Gravity Flow System at Sulaimani, Kurdistan Region, Iraq: Groundwater and Isotopic Geochemistry and Their Implications for Groundwater Protection
Abstract
1. Introduction
2. Geology and Hydrogeology
3. Material and Methods
4. Results
4.1. Principal Ions and Trace Elements
4.2. Stable Isotopes
4.3. Tritium
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2003, 10, 18–39. [Google Scholar] [CrossRef]
- Vairavamoorthy, K.; Gorantiwar, S.D.; Pathirana, A. Managing urban water supplies in developing countries: Climate change and water scarcity scenarios. Phys. Chem. Earth 2008, 33, 330–339. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Schneider, J.F.; Merkel, B.J.; Navarro de León, I.; Bernasconi, S.M. Groundwater recharge in a sedimentary basin in semi-arid Mexico. Hydrogeol. J. 2004, 12, 511–530. [Google Scholar] [CrossRef]
- Batlle-Aguilar, J.; Banks, E.W.; Batelaan, O.; Kipfer, R.; Brennwald, M.S.; Cook, P.G. Groundwater residence time and aquifer recharge in multilayered, semi-confined, and faulted aquifer systems using environmental tracers. J. Hydrol. 2017, 546, 150–165. [Google Scholar] [CrossRef]
- Cook, P.G.; Böhlke, J.K. Determining timescales for groundwater flow and solute transport. In Environmental Tracers in Subsurface Hydrology; Springer: Boston, MA, USA, 2000; pp. 1–30. [Google Scholar]
- Cook, P. Introduction to Isotopes and Environmental Tracers as Indicators of Groundwater Flow; The Groundwater Project: Guelph, ON, Canada, 2022; p. 79. Available online: https://gw-project.org/books/introduction-to-isotopes-and-environmental-tracers-as-indicators-of-groundwater-flow/ (accessed on 1 August 2025).
- Kpegli, K.A.R.; Alassane, A.; van der Zee, S.E.; Boukari, M.; Mama, D. Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. J. Hydrol. Reg. Stud. 2018, 18, 50–67. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Zhang, G.; Zhu, H.; Wang, J.; Guo, Y. Hydrochemical and isotope (18O, 2H, and 3H) characteristics of karst water in central Shandong Province: A case study of the Pingyi–Feixian Region. Minerals 2022, 12, 154. [Google Scholar] [CrossRef]
- De Carvalho Gomes, F.; Godoy, J.M.; de Carvalho, Z.L.; de Souza, E.M.; Silva, J.I.R.; Lopes, R.T. Tritium (3H) as a tracer for monitoring the dispersion of conservative radionuclides discharged by the Angra dos Reis nuclear power plants in the Piraquara de Fora Bay, Brazil. J. Environ. Radioact. 2014, 136, 169–173. [Google Scholar] [CrossRef]
- Cejudo, E.; Ortega-Almazán, P.J.; Ortega-Camacho, D.; Acosta-González, G. Hydrochemistry and water isotopes of a deep sinkhole in north Quintana Roo, Mexico. J. S. Am. Earth Sci. 2022, 116, 103846. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Neves, M.A.; Caxito, F.A.; Moreira, R.M. 18O, 2H, and 3H isotopic data for understanding groundwater recharge and circulation systems in crystalline rock terrain of southeastern Brazil. J. S. Am. Earth Sci. 2022, 116, 103794. [Google Scholar] [CrossRef]
- Sukhija, B.S.; Reddy, D.V.; Nagabhushanam, P.; Bhattacharya, S.K.; Jani, R.A.; Kumar, D. Characterisation of recharge processes and groundwater flow mechanisms in weathered–fractured granites of Hyderabad (India) using isotopes. Hydrogeol. J. 2006, 14, 663–674. [Google Scholar] [CrossRef]
- Tweed, S.O.; Weaver, T.R.; Cartwright, I. Distinguishing groundwater flow paths in different fractured-rock aquifers using groundwater chemistry: Dandenong Ranges, southeast Australia. Hydrogeol. J. 2005, 13, 771–786. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- West, A.G.; February, E.C.; Bowen, G.J. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in groundwater and tap water across South Africa. J. G eochem. Explor. 2014, 145, 213–222. [Google Scholar] [CrossRef]
- Klein, E.S.; Baltensperger, A.P.; Welker, J.M. Complexity of Arctic Ocean water isotope (δ18O, δ2H) spatial and temporal patterns revealed with machine learning. Elem. Sci. Anthr. 2024, 12, 00127. [Google Scholar] [CrossRef]
