Modeling the Effect of Nature-Based Solutions in Reducing Soil Erosion with InVEST ® SDR: The Carapelle Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SDR Model Description
2.3. SDR Model Setup and Data Requirements
- (a)
- Threshold flow accumulation (TFA): The minimum upstream contributing area required for a pixel to be classified as part of the stream network. This parameter defines where surface flow transitions from overland flow to channelized flow, effectively determining the stream network density and the points where sediment delivery calculations begin. A smaller TFA value creates a denser stream network (more stream pixels), while a larger TFA results in fewer, more prominent streams. A 150-hectare threshold was selected to accurately represent the perennial and ephemeral stream network observed in the Mediterranean area of the Carapelle watershed.
- (b)
2.3.1. Soil Loss
2.3.2. Rainfall Erosivity Factor (R)
2.3.3. Soil Erodibility Factor (K)
- OM = organic matter (%);
- SS = texture code: (1) very structured or particulate, (2) fairly structured, (3) slightly structured, (4) solid;
- PP = soil permeability class: (1) rapid, (2) moderate to rapid, (3) moderate, (4) moderate to slow, (5) slow, (6) very slow;
- M = soil texture parameter, defined as
2.3.4. Cover Factor (C) and Management Factor (P)
2.3.5. Topographic Factor (LS)
2.4. Model Calibration and Validation
- a
- Primary erosion outputs: (i) soil loss (RUSLE): annual soil loss per pixel calculated using RUSLE (t ha−1 yr−1); (ii) sediment export: annual sediment delivered to streams per pixel (t ha−1 yr−1); to match what we mean by observed sediment yield data, from now on this will be referred to as sediment yield.
- b
- Retention service outputs: (i) avoided erosion (AVER) which is the difference between potential erosion (bare soil conditions) and actual erosion given current land cover (t ha−1 yr−1); (ii) avoided export (AVEX) which refers to sediment retained within the landscape that would otherwise reach streams (t ha−1 yr−1) [32].
2.5. Scenario Development for NBS Assessment
- Contour Farming (CF)
- II.
- No Tillage (NT)
- III.
- Cover Crops (CCs)
- IV.
- Combination of CCs and NT (Comb)
3. Results
3.1. Sediment Yield and Calibrated Parameters
3.2. Soil Loss Rate Using the RUSLE
3.3. Analysis of Sediment Dynamics Under NBS Implementation at the Watershed Scale
3.3.1. Sediment Yield Spatial Distribution
3.3.2. Avoided Erosion Evaluation
4. Discussion
4.1. Model Calibration and Performance
4.2. Temporal and Spatial Soil Erosion and Sediment Dynamics Assessment
4.3. Nature-Based Solutions: A Paradigm Shift in Erosion Control
4.4. Sediment Retention and Water Quality: Ecosystem Service Quantification
4.5. Study Limitations and Future Research
5. Conclusions
- ▪
- Long-term monitoring programs to validate NBS implementation effectiveness over extended periods and varying climatic conditions.
- ▪
- LClimate change integration through scenario modeling to project future erosion risks and NBS performance under changing precipitation patterns and temperature regimes.
- ▪
- LEconomic valuation frameworks for comprehensive cost–benefit analyses of ecosystem services, including avoided damages from erosion and enhanced water quality benefits.
- ▪
- LParticipatory approaches that engage local farmers and stakeholders to enhance NBS adoption rates and ensure sustainable implementation.
