stormwater Runoff. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2153–2214. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of Nutrients in Various Types of Constructed Wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Marín, C.; El Bachawati, M.; Pérez, G. The Impact of Green Roofs on Urban Runoff Quality: A Review. Urban For. Urban Green. 2023, 90, 128138. [Google Scholar] [CrossRef]
- Chen, C.F. Performance Evaluation and Development Strategies for Green Roofs in Taiwan: A Review. Ecol. Eng. 2013, 52, 51–58. [Google Scholar] [CrossRef]
- Pons Fiorentin, D.; Martín-Gamboa, M.; Rafael, S.; Quinteiro, P. Life Cycle Assessment of Green Roofs: A Comprehensive Review of Methodological Approaches and Climate Change Impacts. Sustain. Prod. Consum. 2024, 45, 598–611. [Google Scholar] [CrossRef]
- Franklin, A.M.; Williams, C.F.; Andrews, D.M.; Woodward, E.E.; Watson, J.E. Uptake of Three Antibiotics and an Antiepileptic Drug by Wheat Crops Spray Irrigated with Wastewater Treatment Plant Effluent. J. Environ. Qual. 2016, 45, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Gnecco, I.; Palla, A.; Lanza, L.G.; La Barbera, P. A Green Roof Experimental Site in the Mediterranean Climate: The Storm Water Quality Issue. Water Sci. Technol. 2013, 68, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Šimůnek, J.; Piro, P. A Comprehensive Numerical Analysis of the Hydraulic Behavior of a Permeable Pavement. J. Hydrol. 2016, 540, 1146–1161. [Google Scholar] [CrossRef]
- Bryson, M.A. Schaumburg’s Sustainable Future: Student Research, Social Media, and Suburban Sustainability. J. Environ. Stud. Sci. 2017, 7, 288–295. [Google Scholar] [CrossRef]
- Alihan, J.C.; Flores, P.E.; Geronimo, F.K.; Kim, L.H. Evaluation of a Small Hssf Constructed Wetland in Treating Parking Lot Stormwater Runoff Using Swmm. Desalin. Water Treat. 2018, 101, 123–129. [Google Scholar] [CrossRef]
- Bledsoe, R.B.; Bean, E.Z.; Austin, S.S.; Peralta, A.L. A Microbial Perspective on Balancing Trade-Offs in Ecosystem Functions in a Constructed Stormwater Wetland. Ecol. Eng. 2020, 158, 106000. [Google Scholar] [CrossRef]
- Chang, N.B.; Xuan, Z.; Marimon, Z.; Islam, K.; Wanielista, M.P. Exploring Hydrobiogeochemical Processes of Floating Treatment Wetlands in a Subtropical Stormwater Wet Detention Pond. Ecol. Eng. 2013, 54, 66–76. [Google Scholar] [CrossRef]
- Hartshorn, N.; Marimon, Z.; Xuan, Z.; Cormier, J.; Chang, N.B.; Wanielista, M. Complex Interactions among Nutrients, Chlorophyll-a, and Microcystins in Three Stormwater Wet Detention Basins with Floating Treatment Wetlands. Chemosphere 2016, 144, 408–419. [Google Scholar] [CrossRef]
- Schwammberger, P.F.; Yule, C.M.; Tindale, N.W. Rapid Plant Responses Following Relocation of a Constructed Floating Wetland from a Construction Site into an Urban Stormwater Retention Pond. Sci. Total Environ. 2020, 699, 134372. [Google Scholar] [CrossRef] [PubMed]
- McAndrew, B.; Ahn, C. Developing an Ecosystem Model of a Floating Wetland for Water Quality Improvement on a Stormwater Pond. J. Environ. Manag. 2017, 202, 198–207. [Google Scholar] [CrossRef]
- McAndrew, B.; Ahn, C.; Spooner, J. Nitrogen and Sediment Capture of a Floating Treatment Wetland on an Urban Stormwater Retention Pond-The Case of the Rain Project. Sustainability 2016, 8, 972. [Google Scholar] [CrossRef]
- Knappenberger, T.; Jayakaran, A.D.; Stark, J.D.; Hinman, C.H. Monitoring Porous Asphalt Stormwater Infiltration and Outflow. J. Irrig. Drain. Eng. 2017, 143, 04017027. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Yu, L. Urban Heat Island Mitigation and Hydrology Performance of Innovative Permeable Pavement: A Pilot-Scale Study. J. Clean. Prod. 2020, 244, 118938. [Google Scholar] [CrossRef]
- Ralla, A.; Saadeh, S.; Harvey, J.; Mahmoud, E. Sustainable Mitigation of Stormwater Runoff through Fully Permeable Pavement. In Advances in Materials and Pavement Performance Prediction; CRC Press: Boca Raton, FL, USA, 2018; pp. 327–330. [Google Scholar]
- Joshi, T.; Dave, U. Construction of Pervious Concrete Pavement Stretch, Ahmedabad, India—Case Study. Case Stud. Constr. Mater. 2022, 16, e00622. [Google Scholar] [CrossRef]
- Noviandini, Z.P.; Dewi, O.C.; Laksitoadi, B.; Widyarta, M.N. The Effect of Permeable Pavement on Pedestrian Walkway for Human Comfort. IOP Conf. Ser. Earth Environ. Sci. 2020, 409, 012009. [Google Scholar] [CrossRef]
- Welker, A.L.; Gilbert Jenkins, J.K.; McCarthy, L.; Nemirovsky, E. Examination of the Material Found in the Pore Spaces of Two Permeable Pavements. J. Irrig. Drain. Eng. 2013, 139, 278–284. [Google Scholar] [CrossRef]
- Strieder, H.L.; Dutra, V.F.P.; Graeff, Â.G.; Núñez, W.P.; Merten, F.R.M. Performance Evaluation of Pervious Concrete Pavements with Recycled Concrete Aggregate. Constr. Build. Mater. 2022, 315, 125384. [Google Scholar] [CrossRef]
- Monrose, J.; Tota-Maharaj, K. Technological Review of Permeable Pavement Systems for Applications in Small Island Developing States. Clean-Soil Air Water 2018, 46, 1700168. [Google Scholar] [CrossRef]
- Turco, M.; Brunetti, G.; Carbone, M.; Piro, P. Modelling the Hydraulic Behaviour of Permeable Pavements through a Reservoir Element Model. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference on SGEM 2018: Surveying Geology & Mining Ecology Management, Albena, Bulgaria, 2–8 July 2018; SGEM: Sofia, Bulgaria, 2018; Volume 18, pp. 507–514. [Google Scholar] [CrossRef]