- Salameh, E. Using environmental isotopes in the study of the recharge–discharge mechanisms of the Yarmouk catchment area in Jordan. Hydrogeol. J. 2004, 12, 451–463. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Lian, J.; Fu, Z.; Nie, Y. Seasonal recharge of spring and stream waters in a karst catchment revealed by isotopic and hydrochemical analyses. J. Hydrol. 2020, 591, 125595. [Google Scholar] [CrossRef]
- Mahmmud, R.; Sracek, O.; Mustafa, O.; Čejková, B.; Jačková, I.; Vondrovicová, L. Groundwater geochemistry evolution and geogenic contaminants in the Sulaimani–Warmawa Sub-basin, Sulaimani, Kurdistan Region, Iraq. Environ. Monit. Assess. 2022, 194, 352. [Google Scholar] [CrossRef]
- Clark, I. Groundwater, Geochemistry and Isotopes; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2015; p. 438. [Google Scholar]
- Kendall, C.; McDonnell, J.J. (Eds.) Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1998; 839p. [Google Scholar]
- Son, J.K.; Kim, H.G.; Kong, T.Y.; Ko, J.H.; Lee, G.J. Radiological effluents released and public doses from nuclear power plants in Korea. Radiat. Prot. Dosim. 2013, 155, 517–521. [Google Scholar] [CrossRef]
- Yang, D.J.; Chen, X.Q.; Li, B. Tritium release during nuclear power operation in China. J. Radiol. Prot. 2012, 32, 167. [Google Scholar] [CrossRef]
- Stevanović, Z.; Marković, M. Hydrogeology of Northern Iraq, Vol. 2: General Hydrogeology and Aquifer Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; p. 264. [Google Scholar]
- Stevanović, Z.; Marković, M. Hydrogeology of Northern Iraq, Climate, Hydrology, Geomorphology, Geology, Vol. 1; Field Documents; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Karim, K.H.; Ali, S.S. Origin of dislocated limestone blocks on the slope side of Baranan (Zirgoez) Homocline: An attempt to outlook the development of western part of Sharazoor Plain. Al-Kindy J. Geosci. 2004, 3, 5–20. [Google Scholar]
- Omar, A.A.; Lawa, F.A.; Sulaiman, S.H. Tectonostratigraphic and structural imprints from balanced sections across the north-western Zagros fold–thrust belt, Kurdistan Region, NE Iraq. Arab. J. Geosci. 2015, 8, 8107–8129. [Google Scholar] [CrossRef]
- Sissakian, V.K.; Fouad, S.F. Geological map of Iraq, scale 1:1,000,000, 2012. Iraqi Bull. Geol. Min. 2015, 11, 9–16. [Google Scholar]
- Kareem, A.; Mustafa, O.; Merkel, B. Geochemical and environmental investigation of the water resources of the Tanjero area, Kurdistan Region, Iraq. Arab. J. Geosci. 2018, 11, 461. [Google Scholar] [CrossRef]
- Mustafa, O. Impact of Sewage Wastewater on the Environment of Tanjero River and Its Basin with Sulaimani City, NE-Iraq. Master’s Thesis, University of Sulaimani, Sulaimani, Iraq, 2006. [Google Scholar]
- Ali, S.S. Geology and Hydrogeology of Sharazoor-Piramagroon Basin in Sulaimani Area, Northeastern Iraq. Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 2007; p. 317. [Google Scholar]
- Hamamin, D.F.; Qadir, R.A.; Ali, S.S.; Bosch, A.P. Hazard and risk intensity maps for water-bearing units: A case study. Int. J. Environ. Sci. Technol. 2018, 15, 173–184. [Google Scholar] [CrossRef]
- Studio Galli Ingegneria (SGI). Hydrogeological Study for the Governorate of Around the Center of the City, Final Report; Studio Galli Ingegneria: Kurdistan Region, Iraq, 2011; p. 200. [Google Scholar]
- Mustafa, O.; Merkel, B. Classification of karst springs based on discharge and water chemistry in Makook karst system, Kurdistan Region, Iraq. Freiberg Online Geosci. 2015, 39, 1–24. [Google Scholar]
- Qaradaghy, R.A.Q. Vulnerability and Risk Intensity Maps of Groundwater Aquifers in Sulaymaniah Sub-Basin, Iraqi Kurdistan Region. Master’s Thesis, University of Sulaimani, Sulaimani, Iraq, 2015; p. 136. [Google Scholar]
- Directorate of Groundwater of Sulaimani (DoGWS). Ministry of Agriculture and Water Resources, Kurdistan Regional Government, Kurdistan Region, Iraq; 2020. Available online: https://gov.krd/moawr (accessed on 1 May 2020).