- ▪
- LMulti-scale analysis extending from plot-level experiments to regional assessments for broader policy applications.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jónsson, J.Ö.G.; Davíðsdóttir, B.; Nikolaidis, N.P. Valuation of Soil Ecosystem Services. Adv. Agron. 2017, 142, 353–384. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil Ecosystem Services, Sustainability, Valuation and Management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global Soil Carbon: Understanding and Managing the Largest Terrestrial Carbon Pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Haygarth, P.M.; Ritz, K. The Future of Soils and Land Use in the UK: Soil Systems for the Provision of Land-Based Ecosystem Services. Land Use Policy 2009, 26, S187–S197. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Webster, R. Morgan, R.P.C. Soil Erosion and Conservation, 3rd Edition. Blackwell Publishing, Oxford, 2005. x + 304 Pp. £29.95, Paperback. ISBN 1-4051-1781-8. Eur. J. Soil Sci. 2005, 56, 686. [Google Scholar] [CrossRef]
- Adornado, H.A.; Yoshida, M.; Apolinares, H.A. Erosion Vulnerability Assessment in REINA, Quezon Province, Philippines with Raster-Based Tool Built within GIS Environment. Agric. Inf. Res. 2009, 18, 24–31. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A Review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a View to Increasing Its Global Applicability and Improving Soil Loss Estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Ricci, G.F.; De Girolamo, A.M.; Gentile, F. Modelling Soil Erosion in a Mediterranean Watershed: Comparison between SWAT and AnnAGNPS Models. Environ. Res. 2018, 166, 363–376. [Google Scholar] [CrossRef]
- Ricci, G.F.; De Girolamo, A.M.; Abdelwahab, O.M.M.; Gentile, F. Identifying Sediment Source Areas in a Mediterranean Watershed Using the SWAT Model. Land Degrad. Dev. 2018, 29, 1233–1248. [Google Scholar] [CrossRef]
- FAO. ITPS Status of the World’s Soil Resources (SWSR)—Main Report; FAO and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The New Assessment of Soil Loss by Water Erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Himics, M.; Scarpa, S.; Matthews, F.; Bogonos, M.; Poesen, J.; Borrelli, P. Projections of Soil Loss by Water Erosion in Europe by 2050. Environ. Sci. Policy 2021, 124, 380–392. [Google Scholar] [CrossRef]
- Robinson, D.A.; Panagos, P.; Borrelli, P.; Jones, A.; Montanarella, L.; Tye, A.; Obst, C.G. Soil Natural Capital in Europe; a Framework for State and Change Assessment. Sci. Rep. 2017, 7, 6706. [Google Scholar] [CrossRef] [PubMed]
- Rust, N.; Lunder, O.E.; Iversen, S.; Vella, S.; Oughton, E.A.; Breland, T.A.; Glass, J.H.; Maynard, C.M.; McMorran, R.; Reed, M.S. Perceived Causes and Solutions to Soil Degradation in the UK and Norway. Land 2022, 11, 131. [Google Scholar] [CrossRef]
- Walling, D.E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2009. [Google Scholar]
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Gergel, S.E.; Turner, M.G.; Miller, J.R.; Melack, J.M.; Stanley, E.H. Landscape Indicators of Human Impacts to Riverine Systems. Aquat. Sci. 2002, 64, 118–128. [Google Scholar] [CrossRef]
- Martin-Ortega, J.; Ojea, E.; Roux, C. Payments for Water Ecosystem Services in Latin America: A Literature Review and Conceptual Model. Ecosyst. Serv. 2013, 6, 122–132. [Google Scholar] [CrossRef]
- Kepner, W.G.; Ramsey, M.M.; Brown, E.S.; Jarchow, M.E.; Dickinson, K.J.M.; Mark, A.F. Hydrologic Futures: Using Scenario Analysis to Evaluate Impacts of Forecasted Land Use Change on Hydrologic Services. Ecosphere 2012, 3, 1–25. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil Erosion Modelling: A Global Review and Statistical Analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Trans. ASAE 2003, 46, 1553–1566. