Surface Soil Moisture Retrieval over Winter Wheat Fields Based on Fused Multispectral and L-Band MiniSAR Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.2.1. Soil Sampling and Preprocessing
2.2.2. UAV Data and Preprocessing
2.2.3. Sentinel-2 Data and Preprocessing
2.3. Modeling Process and Methods
2.3.1. Scale Conversion and Data Fusion
2.3.2. Modified Water Cloud Model
2.3.3. Construction of SSM Retrieval Model
3. Results
3.1. SSM Data Analysis
3.2. Comparison Between the Original and Modified Water Cloud Model
3.3. SSM Retrieval Modeling Using Sentinel-2 Data
3.4. SSM Retrieval Modeling Using Fused Multispectral Data
3.5. Overall Evaluation
4. Discussion
5. Conclusions
- (1)
- By comparing the SSM retrieval results from two data sources across three machine learning models, it was found that models built with fused data consistently outperformed those based on Sentinel-2 satellite data. For both fused and Sentinel-2 data, the XGBoost model performed best, followed by RF, while ELM showed the lowest accuracy.
- (2)
- At 0–10 cm, the optimal retrieval configuration was the fused data with VV combined with the RF model, achieving an R2 of 0.85, an RMSE of 1.51%, and an MAE of 0.95%. At 0–20 cm, the best combination was fused data with VV and the XGBoost model, with an R2 of 0.67, an RMSE of 2.61%, and an MAE of 1.98%.
- (3)
- The ELM model exhibited the largest accuracy improvement from fused data at both depths. At 0–10 cm under VV, R2 increased by 0.40, RMSE decreased by 2.45%, and MAE decreased by 1.28%. At 0–20 cm under HV, R2 increased by 0.21, RMSE decreased by 18.24%, and MAE decreased by 5.90%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| UAV | Unmanned Aerial Vehicle |
| SSM | Surface Soil Moisture |
| VWC | Vegetation Water Content |
| WCM | Water Cloud Model |
| RF | Random Forest |
| XGBoost | Extreme Gradient Boosting |
| ELM | Extreme Learning Machine |
References
- Vereecken, H.; Huisman, J.A.; Hendricks Franssen, H.J.; Brüggemann, N.; Bogena, H.R.; Kollet, S. Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resour. Res. 2015, 51, 2616–2633. [Google Scholar] [CrossRef]
- Miralles, D.G.; Teuling, A.J.; Heerwaarden, C.; De Arellano, J.V. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Jiang, J.; Hu, D.; Li, Y.; Tang, X.; Li, J. Research of soil moisture retrieval model of wheat covered surface based on MIMICS model. J. Triticeae Crop. 2015, 35, 707–713. [Google Scholar]
- Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment scale soil moisture spatial–temporal variability. J. Hydrol. 2012, 422–423, 63–75. [Google Scholar] [CrossRef]
- Zribi, M.; Chahbi, A.; Shabou, M.; Lili-Chabaane, Z.; Duchemin, B.; Baghdadi, N.; Amri, R.; Chehbouni, A. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation. Hydrol. Earth Syst. Sci. 2011, 15, 345–358. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.T.; Tobin, K.J.; Cosh, M.H.; Bosch, D.D.; Starks, P.J.; Seyfried, M.; Collins, C.H. Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation. Remote Sens. Environ. 2020, 242, 111756. [Google Scholar] [CrossRef]
- Wang, L.L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Adab, H.; Morbidelli, R.; Saltalippi, C.; Moradian, M.; Ghalhari, G.A.F. Machine Learning to Estimate Surface Soil Moisture from Remote Sensing Data. Water 2020, 12, 3223. [Google Scholar] [CrossRef]