- Boogaard, F.; Lucke, T.; Beecham, S. Effect of Age of Permeable Pavements on Their Infiltration Function. Clean-Soil Air Water 2014, 42, 146–152. [Google Scholar] [CrossRef]
- Fan, L.-F.; Wang, S.-F.; Chen, C.-P.; Hsieh, H.-L.; Chen, J.-W.; Chen, T.-H.; Chao, W.-L. Microbial Community Structure and Activity under Various Pervious Pavements. J. Environ. Eng. 2014, 140, 04013012. [Google Scholar] [CrossRef]
- Zhang, Z.; Xue, J.; Zhang, J.; Yang, M.; Meng, B.; Tan, Y.; Ren, S. A Deep Learning Automatic Classification Method for Clogging Pervious Pavement. Constr. Build. Mater. 2021, 309, 125195. [Google Scholar] [CrossRef]
- Merten, F.R.M.; Dutra, V.F.P.; Strieder, H.L.; Graeff, Â.G. Clogging and Maintenance Evaluation of Pervious Concrete Pavements with Recycled Concrete Aggregate. Constr. Build. Mater. 2022, 342, 127939. [Google Scholar] [CrossRef]
- Nemirovsky, E.M.; Welker, A.L.; Lee, R. Quantifying Evaporation from Pervious Concrete Systems: Methodology and Hydrologic Perspective. J. Irrig. Drain. Eng. 2013, 139, 271–277. [Google Scholar] [CrossRef]
- Yekkalar, M.; Haselbach, L.; Langfitt, Q. Impacts of a Pervious Concrete Retention System on Neighboring Clay Soils. J. Cold Reg. Eng. 2018, 32, 04017023. [Google Scholar] [CrossRef]
- Werner, B.; Haselbach, L. Temperature and Testing Impacts on Surface Infiltration Rates of Pervious Concrete. J. Cold Reg. Eng. 2017, 31, 04017002. [Google Scholar] [CrossRef]
- Zhang, K.; Kevern, J. Review of Porous Asphalt Pavements in Cold Regions: The State of Practice and Case Study Repository in Design, Construction, and Maintenance. J. Infrastruct. Preserv. Resil. 2021, 2, 4. [Google Scholar] [CrossRef]
- Deng, J.; Yin, H.; Kong, F.; Chen, J.; Dronova, I.; Pu, Y. Determination of Runoff Response to Variation in Overland Flow Area by Flow Routes Using UAV Imagery. J. Environ. Manag. 2020, 265, 109868. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Green Stormwater Infrastructure with Low Impact Development Concept: A Review of Current Research. Desalin. Water Treat. 2017, 83, 16–29. [Google Scholar] [CrossRef]
- Morse, N.R.; McPhillips, L.E.; Shapleigh, J.P.; Walter, M.T. The Role of Denitrification in Stormwater Detention Basin Treatment of Nitrogen. Environ. Sci. Technol. 2017, 51, 7928–7935. [Google Scholar] [CrossRef] [PubMed]
- Betz, C.; Ament, M.R.; Hurley, S.E.; Roy, E.D. Nitrogen Removal Performance in Roadside Stormwater Bioretention Cells Amended with Drinking Water Treatment Residuals. J. Environ. Qual. 2023, 52, 1115–1126. [Google Scholar] [CrossRef]
- Yu, Z.; Gan, H.; Xiao, M.; Huang, B.; Zhu, D.Z.; Zhang, Z.; Wang, H.; Lin, Y.; Hou, Y.; Peng, S.; et al. Performance of Permeable Pavement Systems on Stormwater Permeability and Pollutant Removal. Environ. Sci. Pollut. Res. 2021, 28, 28571–28584. [Google Scholar] [CrossRef]
- Park, J.; Choi, K.; Park, J.; Lee, D. Experimental Study on Water Circulation Performance of Combined Interstitial Permeable Retention Block Pavement. KSCE J. Civ. Eng. 2025, 29, 100046. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M.; Huang, P. Impact of Climatic Factors and Groundwater Level on the Hydrologic Performance of Pervious Concrete Pavements. In Pervious Concrete Pavements: Design, Performance, and Applications; Elsevier: Amsterdam, The Netherlands, 2025; Volume 12, pp. 251–269. ISBN 9780443217043. [Google Scholar]
- Zuo, C.; Yin, B.; Tan, F.; Ma, Z.; Gong, S.; Qi, X. Runoff Simulation and Waterlogging Analysis of Rainstorm Scenarios with Different Return Periods on Campus: A Case Study at China University of Geosciences. Appl. Sci. 2025, 15, 691. [Google Scholar] [CrossRef]
- Liaw, C.H.; Huang, E.H.; Chiu, Y.R. Designing a Rainwater Harvesting System for Urban Green Roof Irrigation. Water Sci. Technol. Water Supply 2015, 15, 271–277. [Google Scholar] [CrossRef]
- Nindyaputra Octarino, C.; Wahono, M.J. Green Building Concept Implementation Through Appropriate Site Development (Case Study: Universitas Kristen Duta Wacana Yogyakarta). In Proceedings of the 6th International Conference on Indonesian Architecture and Planning (ICIAP 2022), Yogyakarta, Indonesia, 13–14 October 2022; pp. 49–59. [Google Scholar]
- Rahman, K.Z.; Al Saadi, S.; Al Rawahi, M.; van Afferden, M.; Bernhard, K.; Friesen, J.; Müller, R.A. Small Decentralized Technologies for High-Strength Wastewater Treatment and Reuse in Arid and Semi-Arid Regions. Environments 2024, 11, 142. [Google Scholar] [CrossRef]
- Estévez, S.; González-García, S.; Feijoo, G.; Moreira, M.T. How Decentralized Treatment Can Contribute to the Symbiosis between Environmental Protection and Resource Recovery. Sci. Total Environ. 2022, 812, 151485. [Google Scholar] [CrossRef]
- Justino, S.; Calheiros, C.S.C.; Castro, P.M.L.; Gonçalves, D. Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in the Hospitality Industry: A Review. Hydrology 2023, 10, 153. [Google Scholar] [CrossRef]
- Pan, J.; Yuan, F.; Zhang, Y.; Huang, L.; Yu, L.; Zheng, F.; Cheng, F.; Zhang, J. Pollutants Removal in Subsurface Infiltration Systems by Shunt Distributing Wastewater with/without Intermittent Aeration under Different Shunt Ratios. Bioresour. Technol. 2016, 218, 101–107. [Google Scholar] [CrossRef]
- Mahapatra, S.; Samal, K.; Dash, R.R. Waste Stabilization Pond (WSP) for Wastewater Treatment: A Review on Factors, Modelling and Cost Analysis. J. Environ. Manag. 2022, 308, 114668. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.J.; Figueroa, L.A. Pilot Scale Application of Anaerobic Baffled Reactor for Biologically Enhanced Primary Treatment of Raw Municipal Wastewater. Water Res. 2015, 87, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Barber, W.P.; Stuckey, D.C. The Use of the Anaerobic Baffled Reactor (ABR) for Wastewater Treatment: A Review. Water Res. 1999, 33, 1559–1578. [Google Scholar] [CrossRef]