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A Review of Erosion and Sediment Transport Models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Girmay, G.; Moges, A.; Muluneh, A. Assessment of Current and Future Climate Change Impact on Soil Loss Rate of Agewmariam Watershed, Northern Ethiopia. Air Soil Water Res. 2021, 14, 1178622121995847. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Van Rompaey, A.; Arabkhedri, M.; Boix-Fayos, C. Predicting Soil Erosion and Sediment Yield at Regional Scales: Where Do We Stand? Earth Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Milillo, F.; Gentile, F. Modeling Soil Erosion and Sediment Load at Different Time Scales in a Medium-Sized Watershed. In Proceedings of the 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2016, Orlando, FL, USA, 17–20 July 2016. [Google Scholar]
- McIntyre, N.; Ballard, C.; Bruen, M.; Bulygina, N.; Buytaert, W.; Cluckie, I.; Dunn, S.; Ehret, U.; Ewen, J.; Gelfan, A.; et al. Modelling the Hydrological Impacts of Rural Land Use Change. Hydrol. Res. 2014, 45, 737–754. [Google Scholar] [CrossRef]
- Mai, J. Ten Strategies towards Successful Calibration of Environmental Models. J. Hydrol. 2023, 620, 129414. [Google Scholar] [CrossRef]
- Maetens, W.; Vanmaercke, M.; Poesen, J.; Jankauskas, B.; Jankauskiene, G.; Ionita, I. Effects of Land Use on Annual Runoff and Soil Loss in Europe and the Mediterranean: A Meta-Analysis of Plot Data. Prog. Phys. Geogr. 2012, 36, 599–653. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.E.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Guswa, A.J.; Brauman, K.A.; Brown, C.; Hamel, P.; Keeler, B.L.; Sayre, S.S. Ecosystem Services: Challenges and Opportunities for Hydrologic Modeling to Support Decision Making. Water Resour. Res. 2014, 50, 4535–4544. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide. 2015. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/en/index.html (accessed on 1 December 2025).
- Keeler, B.L.; Polasky, S.; Brauman, K.A.; Johnson, K.A.; Finlay, J.C.; O’Neille, A.; Kovacs, K.; Dalzell, B. Linking Water Quality and Well-Being for Improved Assessment and Valuation of Ecosystem Services. Proc. Natl. Acad. Sci. USA 2012, 109, 18619–18624. [Google Scholar] [CrossRef] [PubMed]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to Sediment and Flow Connectivity in the Landscape: A GIS and Field Numerical Assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Vigiak, O.; Borselli, L.; Newham, L.T.H.; McInnes, J.; Roberts, A.M. Comparison of Conceptual Landscape Metrics to Define Hillslope-Scale Sediment Delivery Ratio. Geomorphology 2012, 138, 74–88. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Elias, E.; Soromessa, T.; Feyisa, G.L. Land Use/Land Cover Change Effect on Soil Erosion and Sediment Delivery in the Winike Watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 2020, 728, 138776. [Google Scholar] [CrossRef] [PubMed]
- Hamel, P.; Falinski, K.; Sharp, R.; Auerbach, D.A.; Sánchez-Canales, M.; Dennedy-Frank, P.J. Sediment Delivery Modeling in Practice: Comparing the Effects of Watershed Characteristics and Data Resolution across Hydroclimatic Regions. Sci. Total Environ. 2017, 580, 1381–1388. [Google Scholar] [CrossRef]
- da Cunha, E.R.; Santos, C.A.G.; da Silva, R.M.; Panachuki, E.; de Oliveira, P.T.S.; de Souza Oliveira, N.; dos Santos Falcão, K. Assessment of Current and Future Land Use/Cover Changes in Soil Erosion in the Rio Da Prata Basin (Brazil). Sci. Total Environ. 2022, 818, 151811. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, T.; Bantider, A.; Zeleke, G.; Alamirew, T.; Jemberu, W.; Worqlul, A.W.; Dile, Y.T.; Bewket, W.; Meshesha, D.T.; Adem, A.A.; et al. Evaluating InVEST Model for Estimating Soil Loss and Sediment Export in Data Scarce Regions of the Abbay (Upper Blue Nile) Basin: Implications for Land Managers. Environ. Chall. 2021, 5, 100381. [Google Scholar] [CrossRef]