- Jurgens, B.C.; Böhlke, J.K.; Eberts, S.M. TracerLPM (Version 1): An Excel® Workbook for Interpreting Groundwater Age Distributions from Environmental Tracer Data; 4-F3; U.S. Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Hinkle, S.R.; Shapiro, S.D.; Plummer, L.N.; Eurybiades, B.; Widman, P.K.; Casile, G.C.; Wayland, J.E. Estimates of Tracer-Based Piston-Flow Ages of Groundwater from Selected Sites—National Water-Quality Assessment Program, 1992–2005; Scientific Investigations Report 2010-5229; U.S. Geological Survey: Reston, VA, USA, 2010; p. 90. [Google Scholar]
- Al-Charideh, A.R. Environmental isotope study of groundwater discharge from the large karst springs in west Syria. Environ. Earth Sci. 2011, 63, 161–182. [Google Scholar] [CrossRef]
- Mazor, E. Chemical and Isotopic Groundwater Hydrology; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Mook, W.G. Environmental Isotopes in the Hydrological Cycle: Principles and Applications. Vol. 1: Introduction: Theory, Methods, Review; International Hydrological Programme IHP-V: Paris, France, 2001; pp. 1–165. [Google Scholar]
- Mohammadzadeh, H.; Eskandari Mayvan, J.; Heydarizad, M. The effects of moisture sources and local parameters on the 18O and 2H contents of precipitation in the west of Iran and the east of Iraq. Tellus B Chem. Phys. Meteorol. 2020, 72, 1–15. [Google Scholar] [CrossRef]
- Gat, J.R.; Carmi, I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J. Geophys. Res. 1970, 75, 3039–3048. [Google Scholar] [CrossRef]
- Osati, K.; Koeniger, P.; Salajegheh, A.; Mahdavi, M.; Chapi, K.; Malekian, A. Spatiotemporal patterns of stable isotopes and hydrochemistry in springs and river flow of the upper Karkheh River Basin, Iran. Isot. Environ. Health Stud. 2014, 50, 169–183. [Google Scholar] [CrossRef]
- Mustafa, O.; Merkel, B.; Weise, S. Assessment of hydrogeochemistry and environmental isotopes in karst springs of Makook Anticline, Kurdistan Region, Iraq. Hydrology 2015, 2, 48–68. [Google Scholar] [CrossRef]
- Guglielmi, Y.; Vengeon, J.; Bertrand, C.; Mudry, J.; Follacci, J.; Giraud, A. Hydrogeochemistry: An investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapière and Séchilienne alpine landslides). Bull. Eng. Geol. Environ. 2002, 61, 311–324. [Google Scholar] [CrossRef]
- Terzer-Wassmuth, S.; Araguás-Araguás, L.J.; Copia, L.; Wassenaar, L.I. High spatial resolution prediction of tritium (3H) in contemporary global precipitation. Sci. Rep. 2022, 12, 10271. [Google Scholar] [CrossRef] [PubMed]
- Motzer, W. Tritium age dating of groundwater. Hydrovisions 2007, 16, 236. [Google Scholar]