- Lemmer, A.; Krümpel, J. Demand-Driven Biogas Production in Anaerobic Filters. Appl. Energy 2017, 185, 885–894. [Google Scholar] [CrossRef]
- Boiocchi, R.; Mainardis, M.; Rada, E.C.; Ragazzi, M.; Salvati, S.C. Carbon Footprint and Energy Recovery Potential of Primary Wastewater Treatment in Decentralized Areas: A Critical Review on Septic and Imhoff Tanks. Energies 2023, 16, 7938. [Google Scholar] [CrossRef]
- Rodríguez-Castillo, M.; Balsebre, N.; Bolivar-Paypay, V.; Poganietz, W.R.; Prieto, A.L. Sustainability Assessment of a Sequential Anaerobic-Algal Membrane Bioreactor for Wastewater Reuse. Sustain. Prod. Consum. 2024, 49, 104–114. [Google Scholar] [CrossRef]
- Liang, X.; Ng, E.L.; Lam, S.K.; Castner, E.A.; Leach, A.M.; Gu, B.; Healey, G.; Galloway, J.N.; Chen, D. The Nitrogen Footprint for an Australian University: Institutional Change for Corporate Sustainability. J. Clean. Prod. 2018, 197, 534–541. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Faggal, A.A.; Khodeir, L.; Refaat, T. Customizing the Green Pyramid Rating System for Assessing University Buildings’ Sustainability: A Stakeholder-Involved Weighting Approach. Alex. Eng. J. 2023, 82, 446–458. [Google Scholar] [CrossRef]
- Gao, Z.; Cizdziel, J.V.; Wontor, K.; Vianello, A. Spatiotemporal Characteristics of Microplastics in a University Wastewater Treatment Plant: Influence of Sudden on-Campus Population Swings. J. Environ. Chem. Eng. 2022, 10, 108834. [Google Scholar] [CrossRef]
- Da Silva, J.A.; Sarti, A.; da Silva, G.H.R. Performances of Two Pilot Decentralized Wastewater Treatment Plants Used to Treat Low-Strength Wastewater. Desalin. Water Treat. 2017, 91, 93–100. [Google Scholar] [CrossRef]
- Silveira, E.O.; Moura, D.; Rieger, A.; Machado, Ê.L.; Lutterbeck, C.A. Performance of an Integrated System Combining Microalgae and Vertical Flow Constructed Wetlands for Urban Wastewater Treatment. Environ. Sci. Pollut. Res. 2017, 24, 20469–20478. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Herrera-Melián, J.A.; Rodríguez-Rodríguez, R.; Ojeda-González, Z.; Landívar-Andrade, V.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Pharmaceutical and Personal Care Product Residues in a Macrophyte Pond-Constructed Wetland Treating Wastewater from a University Campus: Presence, Removal and Ecological Risk Assessment. Sci. Total Environ. 2020, 703, 135596. [Google Scholar] [CrossRef] [PubMed]
- Mayo, A.W. Effect of Pre-Treatment of Wastewater in HRAP on Nitrogen Removal in Subsurface Flow Gravel Bed Constructed Wetland. Phys. Chem. Earth 2020, 117, 102868. [Google Scholar] [CrossRef]
- Grimah, K.; Nahli, A.; Lazrak, A.; Chlaida, M. Physicochemical Characterization of University Campus’ Wastewater for Internal Treatment System Installation (Casablanca, Morocco). Environ. Res. Technol. 2024, 7, 13–26. [Google Scholar] [CrossRef]
- Zheng, M.; Wu, S.; Dong, Q.; Huang, X.; Yuan, Z.; Liu, Y. Achieving Mainstream Nitrogen Removal via the Nitrite Pathway from Real Municipal Wastewater Using Intermittent Ultrasonic Treatment. Ultrason. Sonochem. 2019, 51, 406–411. [Google Scholar] [CrossRef]
- Chen, W.H.; Tsai, C.Y.; Chen, S.Y.; Sung, S.; Lin, J.G. Treatment of Campus Domestic Wastewater Using Ambient-Temperature Anaerobic Fluidized Membrane Bioreactors with Zeolites as Carriers. Int. Biodeterior. Biodegrad. 2019, 136, 49–54. [Google Scholar] [CrossRef]
- Amare, E.; Kebede, F.; Kloos, H.; Mulat, W. Wastewater Confronting Realities for Sustainable Livelihood in Developing Countries: Case Study Mekelle University, Ethiopia. Water Conserv. Sci. Eng. 2017, 2, 21–30. [Google Scholar] [CrossRef]
- Han, L.; Pei, H.; Hu, W.; Jiang, L.; Ma, G.; Zhang, S.; Han, F. Integrated Campus Sewage Treatment and Biomass Production by Scenedesmus Quadricauda SDEC-13. Bioresour. Technol. 2015, 175, 262–268. [Google Scholar] [CrossRef]
- Masi, F.; Bresciani, R.; Rizzo, A.; Panse, D. College of Engineering Pune Hostel Campus: An Indian Experience of Sustainable Wastewater Treatment and Reuse. In Circular Economy and Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 79–95. ISBN 9780128216644. [Google Scholar]
- Devitama, F.F.; Paramita, B.; Ardiani, N.A. Planning and Designing UPI Science and Techno Park as a Green Campus Center in Universitas Pendidikan Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 520, 012021. [Google Scholar] [CrossRef]
- Al-Busaidi, A.; Al-Yahyai, R.; Ahmed, M. Heavy Metal Concentrations in Soils and Date Palms Irrigated by Groundwater and Treated Wastewater. Pak. J. Agric. Sci. 2015, 52, 129–134. [Google Scholar]
- Maw, M.M.; Boontanon, S.K.; Jindal, R.; Boontanon, N.; Fujii, S. Occurrence and Removal of Microplastics in Activated Sludge Treatment Systems: A Case Study of a Wastewater Treatment Plant in Thailand. Eng. Access 2022, 8, 106–111. [Google Scholar] [CrossRef]
- Gholipour, A.; Stefanakis, A.I. A Full-Scale Anaerobic Baffled Reactor and Hybrid Constructed Wetland for University Dormitory Wastewater Treatment and Reuse in an Arid and Warm Climate. Ecol. Eng. 2021, 170, 106360. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.C.; Ji, Z.; Xu, L.; Yu, Z. Source Identification of Bacterial and Viral Pathogens and Their Survival/Fading in the Process of Wastewater Treatment, Reclamation, and Environmental Reuse. World J. Microbiol. Biotechnol. 2015, 31, 109–120. [Google Scholar] [CrossRef]