- Gurung, S.B.; Geronimo, F.K.; Hong, J.; Kim, L.H. Application of Indices to Evaluate LID Facilities for Sediment and Heavy Metal Removal. Chemosphere 2018, 206, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A New Approach to Modeling the Sediment Retention Service (InVEST 3.0): Case Study of the Cape Fear Catchment, North Carolina, USA. Sci. Total Environ. 2015, 524–525, 166–177. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Xiii + 97pp, ISBN 978-2-8317-1812-5. [Google Scholar]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the Effectiveness of Nature-Based Solutions for Climate Change Adaptation. Glob. Change Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef]
- Troccoli, A.; Maddaluno, C.; Mucci, M.; Russo, M.; Rinaldi, M. Is It Appropriate to Support the Farmers for Adopting Conservation Agriculture? Economic and Environmental Impact Assessment. Ital. J. Agron. 2015, 10, 661. [Google Scholar] [CrossRef]
- Lago-Olveira, S.; Rebolledo-Leiva, R.; Garofalo, P.; Moreira, M.T.; González-García, S. Environmental and Economic Benefits of Wheat and Chickpea Crop Rotation in the Mediterranean Region of Apulia (Italy). Sci. Total Environ. 2023, 896, 165124. [Google Scholar] [CrossRef] [PubMed]
- Petito, M.; Cantalamessa, S.; Pagnani, G.; Degiorgio, F.; Parisse, B.; Pisante, M. Impact of Conservation Agriculture on Soil Erosion in the Annual Cropland of the Apulia Region (Southern Italy) Based on the RUSLE-GIS-GEE Framework. Agronomy 2022, 12, 281. [Google Scholar] [CrossRef]
- Ricci, G.F.; Jeong, J.; De Girolamo, A.M.; Gentile, F. Effectiveness and Feasibility of Different Management Practices to Reduce Soil Erosion in an Agricultural Watershed. Land Use Policy 2020, 90, 104306. [Google Scholar] [CrossRef]
- Willcock, S.; Hooftman, D.A.P.; Neugarten, R.A.; Chaplin-Kramer, R.; Barredo, J.I.; Hickler, T.; Kindermann, G.; Lewis, A.R.; Lindeskog, M.; Martínez-López, J.; et al. Model Ensembles of Ecosystem Services Fill Global Certainty and Capacity Gaps. Sci. Adv. 2023, 9, eadf5492. [Google Scholar] [CrossRef]
- Gentile, F.; Bisantino, T.; Trisorio Liuzzi, G. Erosion and Sediment Transport Modelling in Northern Puglia Watersheds. WIT Trans. Eng. Sci. 2010, 67, 199–212. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Bingner, R.L.; Milillo, F.; Gentile, F. Effectiveness of Alternative Management Scenarios on the Sediment Load in a Mediterranean Agricultural Watershed. J. Agric. Eng. 2014, 45, 125. [Google Scholar] [CrossRef]
- Netti, A.M.; Abdelwahab, O.M.M.; Datola, G.; Ricci, G.F.; Damiani, P.; Oppio, A.; Gentile, F. Assessment of Nature-Based Solutions for Water Resource Management in Agricultural Environments: A Stakeholders’ Perspective in Southern Italy. Sci. Rep. 2024, 14, 24668. [Google Scholar] [CrossRef]
- Gentile, F.; Bisantino, T.; Corbino, R.; Milillo, F.; Romano, G.; Liuzzi, G.T. Monitoring and Analysis of Suspended Sediment Transport Dynamics in the Carapelle Torrent (Southern Italy). Catena 2010, 80, 1–8. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Ayt Ougougdal, H.; Khebiza, M.Y.; Messouli, M.; Bounoua, L.; Karmaoui, A. Delineation of Vulnerable Areas to Water Erosion in a Mountain Region Using SDR-InVEST Model: A Case Study of the Ourika Watershed, Morocco. Sci. Afr. 2020, 10, e00646. [Google Scholar] [CrossRef]
- Bouguerra, S.; Jebari, S. Identification and Prioritization of Sub-Watersheds for Land and Water Management Using InVEST SDR Model: Rmelriver Basin, Tunisia. Arab. J. Geosci. 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Jakubínský, J.; Pechanec, V.; Procházka, J.; Cudlín, P. Modelling of Soil Erosion and Accumulation in an Agricultural Landscape—A Comparison of Selected Approaches Applied at the Small Stream Basin Level in the Czech Republic. Water 2019, 11, 404. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Benabdelouahab, S.; Salhi, A. Mitigating Erosion and Enhancing Sediment Retention: A Modeling Approach to Sustainable Land Management. Earth Syst. Environ. 2025, 1–20. [Google Scholar] [CrossRef]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook No. 703; U.S. Department of Agriculture: Washington, DC, USA, 1997; 404p.
