Drought–Flood Abrupt Alternation in the Heilongjiang River Basin Under Climate Change: Spatiotemporal Patterns, Drivers, and Projections
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Runoff Data
2.2.2. Meteorological Data
2.3. Methods
2.3.1. Drought–Flood Abrupt Alternation Index
2.3.2. Linear Regression Method
2.3.3. Principal Component Analysis
3. Results
3.1. Spatiotemporal Characteristics of Future Meteorological Factors
3.1.1. Temporal Characteristics of Future Climate Factors
3.1.2. Spatial Characteristics of Future Climate Factors
3.2. Spatiotemporal Variations of DFAAEs
3.2.1. Temporal Characteristics of Future DFAAEs
3.2.2. Spatial Characteristics of Future DFAAEs
3.3. Mechanisms of Climatic Factors Influencing DFAAEs
4. Discussion
4.1. Worsening DFAA Events in the Future
4.2. The Impact of Climate Change on DFAAEs
4.3. Limitations and Prospects
5. Conclusions
- (1)
- The Heilongjiang River basin is transitioning to a warmer and more humid climate pattern in the future, while maintaining a gradient from a low-pressure zone in the northwest to a high-pressure zone in the southeast. By 2100, annual precipitation under SSP126, SSP370, and SSP585 scenarios will reach 655 mm, 700 mm, and 720 mm, respectively; average temperature will reach 3 °C, 6 °C, and 7 °C, respectively; and evapotranspiration will reach 460 mm, 515 mm, and 521 mm, respectively. Hydrothermal activity will continue to intensify along the Ussuri River, the southeastern Songhua River, and the lower Amur River corridor.
- (2)
- The risk escalation of DFAA is reflected in its frequency and scope of impact, while its average intensity is not significant. Compared to historical periods, the frequency of DFAA under SSP126, SSP370, and SSP585 scenarios increased from 5.9 times per year to 6.6, 7.1, and 7.5 times, respectively, with the affected area expanding from 10.6% to 12.7%, 17.1%, and 19.0%, while the average intensity remained around 1.8–2.0. Hotspots spread from the humid southeast into the basin interior. SSP585 includes the extreme year 2094, which saw eight events, covering 34% of the basin.
- (3)
- Mechanistically, principal component analysis (PCA) shows that PC1 (62.9%) is a precipitation-dominated covariant axis related to evapotranspiration, explaining most of the DFAAI variability, while PC2 (20.3%) is an evapotranspiration-dominated, temperature-modulating axis with a smaller contribution; the combined contribution of both (83.2%) indicates that increased water supply driven by amplified atmospheric demand is the main pathway for future exacerbation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Volume 2, p. 2391. [Google Scholar]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Seneviratne, S.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Change 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, D.; Zhang, J.; Jiang, S.; Xing, S.; Wang, J.; Cheng, Y.; Chen, N. Identification and frequency analysis of drought–flood abrupt alternation events using a daily-scale standardized weighted average of the precipitation index. Front. Environ. Sci. 2023, 11, 1142259. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S. Compound dry and wet extremes lead to an increased risk of rice yield loss. Geophys. Res. Lett. 2023, 50, e2023GL105817. [Google Scholar] [CrossRef]
- Shi, W.; Huang, S.; Liu, D.; Huang, Q.; Han, Z.; Leng, G.; Wang, H.; Liang, H.; Li, P.; Wei, X. Drought-flood abrupt alternation dynamics and their potential driving forces in a changing environment. J. Hydrol. 2021, 597, 126179. [Google Scholar] [CrossRef]
- Brunner, M.I. Floods and droughts: A multivariate perspective. Hydrol. Earth Syst. Sci. 2023, 27, 2479–2497. [Google Scholar] [CrossRef]