- Torrens, A.; de la Varga, D.; Ndiaye, A.K.; Folch, M.; Coly, A. Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal. Water 2020, 12, 3139. [Google Scholar] [CrossRef]
- Álvarez, J.A.; Ávila, C.; Otter, P.; Kilian, R.; Istenič, D.; Rolletschek, M.; Molle, P.; Khalil, N.; Ameršek, I.; Mishra, V.K.; et al. Constructed Wetlands and Solar-Driven Disinfection Technologies for Sustainable Wastewater Treatment and Reclamation in Rural India: SWINGS Project. Water Sci. Technol. 2017, 76, 1474–1489. [Google Scholar] [CrossRef]
- Adrover, M.; Moyà, G.; Vadell, J. Use of Hydroponics Culture to Assess Nutrient Supply by Treated Wastewater. J. Environ. Manage. 2013, 127, 162–165. [Google Scholar] [CrossRef]
- Sudarsan, J.S.; Roy, R.L.; Baskar, G.; Deeptha, V.T.; Nithiyanantham, S. Domestic Wastewater Treatment Performance Using Constructed Wetland. Sustain. Water Resour. Manag. 2015, 1, 89–96. [Google Scholar] [CrossRef]
- Haddis, A.; Van der Bruggen, B.; Smets, I. Constructed Wetlands as Nature Based Solutions in Removing Organic Pollutants from Wastewater under Irregular Flow Conditions in a Tropical Climate. Ecohydrol. Hydrobiol. 2020, 20, 38–47. [Google Scholar] [CrossRef]
- Khalaf, S.; Al-Rimawi, F.; Khamis, M.; Zimmerman, D.; Shuali, U.; Nir, S.; Scrano, L.; Bufo, S.A.; Karaman, R. Efficiency of Advanced Wastewater Treatment Plant System and Laboratory-Scale Micelle-Clay Filtration for the Removal of Ibuprofen Residues. J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 2013, 48, 814–821. [Google Scholar] [CrossRef]
- de Souza Celente, G.; Colares, G.S.; da Silva Araújo, P.; Machado, Ê.L.; Lobo, E.A. Acute Ecotoxicity and Genotoxicity Assessment of Two Wastewater Treatment Units. Environ. Sci. Pollut. Res. 2020, 27, 10520–10527. [Google Scholar] [CrossRef]
- Uzen, N.; Cetin, O.; Unlu, M. Effects of Domestic Wastewater Treated by Anaerobic Stabilization on Soil Pollution, Plant Nutrition, and Cotton Crop Yield. Environ. Monit. Assess. 2016, 188, 664. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.K.; Otter, P.; Shukla, R.; Goldmaier, A.; Alvarez, J.A.; Khalil, N.; Avila, C.; Arias, C.; Ameršek, I. Application of Horizontal Flow Constructed Wetland and Solar Driven Disinfection Technologies for Wastewater Treatment in India. Water Pract. Technol. 2018, 13, 469–480. [Google Scholar] [CrossRef]
- Shukla, R.; Gupta, D.; Singh, G.; Mishra, V.K. Performance of Horizontal Flow Constructed Wetland for Secondary Treatment of Domestic Wastewater in a Remote Tribal Area of Central India. Sustain. Environ. Res. 2021, 31, 13. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Gall, H.E.; Elkin, K.R.; Ayers, B.; Veith, T.L.; Miller, M.; Jacob, S.; Hayden, K.R.; Watson, J.E.; Elliott, H.A. Fate of Pharmaceuticals in a Spray-Irrigation System: From Wastewater to Groundwater. Sci. Total Environ. 2019, 654, 197–208. [Google Scholar] [CrossRef]
- Franklin, A.M.; Williams, C.F.; Watson, J.E. Assessment of Soil to Mitigate Antibiotics in the Environment Due to Release of Wastewater Treatment Plant Effluent. J. Environ. Qual. 2018, 47, 1347–1355. [Google Scholar] [CrossRef]
- Andrews, D.M.; Robb, T.; Elliott, H.; Watson, J.E. Impact of Long-Term Wastewater Irrigation on the Physicochemical Properties of Humid Region Soils: “The Living Filter” Site Case Study. Agric. Water Manag. 2016, 178, 239–247. [Google Scholar] [CrossRef]
- Dogan, E.C.; Yasar, A.; Sen, U.; Aydiner, C. Water Recovery from Treated Urban Wastewater by Ultrafiltration and Reverse Osmosis for Landscape Irrigation. Urban Water J. 2016, 13, 553–568. [Google Scholar] [CrossRef]
- Mburu, N.; Tebitendwa, S.M.; van Bruggen, J.J.A.; Rousseau, D.P.L.; Lens, P.N.L. Performance Comparison and Economics Analysis of Waste Stabilization Ponds and Horizontal Subsurface Flow Constructed Wetlands Treating Domestic Wastewater: A Case Study of the Juja Sewage Treatment Works. J. Environ. Manag. 2013, 128, 220–225. [Google Scholar] [CrossRef]
- Da Silva, J.A.; Sarti, A.; Maintinguer, S.I.; Kaiser, I.M.; Da Silva, G.H.R. Performance of an Anaerobic Baffled Reactor with an Aerobic Chamber Treating Low-Strength Wastewater. Desalin. Water Treat. 2017, 100, 1–10. [Google Scholar] [CrossRef]
- Satayavibul, A.; Ratanatamskul, C. A Novel Integrated Single-Stage Anaerobic Co-Digestion and Oxidation Ditch-Membrane Bioreactor System for Food Waste Management and Building Wastewater Recycling. J. Environ. Manag. 2021, 279, 111624. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Cruz, L.M.; Stefanutti, R.; Filho, B.C.; Tonetti, A.L. Coconut Shells as Filling Material for Anaerobic Filters. Springerplus 2013, 2, 655. [Google Scholar] [CrossRef]
- Tonon, D.; Tonetti, A.L.; Coraucci Filho, B.; Bueno, D.A.C. Wastewater Treatment by Anaerobic Filter and Sand Filter: Hydraulic Loading Rates for Removing Organic Matter, Phosphorus, Pathogens and Nitrogen in Tropical Countries. Ecol. Eng. 2015, 82, 583–589. [Google Scholar] [CrossRef]
- Verhaeghe, L.; Verwaeren, J.; Kirim, G.; Daneshgar, S.; Vanrolleghem, P.A.; Torfs, E. Towards Good Modelling Practice for Parallel Hybrid Models for Wastewater Treatment Processes. Water Sci. Technol. 2024, 89, 2971–2990. [Google Scholar] [CrossRef]