- Sekertekin, A.; Marangoz, A.M.; Abdikan, S. ALOS-2 and Sentinel-1 SAR data sensitivity analysis to surface soil moisture over bare and vegetated agricultural fields. Comput. Electron. Agric. 2020, 171, 105303. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, L.; He, C.; Zhu, Y. Estimating Regional Soil Moisture Distribution Based on NDVI and Land Surface Temperature Time Series Data in the Upstream of the Heihe River Watershed, Northwest China. Remote Sens. 2020, 12, 2414. [Google Scholar] [CrossRef]
- Soliman, A.; Heck, R.J.; Brenning, A.; Brown, R.; Miller, S. Remote Sensing of Soil Moisture in Vineyards Using Airborne and Ground-Based Thermal Inertia Data. Remote Sens. 2013, 5, 3729–3748. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.L.; Chen, W.Q.; Yang, A.X. Microwave modeling of soil moisture in oasis regional scale based on sentinel-1 radar images. J. Infrared Millim. Waves 2017, 36, 120–126. [Google Scholar]
- He, B.; Xing, M.; Bai, X. A Synergistic Methodology for Soil Moisture Estimation in an Alpine Prairie Using Radar and Optical Satellite Data. Remote Sens. 2014, 6, 10966–10985. [Google Scholar] [CrossRef]
- Temimi, M.; Leconte, R.; Chaouch, N.; Sukumal, P.; Khanbilvardi, R.; Brissette, F. A combination of remote sensing data and topographic attributes for the spatial and temporal monitoring of soil wetness. J. Hydrol. 2010, 388, 28–40. [Google Scholar] [CrossRef]
- Attarzadeh, R.; Amini, J.; Notarnicola, C.; Greifeneder, F. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale. Remote Sens. 2018, 10, 1285. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef]
- Esmaeili Sarteshnizi, R.; Sahebi Vayghan, S.; Jazirian, I. Estimation of soil moisture using sentinel-1 and sentinel-2 images. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, X-4/W1-2022, 137. [Google Scholar] [CrossRef]
- Benninga, H.-J.F.; van der Velde, R.; Su, Z. Soil moisture content retrieval over meadows from Sentinel-1 and Sentinel-2 data using physically based scattering models. Remote Sens. Environ. 2022, 280, 113191. [Google Scholar] [CrossRef]
- Lu, F.; Sun, Y.; Hou, F. Using UAV Visible Images to Estimate the Soil Moisture of Steppe. Water 2020, 12, 2334. [Google Scholar] [CrossRef]
- Zhang, C.; Hou, J.; Wang, R.; Jiang, M.; Zhu, X. Soil Moisture Inversion for Winter Wheat Field Based on UAV Multispectral and Thermal Infrared Data. J. Zhengzhou Univ. Eng. Sci. (China) 2024, 45, 111–118. [Google Scholar] [CrossRef]
- Shokati, H.; Mashal, M.; Noroozi, A.; Abkar, A.A.; Mirzaei, S.; Mohammadi-Doqozloo, Z.; Taghizadeh-Mehrjardi, R.; Khosravani, P.; Nabiollahi, K.; Scholten, T. Random Forest-Based Soil Moisture Estimation Using Sentinel-2, Landsat-8/9, and UAV-Based Hyperspectral Data. Remote Sens. 2024, 16, 1962. [Google Scholar] [CrossRef]
- Walker, J.P.; Houser, P.R. Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution. Adv. Water Resour. 2004, 27, 785–801. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]
- Wang, S.G.; Ma, C.F.; Zhao, Z.; Wei, L. Estimation of Soil Moisture of Agriculture Field in the Middle Reaches of the Heihe River Basin based on Sentinel-1 and Landsat 8 Imagery. Remote Sens. Technol. Appl. 2020, 35, 13–22. [Google Scholar]