- Ferro, V.; Porto, P.; Yu, B. A Comparative Study of Rainfall Erosivity Estimation for Southern Italy and Southeastern Australia. Hydrol. Sci. J. 1999, 44, 3–24. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Johnson, C.B.; Cross, B.V. A Soil Erodibility Nomograph for Farmland and Construction Sites. J. Soil Water Conserv. 1971, 26, 189–193. [Google Scholar]
- Diodato, N.; Fagnano, M.; Ines, A. Geospatial and Visual Modeling for Exploring Sediment Source Areas across the Sele River Landscape, Italy. Ital. J. Agron. 2011, 6, e14. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; USDA Handbook No. 537; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- Desmet, P.J.J.; Govers, G. A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the Effect of Support Practices (P-Factor) on the Reduction of Soil Erosion by Water at European Scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Carretta, L.; Cardinali, A.; Onofri, A.; Masin, R.; Zanin, G. Dynamics of Glyphosate and Aminomethylphosphonic Acid in Soil Under Conventional and Conservation Tillage. Int. J. Environ. Res. 2021, 15, 1037–1055. [Google Scholar] [CrossRef]
- Himanshu, S.K.; Pandey, A.; Yadav, B.; Gupta, A. Evaluation of Best Management Practices for Sediment and Nutrient Loss Control Using SWAT Model. Soil Tillage Res. 2019, 192, 42–58. [Google Scholar] [CrossRef]
- Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J.G. Representation of Agricultural Conservation Practices with SWAT. Hydrol. Process 2008, 22, 3042–3055. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, F.; Luo, Z.; Badreldin, N.; Benoy, G.; Xing, Z. Soil and Water Conservation Effects of Different Types of Vegetation Cover on Runoff and Erosion Driven by Climate and Underlying Surface Conditions. Catena 2023, 231, 107347. [Google Scholar] [CrossRef]
- Pulighe, G.; Belocchi, A.; Tani, A.C.; Lupia, F. Impacts of agricultural management practices on water cycle, soil erosion and crop yields in a Mediterranean agroecosystem. Sci. Total Environ. 2025, 995, 180111. [Google Scholar] [CrossRef]
- Hanief, A.; Laursen, A.E. Meeting Updated Phosphorus Reduction Goals by Applying Best Management Practices in the Grand River Watershed, Southern Ontario. Ecol. Eng. 2019, 130, 169–175. [Google Scholar] [CrossRef]
- Karki, R.; Srivastava, P.; Bosch, D.D.; Kalin, L.; Lamba, J.; Strickland, T.C. Multi-Variable Sensitivity Analysis, Calibration, and Validation of a Field-Scale SWAT Model: Building Stakeholder Trust in Hydrologic and Water Quality Modeling. Trans. ASABE 2020, 63, 523–539. [Google Scholar] [CrossRef]
- Ekanayaka, H.B.G.D.M.P.; Abeysingha, N.S.; Amarasekara, T.; Ray, R.L.; Samarathunga, D.K. The Use of InVEST-SDR Model to Evaluate Soil Erosion and Sedimentation in the Closer Catchment of a Proposed Tropical Reservoir in Sri Lanka. Int. J. Sediment Res. 2025, 40, 253–268. [Google Scholar] [CrossRef]
- Joorabian Shooshtari, S.; Ardakani, T.; Beik Khormizi, H. Modeling Future Sediment Retention Service in the Bagh-e-Shadi Forest Protected Area Using InVEST and the ACCESS-ESM1-5 Climate Model. Sci. Rep. 2025, 15, 1–17. [Google Scholar] [CrossRef]