- Kammoun, A.; Ouazzani, N.; El Fels, A.E.A.; Hejjaj, A.; Mandi, L. Enhancing Pollutant Removal Efficiency in Urban Domestic Wastewater Treatment through the Hybrid Multi-Soil-Layering (MSL) System: A Case Study in Morocco. Water Sci. Technol. 2024, 89, 2685–2702. [Google Scholar] [CrossRef]
- Dwumfour-Asare, B.; Nyarko, K.B.; Essandoh, H.M.K.; Awuah, E. Domestic Greywater Flows and Pollutant Loads: A Neighbourhood Study within a University Campus in Ghana. Sci. Afr. 2020, 9, e00489. [Google Scholar] [CrossRef]
- Balengayabo, J.G.; Kassenga, G.R.; Mgana, S.M.; Salukele, F. Impact of Recurring Irrigation with Treated Domestic Wastewater on Heavy Metal Accumulation in the Soil. Agric. Water Manag. 2024, 297, 108814. [Google Scholar] [CrossRef]
- Talat, A.; Bashir, Y.; Khalil, N.; Brown, C.L.; Gupta, D.; Khan, A.U. Antimicrobial Resistance Transmission in the Environmental Settings through Traditional and UV-Enabled Advanced Wastewater Treatment Plants: A Metagenomic Insight. Environ. Microbiome 2025, 20, 27. [Google Scholar] [CrossRef]
- Huang, Y.; Jeffrey, P.; Pidou, M. A Comparative Evaluation of Reverse Osmosis Membrane Performance When Combined with Anaerobic or Aerobic Membrane Bioreactors for Indirect Potable Reuse Applications. J. Water Process Eng. 2022, 50, 103295. [Google Scholar] [CrossRef]
- Miao, Q.; Xie, Y.; Ismail, S.; Wang, Z.B.; Ni, S.Q. Salt-Tolerant Marine Sludge Is More Suitable for Stable and Efficient High-Salinity Wastewater Treatment than Activated Sludge. Chem. Eng. J. 2025, 505, 159404. [Google Scholar] [CrossRef]
- Nagial, K.S.; Kumar, N.; Poddar, A. A Comprehensive Analysis of Institutional Wastewater for Irrigating Ornamental Plants. Water Supply 2024, 24, 2830–2843. [Google Scholar] [CrossRef]
- Pathiranage, W.B.; Sharp, C.; Hong, Y.; Williams, C.; Algharibeh, O.; McKnight, A.; Williams, C.; Alkhateb, H.; D’Alessio, M. Enhancing Slow Sand Filtration with 3D-Printed Eco-Friendly Bricks. Clean. Water 2025, 3, 100061. [Google Scholar] [CrossRef]
- Roman, B.; Brennan, R.A. Coupling Ecological Wastewater Treatment with the Production of Livestock Feed and Irrigation Water Provides Net Benefits to Human Health and the Environment: A Life Cycle Assessment. J. Environ. Manag. 2021, 288, 112361. [Google Scholar] [CrossRef] [PubMed]
- Anker, Y.; Doktor, B.; Dahan, A.; Mirlas, V.; Gimburg, A.; Petlakh, S.; Averbukh, M. Solar-Powered Wastewater Treatment: Integrating Pumped Storage and Hydroelectric Generation for Autonomous Operation. Energy Rep. 2025, 14, 2247–2263. [Google Scholar] [CrossRef]
- Paliaga, S.; Muscarella, S.M.; Alduina, R.; Badalucco, L.; Bulacio Fischer, P.T.; Di Leto, Y.; Gallo, G.; Gaglio, R.; Mineo, A.; Laudicina, V.A.; et al. Resource Recovery from Wastewater Treatment: Effects of Water Reuse and Slow-Release Fertilizers on Faba Bean within Palermo University (Italy) Case Study. J. Environ. Manag. 2025, 373, 123839. [Google Scholar] [CrossRef]
- Justin, L.D.; Olukanni, D.O. Efficiency Evaluation of Wastewater Treatment by Three Macrophytes Using a Pilot-Constructed Wetland System in Ota, Nigeria. J. Water Health 2024, 22, 2040–2053. [Google Scholar] [CrossRef]
- Sagar, P.; Edathoot, A.; Patwardhan, N.; Bresciani, R.; Panse, D.; Masi, F. Natural and Cost Effective Way of Treating Domestic Wastewater with Reuse in Non-Potable Purposes: The College of Engineering Pune (COEP) Hostel Campus Case Study. In Sustaniable Sanitation Practice; EcoSan Club: Vienna, Austria, 2016; pp. 21–27. [Google Scholar]
- Ngoma, W.; Hoko, Z.; Misi, S.; Chidya, R.C.G. Assessment of Efficiency of a Decentralized Wastewater Treatment Plant at Mzuzu University, Mzuzu, Malawi. Phys. Chem. Earth 2020, 118–119, 102903. [Google Scholar] [CrossRef]
- Cunha–Chiamolera, T.P.L.; Urrestarazu, M.; Morillas-España, A.; Ortega, R.; Miralles, I.; González–López, C.V.; Carbajal–Valenzuela, I.A. Evaluation of the Reuse of Regenerated Water from Microalgae–Related Wastewater Treatment Processes in Horticulture. Agric. Water Manag. 2024, 292, 108660. [Google Scholar] [CrossRef]
- Morillas-España, A.; Pérez-Crespo, R.; Villaró-Cos, S.; Rodríguez-Chikri, L.; Lafarga, T. Integrating Microalgae-Based Wastewater Treatment, Biostimulant Production, and Hydroponic Cultivation: A Sustainable Approach to Water Management and Crop Production. Front. Bioeng. Biotechnol. 2024, 12, 1364490. [Google Scholar] [CrossRef]
- Mineo, A.; Mofatto, P.M.B.; Carnesi, M.; Cosenza, A.; Di Trapani, D.; Mannina, G. Membrane Bioreactor and Ultrafiltration for Water Reuse: A Pilot Scale Study on Urban Wastewater Treatment. J. Water Process Eng. 2025, 77, 108435. [Google Scholar] [CrossRef]
- Arora, S.; Saraswat, S.; Mishra, R.; Rajvanshi, J.; Sethi, J.; Verma, A.; Nag, A.; Saxena, S. Design, Performance Evaluation and Investigation of the Dynamic Mechanisms of Earthworm-Microorganisms Interactions for Wastewater Treatment through Vermifiltration Technology. Bioresour. Technol. Rep. 2020, 12, 100603. [Google Scholar] [CrossRef]
- Hänel, M.; Jespersen, E.; Upadhyay, A.; Acosta, A.; Khalil, N.; Brix, H.; Arias, C.A. Design, Implementation, and Evaluation of a Short Rotation Coppice System for Wastewater Treatment and Resource Recovery in India. Ecol. Eng. 2024, 201, 107218. [Google Scholar] [CrossRef]
- Verma, K.; Ramesh, N.; Anirudha, T.P.; Santrupt, R.M.; Das, R.; Mohan Kumar, M.S.; Chanakya, H.N.; Rao, L. Socio-Economic Impact Assessment of Large-Scale Recycling of Treated Municipal Wastewater for Indirect Groundwater Recharge. Sci. Total Environ. 2023, 859, 160207. [Google Scholar] [CrossRef]