- Sun, J.; Li, R.; Zhang, Q.; Trier, S.B.; Ying, Z.; Xu, J. Mesoscale factors contributing to the extreme rainstorm on 20 july 2021 in zhengzhou, china, as revealed by rapid update 4dvar analysis. Mon. Weather Rev. 2023, 151, 2153–2176. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, H.; Sun, T.; Meng, D.; Qin, L.; Yin, J. Improving forecasts of the “21⋅ 7” henan extreme rainfall event using a radar assimilation scheme that considers hydrometeor background error covariance. Mon. Weather Rev. 2024, 152, 1379–1397. [Google Scholar] [CrossRef]
- Huang, J.; Hu, T.; Yasir, M.; Gao, Y.; Chen, C.; Zhu, R.; Wang, X.; Yuan, H.; Yang, J. Root growth dynamics and yield responses of rice (Oryza sativa L.) under drought—Flood abrupt alternating conditions. Environ. Exp. Bot. 2019, 157, 11–25. [Google Scholar] [CrossRef]
- Xiong, Q.Q.; Shen, T.H.; Zhong, L.; Zhu, C.L.; Peng, X.S.; He, X.P.; Fu, J.R.; Ouyang, L.J.; Bian, J.M.; Hu, L.F.; et al. Comprehensive metabolomic, proteomic and physiological analyses of grain yield reduction in rice under abrupt drought–flood alternation stress. Physiol. Plant. 2019, 167, 564–584. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, T.; Wang, Q.; Yuan, H.; Yang, J. Effect of drought–flood abrupt alternation on rice yield and yield components. Crop Sci. 2019, 59, 280–292. [Google Scholar] [CrossRef]
- Deng, S.; Zhao, D.; Chen, Z.; Liu, L.; Zhu, Y.; Wang, K.; Gao, X.; Wu, H.; Zheng, D. Global distribution and projected variations of compound drought-extreme precipitation events. Earth’s Future 2024, 12, e2024EF004809. [Google Scholar] [CrossRef]
- Tan, X.; Wu, X.; Huang, Z.; Fu, J.; Tan, X.; Deng, S.; Liu, Y.; Gan, T.Y.; Liu, B. Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions. Nat. Commun. 2023, 14, 2796. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhao, C.; Tang, Y.; Zhang, Z.; Yang, B.; Wang, Z. Identification, physical mechanisms and impacts of drought–flood abrupt alternation: A review. Front. Earth Sci. 2023, 11, 1203603. [Google Scholar] [CrossRef]
- Fang, B.; Lu, M. Asia faces a growing threat from intraseasonal compound weather whiplash. Earth’s Future 2023, 11, e2022EF003111. [Google Scholar] [CrossRef]
- Rahman, K.U.; Hussain, A.; Ejaz, N.; Shang, S.; Balkhair, K.S.; Khan, K.U.J.; Khan, M.A.; Rehman, N.U. Analysis of production and economic losses of cash crops under variable drought: A case study from punjab province of pakistan. Int. J. Disaster Risk Reduct. 2023, 85, 103507. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Ji, P.; Wu, P.; Sheffield, J.; Otkin, J.A. A global transition to flash droughts under climate change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef]
- Abbas, S.; Ameer, A.; Lv, F.; Li, T.; Chen, Y.; Cao, L.; Lu, H.; Latif, Y.; Yaseen, M.; Lu, S.; et al. Southward to northward shifting trends of monsoonal precipitation and their connections with atmospheric circulations over pakistan: A comparative study of 1961–1990 and 1991–2020. J. Hydrol. 2025, 664, 134440. [Google Scholar] [CrossRef]
- Yue, Q.; Yu, G.; Miao, Y.; Zhou, Y. Analysis of meteorological element variation characteristics in the heilongjiang (amur) river basin. Water 2024, 16, 521. [Google Scholar] [CrossRef]
- Ma, H.; Jing, J.; Dai, C.; Xu, Y.; Qi, P.; Song, H. Spatiotemporal dynamics of drought–flood abrupt alternations and their delayed effects on vegetation growth in heilongjiang river basin. Water 2025, 17, 1419. [Google Scholar] [CrossRef]
- Ren, J.; Wang, W.; Wei, J.; Li, H.; Li, X.; Liu, G.; Chen, Y.; Ye, S. Evolution and prediction of drought-flood abrupt alternation events in huang-huai-hai river basin, China. Sci. Total Environ. 2023, 869, 161707. [Google Scholar] [CrossRef]
- Sun, L.; Yang, X.-Q.; Tao, L.; Fang, J.; Sun, X. Changing impact of enso events on the following summer rainfall in eastern China since the 1950s. J. Clim. 2021, 34, 8105–8123. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, S.; Xia, J.; Zhan, C.; Cai, W.; Wang, W.; Luo, X.; Chen, N.; Li, J. Analysis of drought and flood alternation and its driving factors in the yangtze river basin under climate change. Atmos. Res. 2022, 270, 106087. [Google Scholar] [CrossRef]