- Tamire, C.; Elias, E.; Argaw, M. Spatiotemporal Dynamics of Soil Loss and Sediment Export in Upper Bilate River Catchment (UBRC), Central Rift Valley of Ethiopia. Heliyon 2022, 8, e11220. [Google Scholar] [CrossRef]
- Aboelnour, M.A.; Tank, J.L.; Hamlet, A.F.; Royer, T.V.; Bolster, D. A Watershed Model Predicts the Effects of Cover Crops on River Flows, Sediment Transport, and Nutrient Loss to Lake Michigan. J. Great Lakes Res. 2025, 51, 102528. [Google Scholar] [CrossRef]
- Gómez, J.A.; Guzmán, M.G.; Giráldez, J.V.; Fereres, E. The Influence of Cover Crops and Tillage on Water and Sediment Yield, and on Nutrient, and Organic Matter Losses in an Olive Orchard on a Sandy Loam Soil. Soil Tillage Res. 2009, 106, 137–144. [Google Scholar] [CrossRef]
- Pignalosa, A.; Silvestri, N.; Pugliese, F.; Corniello, A.; Gerundo, C.; Del Seppia, N.; Lucchesi, M.; Coscini, N.; De Paola, F.; Giugni, M. Long-Term Simulations of Nature-Based Solutions Effects on Runoff and Soil Losses in a Flat Agricultural Area within the Catchment of Lake Massaciuccoli (Central Italy). Agric. Water Manag. 2022, 273, 107870. [Google Scholar] [CrossRef]
- Robotham, J.; Old, G.; Rameshwaran, P.; Sear, D.; Trill, E.; Bishop, J.; Gasca-Tucker, D.; Old, J.; McKnight, D. Nature-Based Solutions Enhance Sediment and Nutrient Storage in an Agricultural Lowland Catchment. Earth Surf. Process. Landf. 2023, 48, 243–258. [Google Scholar] [CrossRef]
- Ismaili Alaoui, H.; Chemchaoui, A.; El Asri, B.; Ghazi, S.; Brhadda, N.; Ziri, R. Modeling Predictive Changes of Carbon Storage Using Invest Model in the Beht Watershed (Morocco). Model. Earth Syst. Environ. 2023, 9, 4313–4322. [Google Scholar] [CrossRef]
- Bingner, R.L.; Theurer, F.D.; Taguas, E.V. AnnAGNPS TECHNICAL PROCESSES. Documentation Version 5.5. 2018. Available online: https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/AGNPS/downloads/AnnAGNPS_Technical_Documentation.pdf (accessed on 1 December 2025).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report No. 406; A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- López-Vicente, M.; Navas, A. Predicting Soil Erosion with RUSLE in Mediterranean Agricultural Systems at Catchment Scale. Soil Sci. 2009, 174, 272–282. [Google Scholar] [CrossRef]
- Arampatzis, G.; Pisinaras, V.; Doulgeris, C.; Tziritis, E.; Sismani, G.; Panagopoulos, A. Estimating Erosion on Two Mediterranean Watersheds of Different Hydrological Regimes. In Proceedings of the 38th IAHR World Congress (Panama, 2019), Panama City, Panama, 1–6 September 2019. [Google Scholar]
- Pompeu, J.; Ruiz, I.; Ruano, A.; Sanz, M.J. Sustainable Land Management for Addressing Soil Conservation under Climate Change in Mediterranean Landscapes: Perspectives from the Mijares Watershed. Euro-Mediterr. J. Environ. Integr. 2023, 8, 41–54. [Google Scholar] [CrossRef]
- Ferreira, V.; Panagopoulos, T. Seasonality of Soil Erosion under Mediterranean Conditions at the Alqueva Dam Watershed. Environ. Manag. 2014, 54, 67–83. [Google Scholar] [CrossRef]