- Li, Y.; Zhang, C.C.; Luo, W.R. Study on inverting soil moisture of summer corn jointing stage with improved water-cloud model. Water Resour. Hydropower Eng. 2019, 50, 212–218. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Tramblay, Y.; Quintana Seguí, P. Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme. Nat. Hazards Earth Syst. Sci. 2022, 22, 1325–1334. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Song, T.; Yan, Q.; Fan, C.; Meng, J.; Wu, Y.; Zhang, J. Significant Wave Height Retrieval Using XGBoost from Polarimetric Gaofen-3 SAR and Feature Importance Analysis. Remote Sens. 2023, 15, 149. [Google Scholar] [CrossRef]
- Xiao, D.; Vu, Q.H.; Le, B.T. Salt content in saline-alkali soil detection using visible-near infrared spectroscopy and a 2D deep learning. Microchem. J. 2021, 165, 106182. [Google Scholar] [CrossRef]
- Barzegar, R.; Moghaddam, A.A.; Deo, R.; Fijani, E.; Tziritis, E. Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Sci. Total Environ. 2018, 621, 697–712. [Google Scholar] [CrossRef]
- Yin, C.S.; Liu, Q.M.; Wang, C.J.; Wang, F.Q. Inversion of soil moisture by surface spectral measurement combined with active microwave remote sensing. Southwest China J. Agric. Sci. 2022, 35, 2595–2602. [Google Scholar]
- Li, H.; Zhong, Y.; Feng, Y.; Lin, Z.; Zhu, S. Multi-vegetation index soil moisture inversion model based on UAV remote sensing. J. Sel. Topics Appl. Earth Observ. Remote Sens 2024, 44, 207–214. [Google Scholar]
- Zhang, L.; Meng, Q.; Yao, S.; Wang, Q.; Zeng, J.; Zhao, S.; Ma, J. Soil Moisture Retrieval from the Chinese GF-3 Satellite and Optical Data over Agricultural Fields. Sensors 2018, 18, 2675. [Google Scholar] [CrossRef]
- Ouaadi, N.; Ezzahar, J.; Jarlan, L.; Khabba, S.; Frison, P.L. Synergy of Sentinel-1 and Sentinel-2 Satellites for Surface Soil Moisture Retrieval Over Wheat Crops in Semi-arid Areas. In Proceedings of the 3rd International Conference on Electronic Engineering and Renewable Energy Systems: ICEERE 2022, Saidia, Morocco, 20–22 May 2022; Lecture Notes in Electrical Engineering. Springer: Singapore, 2023; Volume 954, pp. 613–620. [Google Scholar] [CrossRef]
- Kim, S.b.; Arii, M.; Jackson, T. Modeling L-Band Synthetic Aperture Radar Data Through Dielectric Changes in Soil Moisture and Vegetation Over Shrublands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4753–4762. [Google Scholar] [CrossRef]
- Zeng, X.; Xing, Y.; Shan, W.; Zhang, Y.; Wang, C. Soil water content retrieval based on Sentinel-1A and Landsat 8 image for Bei’an-Heihe Expressway. Chin. J. Eco-Agric. 2017, 25, 118–126. [Google Scholar]
- Acharya, U.; Daigh, A.L.M.; Oduor, P.G. Factors affecting the use of weather station data in predicting surface soil moisture for agricultural applications. Can. J. Soil Sci. 2022, 102, 419–431. [Google Scholar] [CrossRef]
- Jiang, K.; Pan, Z.; Pan, F.; Teuling, A.J.; Han, G.; An, P.; Chen, X.; Wang, J.; Song, Y.; Cheng, L.; et al. Combined influence of soil moisture and atmospheric humidity on land surface temperature under different climatic background. iScience 2023, 2, 106837. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.F.; Zhao, W.; Ding, T.; Yin, G.F. Generation of High-Resolution Surface Soil Moisture over Mountain Areas by Spatially Downscaling Remote Sensing Products Based on Land Surface Temperature–Vegetation Index Feature Space. J. Remote Sens. 2025, 5, 0437. [Google Scholar] [CrossRef]