- Li, J.; Wang, R.; Huang, Q.; Xia, J.; Wang, P.; Fang, Y.; Shamov, V.V.; Frolova, N.L.; She, D. Climate warming-induced hydrological regime shifts in cold northeast asia: Insights from the heilongjiang-amur river basin. Land 2025, 14, 980. [Google Scholar] [CrossRef]
- Xing, Z.; Li, X.; Mao, D.; Luo, L.; Wang, Z. Heterogeneous responses of wetland vegetation to climate change in the amur river basin characterized by normalized difference vegetation index from 1982 to 2020. Front. Plant Sci. 2023, 14, 1290843. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, B.; Liu, J. Effects of climate and land use change on groundwater depth in sanjiang plain. In Proceedings of the 2017 2nd International Conference on Machinery, Electronics and Control Simulation (MECS 2017); Atlantis Press: Dordrecht, The Netherlands, 2016; pp. 320–326. [Google Scholar]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J. 2016, 15, vzj2016.01.0010. [Google Scholar] [CrossRef]
- Musselman, K.N.; Lehner, F.; Ikeda, K.; Clark, M.P.; Prein, A.F.; Liu, C.; Barlage, M.; Rasmussen, R. Projected increases and shifts in rain-on-snow flood risk over western north america. Nat. Clim. Change 2018, 8, 808–812. [Google Scholar] [CrossRef]
- Tashiro, Y.; Hiyama, T.; Kanamori, H.; Kondo, M. Impact of permafrost degradation on the extreme increase of dissolved iron concentration in the amur river during 1995–1997. Prog. Earth Planet. Sci. 2024, 11, 17. [Google Scholar] [CrossRef]
- Guo, D.; Wang, C.; Zang, S.; Hua, J.; Lv, Z.; Lin, Y. Gap-filling of 8-day terra modis daytime land surface temperature in high-latitude cold region with generalized additive models (gam). Remote Sens. 2021, 13, 3667. [Google Scholar] [CrossRef]
- Qin, J.; Ding, Y.; Shi, F.; Cui, J.; Chang, Y.; Han, T.; Zhao, Q. Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds. Hydrol. Earth Syst. Sci. 2024, 28, 973–987. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Ullah, S.; Chen, C.; Shen, L.; Liu, Z. Substantial increase in abrupt shifts between drought and flood events in china based on observations and model simulations. Sci. Total Environ. 2023, 876, 162822. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, H.; Gan, T.Y.; Zhang, S.; Zhao, J.; Su, X.; Fu, X.; Shi, L.; Xu, P.; Lu, M.; et al. A comprehensive review of recent progress on the drought-flood abrupt alternation. J. Hydrol. 2025, 661, 133806. [Google Scholar] [CrossRef]
- Li, Z.; Yang, H.; Jia, M. Factors affecting the spatiotemporal variation of precipitation in the songhua river basin of china. Water 2024, 16, 2. [Google Scholar] [CrossRef]
- Nikitina, O.I.; Bazarov, K.Y.; Egidarev, E.G. Application of remote sensing data for measuring freshwater ecosystems changes below the zeya dam in the russian far east. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 49–53. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Zhang, Q.; Cheng, J.; Li, J.; Zhang, D.; Liu, Y. Projection of drought-flood abrupt alternation in a humid subtropical region under changing climate. J. Hydrol. 2023, 624, 129875. [Google Scholar] [CrossRef]
- Wei, Y.; Li, H.; Zhou, Y.; Commey, N.A.; Jin, J.; Zhou, P. Study on the evolution of regional future drought-flood abrupt alternation events. J. Hydrol. Reg. Stud. 2025, 59, 102459. [Google Scholar] [CrossRef]
- Qiu, J.; He, C.; Liu, X.; Gao, L.; Tan, C.; Wang, X.; Kong, D.; Wigneron, J.-P.; Chen, D.; Xia, J. Projecting dry-wet abrupt alternation across china from the perspective of soil moisture. NPJ Clim. Atmos. Sci. 2024, 7, 269. [Google Scholar] [CrossRef]