- Karydas, C.; Bouarour, O.; Zdruli, P. Mapping Spatio-Temporal Soil Erosion Patterns in the Candelaro River Basin, Italy, Using the G2 Model with Sentinel2 Imagery. Geosciences 2020, 10, 89. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Ricci, G.F.; Gentile, F.; De Girolamo, A.M. Modelling the Impact of Climate Change on Runoff and Sediment Yield in Mediterranean Basins: The Carapelle Case Study (Apulia, Italy). Front. Water 2025, 7, 1486644. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Cerdan, O.; Grangeon, T.; Ricci, G.F.; Vandromme, R.; Lo Porto, A. Modelling Effects of Forest Fire and Post-Fire Management in a Catchment Prone to Erosion: Impacts on Sediment Yield. Catena 2022, 212, 106080. [Google Scholar] [CrossRef]
- Prasad, L.R.; Thompson, A.M.; Arriaga, F.J.; Koropeckyj-Cox, L.; Yuan, Y. Effectiveness of Residue and Tillage Management on Runoff Pollutant Reduction from Agricultural Areas. J. ASABE 2023, 66, 1341–1354. [Google Scholar] [CrossRef] [PubMed]
- Thapa, A.; Aryal, N.; Reba, M.L.; Teague, T.G.; Payne, G.K.; Pieri, A. Effects of Cover Crop and Filter Strips on Sediment and Nutrient Loads Measured at the Edge of a Commercial Cotton Field. J. ASABE 2024, 67, 475–491. [Google Scholar] [CrossRef]
- Carver, R.E.; Nelson, N.O.; Roozeboom, K.L.; Kluitenberg, G.J.; Tomlinson, P.J.; Kang, Q.; Abel, D.S. Cover Crop and Phosphorus Fertilizer Management Impacts on Surface Water Quality from a No-till Corn-Soybean Rotation. J. Environ. Manag. 2022, 301, 113818. [Google Scholar] [CrossRef]
- Ryder, M.H.; Fares, A. Evaluating Cover Crops (Sudex, Sunn Hemp, Oats) for Use as Vegetative Filters to Control Sediment and Nutrient Loading From Agricultural Runoff in a Hawaiian Watershed. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 640–653. [Google Scholar] [CrossRef]
- Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Zantet oybitet, M.; Bibi, T.S.; Adem, E.A. Evaluation of Best Management Practices to Reduce Sediment Yield in the Upper Gilo Watershed, Baro Akobo Basin, Ethiopia Using SWAT. Heliyon 2023, 9, e20326. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.P.; Bressiani, D.; Ebling, É.D.; Reichert, J.M. Best Management Practices to Reduce Soil Erosion and Change Water Balance Components in Watersheds under Grain and Dairy Production. Int. Soil Water Conserv. Res. 2024, 12, 121–136. [Google Scholar] [CrossRef]
- Law, J.Y.; Brendel, C.; Long, L.A.; Helmers, M.; Kaleita, A.; Soupir, M. Impact of Stacked Conservation Practices on Phosphorus and Sediment Export at the Catchment Scale. J. Environ. Qual. 2020, 49, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- Merriman, K.R.; Daggupati, P.; Srinivasan, R.; Toussant, C.; Russell, A.M.; Hayhurst, B. Assessing the Impact of Site-Specific BMPs Using a Spatially Explicit, Field-Scale SWAT Model with Edge-of-Field and Tile Hydrology and Water-Quality Data in the Eagle Creek Watershed, Ohio. Water 2018, 10, 1299. [Google Scholar] [CrossRef]
- Ruangpan, L.; Vojinovic, Z.; Plavšić, J.; Curran, A.; Rosic, N.; Pudar, R.; Savic, D.; Brdjanovic, D. Economic Assessment of Nature-Based Solutions to Reduce Flood Risk and Enhance Co-Benefits. J. Environ. Manag. 2024, 352, 119985. [Google Scholar] [CrossRef]