- Lindsey, B.D.; Jurgens, B.C.; Belitz, K. Tritium as an Indicator of Modern, Mixed, and Premodern Groundwater Age; U.S. Geological Survey: Reston, VA, USA, 2019; pp. 2019–5090. [Google Scholar]
- Kashiwaya, K.; Muto, Y.; Kubo, T.; Ikawa, R.; Nakaya, S.; Koike, K.; Marui, A. Spatial variations of tritium concentrations in groundwater collected in the southern coastal region of Fukushima, Japan, after the nuclear accident. Sci. Rep. 2017, 7, 12578. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.D.; Plummer, N.; Busenberg, E.; Widman, P.K.; Casile, G.C.; Wayland, J.E.; Runkle, D.L. Estimates of Tracer-Based Piston-Flow Ages of Groundwater from Selected Sites: National Water-Quality Assessment Program, 2006–2010; U.S. Geological Survey: Reston, VA, USA, 2012; pp. 2012–5141. [Google Scholar]
- Hamamin, D.F.; Ali, S.S. Hydrodynamic study of karstic and intergranular aquifers using isotope geochemistry in Basara Basin, Sulaimani, northeastern Iraq. Arab. J. Geosci. 2013, 6, 2933–2940. [Google Scholar] [CrossRef]
- Abdullah, T.; Ali, S.; Al-Ansari, N.; Knutsson, S. Possibility of groundwater pollution in Halabja Saidsadiq hydrogeological basin, Iraq, using modified DRASTIC model based on AHP and tritium isotopes. Geosciences 2018, 8, 236. [Google Scholar] [CrossRef]
- Morgenstern, U.; Daughney, C.J.; Leonard, G.; Gordon, D.; Donath, F.M.; Reeves, R. Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 803–822. [Google Scholar] [CrossRef]
- Telloli, C.; Rizzo, A.; Salvi, S.; Pozzobon, A.; Marrocchino, E.; Vaccaro, C. Characterization of groundwater recharge through tritium measurements. Adv. Geosci. 2022, 57, 21–36. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology, 2nd ed.; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Scanlon, B.R.; Mace, R.E.; Barrett, M.E.; Smith, B. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards Aquifer, USA. J. Hydrol. 2003, 276, 137–158. [Google Scholar] [CrossRef]
- Hamani, A.H.H.; Adamou, M.M.; Sandao, I.; Hado, H.A. Physico-chemical and isotopic (18O, 2H, and 3H) characterization of the Upper Dallol Maouri Watershed (Niger). Open J. Geol. 2022, 12, 613–639. [Google Scholar] [CrossRef]









| Age | Geological Units | Lithological Description | Aquifer Type |
|---|---|---|---|
| Quaternary | Quaternary deposits | Alluvial fans and flood plain sediments: gravel, sand, silt, mud, sandy, and silty clay soil | Quaternary intergranular aquifer (QIA) |
| Tertiary | Pila Spi | Cyclic deposits of claystone, marl, gypsum, and sandstone with occasional limestone | Karstic-fissured aquifer (KFA) |