- Han, X.M.; Hu, H.W.; Shi, X.Z.; Wang, J.T.; Han, L.L.; Chen, D.; He, J.Z. Impacts of Reclaimed Water Irrigation on Soil Antibiotic Resistome in Urban Parks of Victoria, Australia. Environ. Pollut. 2016, 211, 48–57. [Google Scholar] [CrossRef]
- Kosiarski, K.; Usner, C.; Preisendanz, H.E. From Wastewater to Feed: Understanding Per-and Polyfluoroalkyl Substances Occurrence in Wastewater-irrigated Crops. J. Environ. Qual. 2025, 54, 66–79. [Google Scholar] [CrossRef]
- Gomes, M.I.; Barreiros, A.M.; Boaventura, M.I.; Rodrigues, A.S. Do Plants Improve Indoor Air Quality? Myth or Reality? A Case Study in a University Environment Using Treated Wastewater for Plants Irrigation. In ICoWEFS 2024 Sustainability Proceedings. ICoWEFS 2024; Brito, P.S., da Costa Sanches Galvão, J.R., Almeida, H., Rosa Ferreira, L.C., Alves Flores de Oliveira Gala, P.E., Eds.; Lecture Notes on Multidisciplinary Industrial Engineering; Springer: Cham, Switzerland, 2025; pp. 110–117. ISBN 978-3-031-80329-1. [Google Scholar]
- Cid, C.A.; Qu, Y.; Hoffmann, M.R. Design and Preliminary Implementation of Onsite Electrochemical Wastewater Treatment and Recycling Toilets for the Developing World. Environ. Sci. Water Res. Technol. 2018, 4, 1439–1450. [Google Scholar] [CrossRef]
- Mahasneh, B.Z. Assessment of Replacing Wastewater and Treated Water with Tap Water in Making Concrete Mix. Electron. J. Geotech. Eng. 2014, 19 K, 2379–2386. [Google Scholar]
- Beal, C.D.; Gardner, E.A.; Menzies, N.W. Process, Performance, and Pollution Potential: A Review of Septic Tank-Soil Absorption Systems. Aust. J. Soil Res. 2005, 43, 781–802. [Google Scholar] [CrossRef]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G. Wastewater Fertigation in Agriculture: Issues and Opportunities for Improved Water Management and Circular Economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Golinielli, G.; Abou-Taleb, E.M.; Hellal, M.S. Municipal Wastewater Treatment in Horizontal and Vertical Flows Constructed Wetlands. Ecol. Eng. 2013, 61, 460–468. [Google Scholar] [CrossRef]
- Arden, S.; Ma, X. Constructed Wetlands for Greywater Recycle and Reuse: A Review. Sci. Total Environ. 2018, 630, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Greenway, M. The Role of Constructed Wetlands in Secondary Effluent Treatment and Water Reuse in Subtropical and Arid Australia. Ecol. Eng. 2005, 25, 501–509. [Google Scholar] [CrossRef]
- Kivaisi, A.K. The Potential for Constructed Wetlands for Wastewater Treatment and Reuse in Developing Countries: A Review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- De Campos, S.X.; Soto, M. The Use of Constructed Wetlands to Treat Effluents for Water Reuse. Environments 2024, 11, 35. [Google Scholar] [CrossRef]
- Deng, X.; Shen, Y.; Yang, S.; Feng, J.; Wang, S.; Li, D.; Li, Y. Feasibility of Condensate Water Recycle of Split Air Handling Unit in Chinese University Buildings. Energy Built Environ. 2024, 5, 309–315. [Google Scholar] [CrossRef]
- Matarneh, S.; AlQaraleh, L.; Alkhrissat, T.; Abdel-Jaber, M. Assessing Water Production from Air Conditioning Systems as an Unconventional Supply Source: A Focus on Water Quality and Social Acceptance Perspectives. Case Stud. Chem. Environ. Eng. 2024, 9, 100585. [Google Scholar] [CrossRef]
- Franklin, A.M.; Kariyawasam, S.; Andrews, D.M.; McLain, J.E.; Watson, J.E. Presence of Antimicrobial-Resistant Bacteria and Resistance Genes in Soil Exposed to Wastewater Treatment Plant Effluent. Sustainability 2024, 16, 7022. [Google Scholar] [CrossRef]
- Varni, M.; Comas, R.; Weinzettel, P.; Dietrich, S. Application of the Water Table Fluctuation Method to Characterize Groundwater Recharge in the Pampa Plain, Argentina. Hydrol. Sci. J. 2013, 58, 1445–1455. [Google Scholar] [CrossRef]
- de Paula Marteleto, T.; de Abreu, A.E.S.; Barbosa, M.B.; Yoshinaga-Pereira, S.; Bertolo, R.A.; Enzweiler, J. Groundwater Apparent Ages and Isotopic Composition in Crystalline, Diabase and Tubarão Aquifers Contact Area in Campinas, Southeastern Brazil. J. S. Am. Earth Sci. 2024, 135, 104783. [Google Scholar] [CrossRef]
- Fang, Y.; Du, X.; Ye, X.; Wang, E. Groundwater Response to Snowmelt Infiltration in Seasonal Frozen Soil Areas: Site Monitoring and Numerical Simulation. Hydrology 2024, 11, 201. [Google Scholar] [CrossRef]
- Daconte, A.; Sierra, M.; Noguera, J.; Rodriguez, N. Preliminary Results of an IoT-Based Prototype Monitoring System for Physicochemical Parameters and Water Level in an Aquifer: Case of Santa Marta, Colombia. Procedia Comput. Sci. 2024, 231, 478–483. [Google Scholar] [CrossRef]
- Doro, K.O.; Olabode, P.I.; Adeniran, M.A.; Oladunjoye, M.A. Understanding Complex Hydraulic Heterogeneities in Crystalline Basement Aquifers Used as Drinking Water Sources. Geosciences 2025, 15, 239. [Google Scholar] [CrossRef]
- Manara, C.M.; Teramoto, E.H.; Chang, H.K. Assessing Groundwater Recharge of a Shallow Aquifer in an Urbanized Area. Environ. Earth Sci. 2025, 84, 372. [Google Scholar] [CrossRef]
- McDaris, J.R.; Feinberg, J.M.; Fisher, B.A.; Runkel, A.C. Automated Groundwater Monitoring in Twin Cities Aquifers Shows Anthropogenic Changes in Water Quality Measures. Environ. Eng. Geosci. 2025, 31, 131–143. [Google Scholar] [CrossRef]
- Ekasara, A.R.; Prahastomi, M.; Sutarto; Rohaman, M.; Ardinanta, D.N.; Ma’Ruf, I.A.; Gymnastiar, G. Preliminary Study of Water Availability Potential in the Main Campus of UPN Veteran Yogyakarta, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2025, 1486, 012050. [Google Scholar] [CrossRef]