- Simmonds, J.S.; Suarez-Castro, A.F.; Reside, A.E.; Watson, J.E.M.; Allan, J.R.; Atkinson, S.C.; Borrelli, P.; Dudley, N.; Edwards, S.; Fuller, R.A.; et al. Retaining Natural Vegetation to Safeguard Biodiversity and Humanity. Conserv. Biol. 2023, 37, e14040. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Bingner, R.L.; Milillo, F.; Gentile, F. Evaluation of Alternative Management Practices with the AnnAGNPS Model in the Carapelle Watershed. Soil Sci. 2016, 181, 293–305. [Google Scholar] [CrossRef]
- Ricci, G.F.; D’Ambrosio, E.; De Girolamo, A.M.; Gentile, F. Efficiency and Feasibility of Best Management Practices to Reduce Nutrient Loads in an Agricultural River Basin. Agric. Water Manag. 2022, 259, 107241. [Google Scholar] [CrossRef]







| Borselli k | IC0 | Sediment Yield t yr−1 |
|---|---|---|
| 1 | 0.5 | 25,316.89 |
| 2 | 0.50 | 30,687.15 |
| 3 | 0.50 | 43,416.70 |
| 3 | 0.25 | 46,038.50 |
| 3 | 0.55 | 42,903.40 |
| 2.8 | 0.50 | 41,366.8 |
| 2.8 | 0.25 | 45,298.60 |
| 3 | 0.6 | 62,517.30 |
| 3 | 0.75 | 68,728.10 |
| RUSLE (t ha−1) Gross Erosion | Sediment Yield (t ha−1) | Sediment Deposition (t ha−1) | Avoided Erosion (t ha−1) * | Avoided Export (t ha−1) ** | ||
|---|---|---|---|---|---|---|
| Baseline | Average | 6.58 | 1.45 | 5.09 | 24.18 | 8.65 |
| Wet year | 10.15 | 2.23 | 7.85 | 37.27 | 13.34 | |
| Dry year | 4.24 | 0.94 | 3.28 | 15.64 | 5.60 | |
| CF | Average | 4.26 | 0.94 | 3.29 | 26.50 | 7.77 |
| Wet year | 6.56 | 1.44 | 5.07 | 40.86 | 11.98 | |
| Dry year | 2.74 | 0.61 | 2.11 | 17.15 | 5.03 | |
| CCs | Average | 5.42 | 1.15 | 4.23 | 25.34 | 8.10 |
| Wet year | 8.35 | 1.77 | 6.52 | 39.06 | 12.48 | |
| Dry year | 3.49 | 0.75 | 2.72 | 16.40 | 5.24 | |
| NT | Average | 2.23 | 0.41 | 1.81 | 28.53 | 6.05 |
| Wet year | 3.42 | 0.62 | 2.77 | 44.00 | 9.31 | |
| Dry year | 1.42 | 0.26 | 1.15 | 18.46 | 3.92 | |
| Comb | Average | 1.94 | 0.35 | 1.58 | 28.82 | 5.77 |
| Wet year | 2.97 | 0.53 | 2.42 | 44.45 | 8.88 | |
| Dry year | 1.23 | 0.22 | 1.00 | 18.65 | 3.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelwahab, O.M.M.; Ricci, G.F.; Netti, A.M.; De Girolamo, A.M.; Gentile, F. Modeling the Effect of Nature-Based Solutions in Reducing Soil Erosion with InVEST ® SDR: The Carapelle Case Study. Water 2025, 17, 3451. https://doi.org/10.3390/w17243451
Abdelwahab OMM, Ricci GF, Netti AM, De Girolamo AM, Gentile F. Modeling the Effect of Nature-Based Solutions in Reducing Soil Erosion with InVEST ® SDR: The Carapelle Case Study. Water. 2025; 17(24):3451. https://doi.org/10.3390/w17243451
Chicago/Turabian StyleAbdelwahab, Ossama M. M., Giovanni Francesco Ricci, Addolorata Maria Netti, Anna Maria De Girolamo, and Francesco Gentile. 2025. "Modeling the Effect of Nature-Based Solutions in Reducing Soil Erosion with InVEST ® SDR: The Carapelle Case Study" Water 17, no. 24: 3451. https://doi.org/10.3390/w17243451
APA StyleAbdelwahab, O. M. M., Ricci, G. F., Netti, A. M., De Girolamo, A. M., & Gentile, F. (2025). Modeling the Effect of Nature-Based Solutions in Reducing Soil Erosion with InVEST ® SDR: The Carapelle Case Study. Water, 17(24), 3451. https://doi.org/10.3390/w17243451