| Gercus | Alteration of red claystone, marl, gypsum and sandstone few limestone | Aquiclude | |
| Sinjar | Well-bedded limestone, dolomite, marly limestone, and sandstone | Karstic-fissured aquifer (KFA) | |
| Kolosh | Dark grey claystone, shale, and siltstone with rare conglomerate | Aquiclude | |
| Late Cretaceous | Tanjero | Silty marl, siltstone, shale, sandstone, conglomerate, and sandy or silty organic detrital limestone | Tanjero aquifer (TA) |
| Shiranish | Bluish-grey marl and marly limestone | Aquiclude | |
| Lower Cretaceous | Qamchuqa | Grey massive dolomites and dolomitic limestone | Karstic-fissured aquifer (KFA) |
| Kometan | White-weathered, light grey, thin-bedded, and locally silicified limestone | Kometan aquifer (KA) | |
| Balambo | Thin well bedded radiolarian limestone | Karstic-fissured aquifer (KFA) |
| Aquifer/Rock Unit | Quaternary | Tanjero | Kometan | Qamchuqa | Pila Spi |
|---|---|---|---|---|---|
| Aquifer Type | QIA | TA | KA | KFA | KFA |
| Depth of the aquifer (m) | 0–60 | 0–210 | 20–155 | 155–400 | 10–150 |
| Thickness of the aquifer, (m) | 5–50 | 60–240 | 100–125 | 40–80 | 30–100 |
| Specific Capacity (m2/s) | 4 × 10−4 | 4 × 10−5 | 3 × 10−3 | 1.5 × 10−4 | 2.5 × 10−4 |
| Transmissivity (m2/s) | 2.5 × 10−4 | 8.4 × 10−5 | 1.9 × 10−3 | 1.4 × 10−4 | 1.4 × 10−4 |
| Hydraulic Conductivity (m/s) | 8.2 × 10−6 | 1.1 × 10−6 | 2.3 × 10−5 | 1.7 × 10−6 | 6.2 × 10−6 |
| Surface extension (km2) | 577 | 417 | 100 | 50 | 40 |
| Effective Recharge (%) | 14 | 12 | 31 | 31 | 27 |
| Min. and Max. Discharge (L/s) | 1.5–5 | 0.5–3 | 6–16 | 4–12 | 5–14 |
| Type of flow | Diffuse | Diffuse | Conduit | Diffuse–Conduit | Diffuse–Conduit |
| Parameter | Unit | dL | WS06 | WS08 | WS09 | WS10 | WS12 | WS15 | WS18 | WS21 | WS25 | WS26 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Well depth | m | 53 | 170 | 24 | 85 | 171 | 130 | 71 | 125 | 66 | 108 | |
| Hydraulic head | m | 750.6 | 579.3 | 580.5 | 588 | 608 | 533.3 | 720 | 823.7 | 512.2 | 712.7 | |
| pH | 7.52 | 8.02 | 7.29 | 7.85 | 7.89 | 7.67 | 7.88 | 7.37 | 7.46 | 7.53 | ||
| Temperature | C | 22.8 | 22 | 23 | 19.7 | 24.7 | 17.6 | 23 | 24 | 19 | 23.5 | |
| EC | 781 | 706 | 827 | 660 | 422 | 555 | 983 | 974 | 1123 | 1217 | ||
| Alkalinity as HCO3 | mg/L | 342 | 377 | 334 | 290 | 204 | 325 | 418 | 314 | 345 | 307 | |
| sp.0.05M HCl | 2.24 | 2.47 | 2.19 | 1.9 | 1.34 | 2.13 | 2.74 | 2.06 | 2.26 | 2.01 | ||
| Ca | <0.001 | 109 | 83.3 | 94.5 | 67.2 | 52.2 | 56.5 | 104 | 130 | 159 | 174 | |
| K | <0.05 | 0.74 | 2.62 | 3.66 | 0.81 | 0.39 | 1.02 | 0.87 | 0.46 | 0.86 | 1.79 | |
| Mg | <0.001 | 19.6 | 28.7 | 19.1 | 19.5 | 12.6 | 11.6 | 39.9 | 23.3 | 20.3 | 30.9 | |