- Welker, A.; Baghalian, S.; Farnsworth, M.; Traver, R. Quantitative Analysis of the Water Budget of a Rain Garden in Pennsylvania. J. Sustain. Water Built Environ. 2024, 10, 04023013. [Google Scholar] [CrossRef]
- Said, S.; Anees, M. Remote Sensing and Gis Based Assessment of Groundwater Potential Zones in Amu Campus Using Ahp Approach. Ecol. Environ. Conserv. 2020, 26, S6–S11. [Google Scholar]
- Moges, S.S.; Dinka, M.O. Assessment of Groundwater Vulnerability Using the DRASTIC Model: A Case Study of Quaternary Catchment A21C, Limpopo River Basin, South Africa. J. Water L. Dev. 2021, 49, 35–46. [Google Scholar] [CrossRef]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.K.; Hackett, G. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. J. Geol. Soc. India 1987, 29, 23–37. [Google Scholar] [CrossRef]
- Obiora, D.N.; Ibuot, J.C. Geophysical Assessment of Aquifer Vulnerability and Management: A Case Study of University of Nigeria, Nsukka, Enugu State. Appl. Water Sci. 2020, 10, 29. [Google Scholar] [CrossRef]
- Alemu, G.; Moges, A.; Tekleab, S. Evaluation of the Groundwater Quality Status Using Water Quality Indices in and around Hawassa City, Southern Ethiopia. Cogent Eng. 2024, 11, 2297495. [Google Scholar] [CrossRef]
- Nassim, H.; Atmane, L.; Lamine, H.; Mouloud, H.; Anes, M. Integrated Geotechnical and Electrical Resistivity Tomography to Map the Lithological Variability Involved and Breaking Surface Evolution in Landslide Context: A Case Study of the Targa Ouzemour (Béjaia). Water 2024, 16, 682. [Google Scholar] [CrossRef]
- Endyana, C.; Husodo, T.; Hendarmawan; Hanggono Achmad, T. Universitas Padjadjaran Concern for Sustainable Water Resource from West Java to National and to the World. E3S Web Conf. 2018, 48, 05004. [Google Scholar] [CrossRef]
- Ali, A.M.; Sfada, A.; Lawan, A.Y. Validating the Accuracy of Natural Electric Field (NEF) Water Detectors for Hydrogeophysical Exploration. Int. J. Energy Water Resour. 2025, 9, 973–985. [Google Scholar] [CrossRef]
- Silva-Afonso, A.; Pimentel-Rodrigues, C. Water–Energy–Nutrients Nexus of Urban Environments. Water 2024, 16, 904. [Google Scholar] [CrossRef]
- Moatassem, A.; Lakshmi, M.; Clevenger, C. Upgrading Large Existing Buildings to Maximize Their Sustainability. J. Archit. Eng. 2020, 26, 04019026. [Google Scholar] [CrossRef]
- Rodrigues, F.; Silva-Afonso, A.; Pinto, A.; Macedo, J.; Santos, A.S.; Pimentel-Rodrigues, C. Increasing Water and Energy Efficiency in University Buildings: A Case Study. Environ. Sci. Pollut. Res. 2020, 27, 4571–4581. [Google Scholar] [CrossRef]
- Melville-Shreeve, P.; Cotterill, S.; Newman, A.; Butler, D. Campus Study of the Impact of Ultra-Low Flush Toilets on Sewerage Networks and Water Usage. Water 2021, 13, 419. [Google Scholar] [CrossRef]
- Fahmy, S.; Abd El-Ghany, M.N.; Amer, H.; Abdelsadek, M.S.; Abdelazeem, M.W.; Abdel Sabour, R.S.; Nasr, Y.M.; Nasrallah, A.K. Developing a Sustainable University Campus in Egypt: Cairo University as a Case Study. IOP Conf. Ser. Earth Environ. Sci. 2023, 1194, 012031. [Google Scholar] [CrossRef]
- Bdour, A.; Al-Sadeq, N.; Gharaibeh, M.; Mendoza-Sammet, A.; Salinas-Rodriguez, S.G. Water, Energy, and Food Nexus in a Solar-Powered Brackish Water Desalination Plant in Jordan. Environ. Res. Commun. 2024, 6, 095031. [Google Scholar] [CrossRef]
- Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H.J.; Töws, D.; Schmidt, S. Transfer of Adapted Water Supply Technologies through a Demonstration and Teaching Facility. Appl. Water Sci. 2016, 6, 215–228. [Google Scholar] [CrossRef]
- Simão, H.; Marques, J.A.S.; Freitas, H. The Contribution of a Spring Water Source to the Water Needs of the Botanical Garden of the University of Coimbra. Water Sci. Technol. Water Supply 2013, 13, 1410–1418. [Google Scholar] [CrossRef]
- Navarro-González, F.J.; Pardo, M.; Chabour, H.E.; Alskaif, T. An Irrigation Scheduling Algorithm for Sustainable Energy Consumption in Pressurised Irrigation Networks Supplied by Photovoltaic Modules. Clean Technol. Environ. Policy 2023, 25, 2009–2024. [Google Scholar] [CrossRef]
- Taiwo, B.E.; Al Kafy, A.; Samuel, A.A.; Rahaman, Z.A.; Ayowole, O.E.; Shahrier, M.; Duti, B.M.; Rahman, M.T.; Peter, O.T.; Abosede, O.O. Monitoring and Predicting the Influences of Land Use/Land Cover Change on Cropland Characteristics and Drought Severity Using Remote Sensing Techniques. Environ. Sustain. Indic. 2023, 18, 100248. [Google Scholar] [CrossRef]
- Ismaeil, E.M.H.; Sobaih, A.E.E. Assessing Xeriscaping as a Retrofit Sustainable Water Consumption Approach for a Desert University Campus. Water 2022, 14, 1681. [Google Scholar] [CrossRef]
- Froiz-Míguez, I.; Lopez-Iturri, P.; Fraga-Lamas, P.; Celaya-Echarri, M.; Blanco-Novoa, Ó.; Azpilicueta, L.; Falcone, F.; Fernández-Caramés, T.M. Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on Lora and Lorawan Sensor Nodes. Sensors 2020, 20, 6865. [Google Scholar] [CrossRef]
- Amr, A.I.; Kamel, S.; El Gohary, G.; Hamhaber, J. Water as an Ecological Factor for a Sustainable Campus Landscape. Procedia-Soc. Behav. Sci. 2016, 216, 181–193. [Google Scholar] [CrossRef]
- Pan, S.H.; Chen, W.E.; Chen, W.S. Smart Irrigation System Implementing in Smart Campus. In Proceedings of the 2023 IEEE 3rd International Conference on Electronic Communications, Internet of Things and Big Data, ICEIB 2023, New York, NY, USA, 14–16 April 2023; IEEE: New York, NY, USA, 2023; pp. 491–496. [Google Scholar]