- Zheng, S.; Weng, B.; Bi, W.; Yan, D.; Ren, L.; Wang, H. Significant increase and escalation of drought-flood abrupt alteration in china’s future. Agric. Water Manag. 2025, 312, 109449. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, Z.; Liu, B.; Zheng, Z.; Zhang, W.; Liu, Y.; Zhang, F.; Zhang, Q. Northward migration of the east asian summer monsoon northern boundary during the twenty-first century. Sci. Rep. 2022, 12, 10066. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Liu, G.; Liu, Z.; Wang, X. Trends and variability in snowmelt in china under climate change. Hydrol. Earth Syst. Sci. Discuss. 2022, 26, 305–329. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Zhang, X.; Xu, L.; Du, W.; Wu, L.; Wang, D.; Zhang, Y.; Chen, N. Global drought-flood abrupt alternation: Spatio-temporal patterns, drivers, and projections. Innov. Geosci. 2025, 3, 100113-1. [Google Scholar] [CrossRef]
- Weng, X.; Zhu, J.; Wang, D.; Chen, H.; Wang, S.; Qing, Y. Exploring the relationship between drought-flood abrupt alternation and soil erosion over guangdong, china through a convection-permitting model. Geomat. Nat. Hazards Risk 2024, 15, 2383779. [Google Scholar] [CrossRef]
- Burek, P.; Satoh, Y.; Kahil, T.; Tang, T.; Greve, P.; Smilovic, M.; Guillaumot, L.; Wada, Y. Development of the community water model (cwatm v1. 04) a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geosci. Model Dev. Discuss. 2020, 13, 3267–3298. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and nse performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. Mswep: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E. Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S. Unprecedented climate events: Historical changes, aspirational targets, and national commitments. Sci. Adv. 2018, 4, eaao3354. [Google Scholar] [CrossRef] [PubMed]
- Grose, M.R.; Narsey, S.; Delage, F.; Dowdy, A.J.; Bador, M.; Boschat, G.; Chung, C.; Kajtar, J.; Rauniyar, S.; Freund, M.; et al. Insights from cmip6 for australia’s future climate. Earth’s Future 2020, 8, e2019EF001469. [Google Scholar] [CrossRef]








| Model | Modeling Center | Resolution (Lon° × Lat°) |
|---|---|---|
| GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Laboratory (GFDL), USA | 1.00 × 1.00 |
| IPSL-CM6A-LR | Institut Pierre-Simon Laplace (IPSL), France | 2.50 × 1.27 |
| MPI-ESM1-2-HR | Max Planck Institute for Meteorology (MPI-M), Germany | 0.94 × 0.94 |
| MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan | 1.125 × 1.125 |
| UKESM1-0-LL | Met Office Hadley Centre and UK Earth System Model partners, UK | 1.875 × 1.25 |
| No. | DFAAI Range | Class |
|---|---|---|
| 1 | |DFAAI| > 3 | Severe DFAAE |
| 2 | 2 < |DFAAI| < 3 | Moderate DFAAE |
| 3 | 1 < |DFAAI| < 2 | Light DFAAE |
| Change Between SSPs | SSP126 | SSP370 | |
|---|---|---|---|
| Frequency (events/year) | SSP370 | 0.528 | |
| (±0.284) | |||
| SSP585 | 0.795 | 0.267 | |
| (±0.219) * | (±0.139) * | ||
| Intensity | SSP370 | 0.006 | |
| (±0.022 | |||
| SSP585 | 0.001 | −0.005 | |
| (±0.018 | (±0.022) | ||
| Coverage area proportion (%) | SSP370 | 4.384 | |
| (±0.007) * | |||
| SSP585 | 6.252 | 1.868 | |
| (±0.007) * | (±0.005) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Jing, J.; Dai, C.; Qi, P. Drought–Flood Abrupt Alternation in the Heilongjiang River Basin Under Climate Change: Spatiotemporal Patterns, Drivers, and Projections. Water 2025, 17, 3436. https://doi.org/10.3390/w17233436
Huang F, Jing J, Dai C, Qi P. Drought–Flood Abrupt Alternation in the Heilongjiang River Basin Under Climate Change: Spatiotemporal Patterns, Drivers, and Projections. Water. 2025; 17(23):3436. https://doi.org/10.3390/w17233436
Chicago/Turabian StyleHuang, Fengli, Jianyu Jing, Changlei Dai, and Peng Qi. 2025. "Drought–Flood Abrupt Alternation in the Heilongjiang River Basin Under Climate Change: Spatiotemporal Patterns, Drivers, and Projections" Water 17, no. 23: 3436. https://doi.org/10.3390/w17233436
APA StyleHuang, F., Jing, J., Dai, C., & Qi, P. (2025). Drought–Flood Abrupt Alternation in the Heilongjiang River Basin Under Climate Change: Spatiotemporal Patterns, Drivers, and Projections. Water, 17(23), 3436. https://doi.org/10.3390/w17233436