| Na | <0.05 | 10.8 | 6.76 | 45.8 | 28.0 | 4.34 | 38.3 | 42.1 | 16.8 | 9.19 | 10.5 | |
| Cl | <0.1 | 40.3 | 11.5 | 64.7 | 22.9 | 5.36 | 8.93 | 51.4 | 35.4 | 54.1 | 66.8 | |
| SO4 | <0.2 | 44.6 | 27.7 | 73.8 | 34.9 | 15.7 | 14.0 | 81.7 | 184 | 53.0 | 161 | |
| NO3 | <0.2 | 28.5 | 23.9 | 1.63 | 37.0 | 27.9 | 1.79 | 23.1 | 35.4 | 160 | 207 | |
| F | <0.2 | 0.57 | 0.37 | <1 | 0.63 | 0.33 | 0.63 | <1 | <1 | 0.39 | <1 | |
| Al | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | |
| PO4 | <0.4 | <0.8 | <0.8 | <2 | <0.8 | <0.4 | <0.8 | <2 | <2 | <0.8 | <2 | |
| Br | <0.2 | <0.4 | <0.4 | <1 | <0.4 | <0.2 | <0.4 | <1 | <1 | <0.4 | <1 | |
| Mn | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | 0.005 | <0.001 | 0.005 | <0.001 | |
| Fe | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | |
| Li | Y (μg/L) | 5.34 | 7.39 | 4.80 | 6.80 | 3.89 | 13.20 | 8.26 | 4.69 | 9.06 | 6.85 | |
| Cr | 4.26 | 7.29 | 2.29 | 2.32 | 2.41 | 1.86 | 3.31 | 2.89 | 3.64 | 4.55 | ||
| Mn | 1.08 | 2.39 | 3.47 | 0.91 | 0.39 | 13.39 | 4.43 | 2.02 | 6.22 | 2.04 | ||
| As | 0.65 | 0.47 | 1.03 | 0.46 | 0.41 | 0.48 | 0.56 | 0.43 | 0.69 | 0.35 | ||
| Co | 0.33 | 0.15 | 0.50 | 0.11 | 0.10 | 0.27 | 0.22 | 0.25 | 0.39 | 0.27 | ||
| Ni | 2.86 | 1.27 | 3.01 | 0.83 | 1.71 | 1.12 | 2.91 | 1.56 | 3.37 | 2.88 | ||
| Cu | 1.92 | 0.69 | 4.11 | 4.95 | 17.45 | 2.09 | 0.83 | 0.89 | 19.57 | 0.89 | ||
| Zn | 17.69 | 62.48 | 70.02 | 372.73 | 120.41 | 16.24 | 215.42 | 15.80 | 57.35 | 15.13 | ||
| Rb | 0.27 | 0.46 | 0.87 | 0.54 | 0.46 | 1.43 | 1.77 | 0.57 | 0.40 | 1.08 | ||
| Sr | 763.47 | 931.89 | 788.72 | 1118.18 | 617.27 | 3447.96 | 1727.37 | 1643.19 | 1034.42 | 839.40 | ||
| Cd | 0.06 | 0.06 | 0.06 | 0.06 | 0.05 | 0.06 | 0.06 | 0.05 | 0.07 | 0.04 | ||
| Ba | 72.37 | 100.67 | 112.99 | 52.03 | 32.47 | 654.52 | 78.15 | 74.71 | 142.41 | 78.58 | ||
| Ce | 0.01 | 0.12 | 0.01 | 0.04 | 0.02 | 0.12 | 0.01 | 0.01 | 0.10 | 0.02 | ||
| Pb | 0.88 | 0.55 | 0.81 | 0.63 | 0.90 | 2.10 | 0.11 | 0.26 | 1.75 | 0.28 | ||
| U | 0.84 | 1.07 | 0.70 | 1.32 | 0.73 | 0.22 | 1.98 | 1.27 | 1.93 | 1.18 | ||
| Sc | 3.79 | 3.72 | 3.44 | 3.46 | 3.24 | 3.02 | 3.99 | 3.52 | 3.66 | 3.60 | ||
| Y | 0.02 | 0.08 | 0.02 | 0.02 | 0.01 | 0.09 | 0.03 | 0.03 | 0.12 | 0.02 | ||
| Sn | 0.03 | 0.07 | 0.05 | 0.04 | 0.03 | 0.04 | 0.03 | 0.04 | 0.24 | 0.03 | ||
| Sb | 4.40 | 1.10 | 6.97 | 5.95 | 2.98 | 1.04 | 1.15 | 12.11 | 1.80 | 1.51 | ||
| Cs | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.06 | 0.02 | 0.03 | 0.01 | 0.01 | ||
| La | 0.01 | 0.08 | 0.01 | 0.02 | 0.01 | 0.09 | 0.01 | 0.01 | 0.06 | 0.02 | ||