- Pardo, M.A.; Riquelme, A.J.; Jodar-Abellan, A.; Melgarejo, J. Water and Energy Demand Management in Pressurized Irrigation Networks. Water 2020, 12, 1878. [Google Scholar] [CrossRef]
- Sánchez-Sutil, F.; Cano-Ortega, A. Smart Control and Energy Efficiency in Irrigation Systems Using LoRaWAN. Sensors 2021, 21, 7041. [Google Scholar] [CrossRef]
- Volo, T.J.; Vivoni, E.R.; Martin, C.A.; Earl, S.; Ruddell, B.L. Modelling Soil Moisture, Water Partitioning, and Plant Water Stress under Irrigated Conditions in Desert Urban Areas. Ecohydrology 2014, 7, 1297–1313. [Google Scholar] [CrossRef]
- Litvak, E.; Bijoor, N.S.; Pataki, D.E. Adding Trees to Irrigated Turfgrass Lawns May Be a Water-Saving Measure in Semi-Arid Environments. Ecohydrology 2014, 7, 1314–1330. [Google Scholar] [CrossRef]
- Tan, S.; Yao, L. Managing and Optimizing Urban Water Supply System for Sustainable Development: Perspectives from Water-Energy-Carbon Nexus. Sustain. Prod. Consum. 2023, 37, 39–52. [Google Scholar] [CrossRef]
- Boiocchi, R.; Mainardis, M.; Rada, E.C.; Ragazzi, M.; Salvati, S.C. Trends of N2O Production during Decentralized Wastewater Treatment: A Critical Review. J. Environ. Chem. Eng. 2025, 13, 114627. [Google Scholar] [CrossRef]
- Margot, J.; Rossi, L.; Barry, D.A.; Holliger, C. A Review of the Fate of Micropollutants in Wastewater Treatment Plants. Wiley Interdiscip. Rev. Water 2015, 2, 457–487. [Google Scholar] [CrossRef]
- Rogowska, J.; Cieszynska-Semenowicz, M.; Ratajczyk, W.; Wolska, L. Micropollutants in Treated Wastewater. Ambio 2020, 49, 487–503. [Google Scholar] [CrossRef]
- European Commission. REVISION of the DIRECTIVE of the EUROPEAN PARLIAMENT and of the COUNCIL Concerning Urban Wastewater Treatment. Available online: https://eur-lex.europa.eu/legal-content/EN/HIS/?uri=CONSIL:ST_14271_2023_INIT (accessed on 8 October 2025).
- Miko, B.A.; Cohen, B.; Haxall, K.; Conway, L.; Kelly, N.; Stare, D.; Tropiano, C.; Gilman, A.; Seward, S.L.; Larson, E. Personal and Household Hygiene, Environmental Contamination, and Health in Undergraduate Residence Halls in New York City, 2011. PLoS ONE 2013, 8, e81460. [Google Scholar] [CrossRef]
- Daverey, A.; Dutta, K. COVID-19: Eco-Friendly Hand Hygiene for Human and Environmental Safety. J. Environ. Chem. Eng. 2021, 9, 104754. [Google Scholar] [CrossRef]
- Schlappa, K.; Bentivoglio, T.; Provenza, F.; Anselmi, S.; Piccardo, M.; Renzi, M. Eco-Friendly Detergent Based on Exhausted Edible Vegetable Oils: Impact on Marine and Freshwater Environments, a Case Study Focusing on SARS-CoV-2. Environments 2024, 11, 242. [Google Scholar] [CrossRef]
- Ramachandra, T.V. Shwetmala Groundwater Quality Impairment Due to Mismanagement of Biodegradable Waste. In Proceedings of the 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), Trivandrum, India, 23–24 August 2013; pp. 223–227. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V.; Ragazzi, M.; Rada, E.C. Waste Mismanagement in Developing Countries: A Case Study of Environmental Contamination. UPB Sci. Bull. Ser. D Mech. Eng. 2017, 79, 185–196. [Google Scholar]
- Ed-idoko, J.O.; Apochi, J.O.; Ndukwe, J.; Ibrahim, U.O. Impact of Improper Waste Disposal on Surface and Ground Water. J. Agric. Ecol. Res. Int. 2024, 25, 72–90. [Google Scholar] [CrossRef]
- Dawodu, A.; Dai, H.; Zou, T.; Zhou, H.; Lian, W.; Oladejo, J.; Osebor, F. Campus Sustainability Research: Indicators and Dimensions to Consider for the Design and Assessment of a Sustainable Campus. Heliyon 2022, 8, e11864. [Google Scholar] [CrossRef]
- Schaub, S.; Vogeler, C.; Metz, F. Designing Policy Mixes for the Sustainable Management of Water Resources. J. Environ. Policy Plan. 2022, 24, 463–471. [Google Scholar] [CrossRef]
- Idoiaga Mondragon, N.; Yarritu, I.; Saez de Cámara, E.; Beloki, N.; Vozmediano, L. The Challenge of Education for Sustainability in Higher Education: Key Themes and Competences within the University of the Basque Country. Front. Psychol. 2023, 14, 1158636. [Google Scholar] [CrossRef]
- Husic, D.W. Reframing Sustainability Initiatives in Higher Education. Sustain. Earth Rev. 2024, 7, 5. [Google Scholar] [CrossRef]










| Searched Keywords | Database | Publication Period | Document Type | Source Type | Subject Area | Language |
|---|---|---|---|---|---|---|
| “sustainable water management”, “higher education institution”, “university”, “campus” | Scopus | 2013 to End of October/Start of November 2025 | Articles, Reviews, Conference Papers, Books Chapters and Books | Journal, Book, Book Series, Conference Proceeding | All | English |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boiocchi, R.; Peruzzi, C.; Giurea, R.; Rada, E.C. Towards a Structured Approach to Advance Sustainable Water Management in Higher Education Institutions: A Review. Water 2025, 17, 3526. https://doi.org/10.3390/w17243526
Boiocchi R, Peruzzi C, Giurea R, Rada EC. Towards a Structured Approach to Advance Sustainable Water Management in Higher Education Institutions: A Review. Water. 2025; 17(24):3526. https://doi.org/10.3390/w17243526
Chicago/Turabian StyleBoiocchi, Riccardo, Cosimo Peruzzi, Ramona Giurea, and Elena Cristina Rada. 2025. "Towards a Structured Approach to Advance Sustainable Water Management in Higher Education Institutions: A Review" Water 17, no. 24: 3526. https://doi.org/10.3390/w17243526
APA StyleBoiocchi, R., Peruzzi, C., Giurea, R., & Rada, E. C. (2025). Towards a Structured Approach to Advance Sustainable Water Management in Higher Education Institutions: A Review. Water, 17(24), 3526. https://doi.org/10.3390/w17243526