| Th | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| Samples | δ2H (‰) | δ18O (‰) | Deuterium Excess |
|---|---|---|---|
| WS06 | −26.2 | −5.4 | 17.1 |
| WS08 | −24.0 | −4.9 | 15.6 |
| WS09 | −24.4 | −4.6 | 12.6 |
| WS10 | −27.0 | −5.0 | 13.4 |
| WS12 | −27.5 | −5.1 | 12.9 |
| WS16 | −38.2 | −6.7 | 15.2 |
| WS18 | −30.2 | −5.5 | 13.6 |
| WS21 | −30.7 | −5.4 | 12.6 |
| WS25 | −24.0 | −4.5 | 11.6 |
| WS26 | −27.4 | −5.6 | 17.7 |
| No. | Samples | pH | EC_µS/cm | Activity TU | Minimum Age (Years) | Aquifer Type |
|---|---|---|---|---|---|---|
| 1 | WS01 | 7.5 | 350 | 3.5 | 13.1 | Tanjero Aquifer |
| 2 | WS03 | 6.3 | 560 | 4.1 | 10.2 | Tanjero Aquifer |
| 3 | WS04 | 8 | 550 | 3.9 | 11.1 | Tanjero Aquifer |
| 4 | WS05 | 7.8 | 340 | 2.6 | 18.3 | Tanjero Aquifer |
| 5 | WS12 | 8.3 | 350 | 3.2 | 14.7 | Quaternary Intergranular Aquifer |
| 6 | WS13 | 7.9 | 440 | 2.7 | 17.7 | Karstic-Fissured Aquifer |
| 7 | WS14 | 8.4 | 2980 | ≤0.8 | 40.5 | Quaternary Intergranular Aquifer |
| 8 | WS15 | 7.5 | 370 | 3.2 | 14.7 | Quaternary Intergranular Aquifer |
| 9 | WS18 | 7.8 | 990 | 3.4 | 13.6 | Tanjero Aquifer |
| 10 | WS19 | 7.4 | 650 | 4.3 | 9.4 | Tanjero Aquifer |
| 11 | WS22 | 7.4 | 890 | 4.9 | 7.0 | Tanjero Aquifer |
| 12 | WS23 | 6.03 | 490 | 1.7 | 25.9 | Tanjero Aquifer |
| 13 | WS24 | 8.5 | 870 | 0.7 | 41.7 | Aquitard |
| 14 | Rainfall | N/A | N/A | 7.3 | 0 | N/A |
| 15 | Tanjero River | 5.4 | 540 | 4.4 | 9.0 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmmud, R.; Sracek, O.; Mustafa, O.; Mansurbeg, H.; Čejková, B.; Jačková, I. Gravity Flow System at Sulaimani, Kurdistan Region, Iraq: Groundwater and Isotopic Geochemistry and Their Implications for Groundwater Protection. Water 2025, 17, 3366. https://doi.org/10.3390/w17233366
Mahmmud R, Sracek O, Mustafa O, Mansurbeg H, Čejková B, Jačková I. Gravity Flow System at Sulaimani, Kurdistan Region, Iraq: Groundwater and Isotopic Geochemistry and Their Implications for Groundwater Protection. Water. 2025; 17(23):3366. https://doi.org/10.3390/w17233366
Chicago/Turabian StyleMahmmud, Rebar, Ondra Sracek, Omed Mustafa, Howri Mansurbeg, Bohuslava Čejková, and Ivana Jačková. 2025. "Gravity Flow System at Sulaimani, Kurdistan Region, Iraq: Groundwater and Isotopic Geochemistry and Their Implications for Groundwater Protection" Water 17, no. 23: 3366. https://doi.org/10.3390/w17233366
APA StyleMahmmud, R., Sracek, O., Mustafa, O., Mansurbeg, H., Čejková, B., & Jačková, I. (2025). Gravity Flow System at Sulaimani, Kurdistan Region, Iraq: Groundwater and Isotopic Geochemistry and Their Implications for Groundwater Protection. Water, 17(23), 3366. https://doi.org/10.3390/w17233366