| Depth | Sample Size | Min | Max | Mean | SD | 95% CI |
|---|---|---|---|---|---|---|
| 0–10 cm | 40 | 19.40 | 33.95 | 26.57 | 3.66 | 25.40~27.75 |
| 0–20 cm | 40 | 22.08 | 35.05 | 27.96 | 3.40 | 26.87~29.04 |
| Depth /cm | WCM | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 | Original | 0.29 | 3.64 | 2.90 | 0.12 | 3.67 | 2.89 | 0.13 | 3.75 | 3.00 | 0.23 | 3.61 | 2.84 |
| Modified | 0.47 | 3.73 | 2.93 | 0.29 | 4.24 | 3.67 | 0.25 | 3.87 | 3.02 | 0.40 | 3.51 | 2.66 | |
| 20 | Original | 0.17 | 3.29 | 2.58 | 0.23 | 3.19 | 2.46 | 0.24 | 3.21 | 2.59 | 0.23 | 3.23 | 2.56 |
| Modified | 0.48 | 3.23 | 2.60 | 0.35 | 3.10 | 2.42 | 0.39 | 3.31 | 2.75 | 0.41 | 3.05 | 2.42 | |
| Depth /cm | Model | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 | RF | 0.51 | 2.77 | 2.14 | 0.48 | 2.92 | 2.35 | 0.42 | 3.09 | 2.43 | 0.56 | 2.62 | 1.94 |
| XGBoost | 0.70 | 2.29 | 1.57 | 0.62 | 2.57 | 1.64 | 0.47 | 3.22 | 2.03 | 0.68 | 2.24 | 1.18 | |
| ELM | 0.25 | 6.70 | 3.62 | 0.38 | 4.95 | 2.58 | 0.36 | 4.56 | 2.42 | 0.23 | 7.24 | 3.12 | |
| 20 | RF | 0.55 | 2.29 | 1.88 | 0.37 | 2.70 | 2.11 | 0.36 | 2.93 | 2.29 | 0.57 | 2.36 | 2.01 |
| XGBoost | 0.66 | 2.10 | 1.49 | 0.50 | 2.63 | 1.97 | 0.14 | 3.71 | 3.05 | 0.64 | 2.58 | 2.17 | |
| ELM | 0.57 | 2.64 | 1.39 | 0.41 | 10.8 | 4.15 | 0.14 | 26.3 | 8.56 | 0.61 | 2.29 | 1.28 | |
| Depth /cm | Model | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | ||||||
| 10 | RF | 0.85 | 1.51 | 0.95 | 0.62 | 2.55 | 1.85 | 0.66 | 2.30 | 1.87 | 0.72 | 2.15 | 1.69 |
| XGBoost | 0.81 | 1.76 | 1.01 | 0.74 | 2.00 | 1.37 | 0.74 | 2.15 | 1.30 | 0.77 | 1.86 | 1.51 | |
| ELM | 0.65 | 4.25 | 2.34 | 0.48 | 4.58 | 2.55 | 0.54 | 4.50 | 2.11 | 0.52 | 3.26 | 1.41 | |
| 20 | RF | 0.61 | 2.36 | 2.08 | 0.40 | 2.78 | 2.13 | 0.45 | 2.82 | 2.11 | 0.62 | 2.16 | 1.73 |
| XGBoost | 0.67 | 2.61 | 1.98 | 0.51 | 2.65 | 2.22 | 0.34 | 3.39 | 2.53 | 0.66 | 2.44 | 1.70 | |
| ELM | 0.65 | 2.24 | 1.10 | 0.49 | 3.73 | 1.24 | 0.35 | 8.06 | 2.66 | 0.63 | 2.47 | 1.20 | |
| Depth/cm | Model | ||||
|---|---|---|---|---|---|
| 0–10 | RF | 0.34 | 0.14 | 0.24 | 0.17 |
| XGBoost | 0.10 | 0.12 | 0.27 | 0.09 | |
| ELM | 0.40 | 0.11 | 0.18 | 0.29 | |
| 0–20 | RF | 0.06 | 0.03 | 0.09 | 0.05 |
| XGBoost | 0.01 | 0.02 | 0.20 | 0.02 | |
| ELM | 0.07 | 0.08 | 0.21 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Zhang, X.; Wang, Y.; Zhang, C.; Jiang, M.; Zhu, X. Surface Soil Moisture Retrieval over Winter Wheat Fields Based on Fused Multispectral and L-Band MiniSAR Data. Water 2025, 17, 3345. https://doi.org/10.3390/w17233345
Luo Z, Zhang X, Wang Y, Zhang C, Jiang M, Zhu X. Surface Soil Moisture Retrieval over Winter Wheat Fields Based on Fused Multispectral and L-Band MiniSAR Data. Water. 2025; 17(23):3345. https://doi.org/10.3390/w17233345
Chicago/Turabian StyleLuo, Ziyi, Xianyu Zhang, Yonghui Wang, Chengcai Zhang, Mingliang Jiang, and Xingxing Zhu. 2025. "Surface Soil Moisture Retrieval over Winter Wheat Fields Based on Fused Multispectral and L-Band MiniSAR Data" Water 17, no. 23: 3345. https://doi.org/10.3390/w17233345
APA StyleLuo, Z., Zhang, X., Wang, Y., Zhang, C., Jiang, M., & Zhu, X. (2025). Surface Soil Moisture Retrieval over Winter Wheat Fields Based on Fused Multispectral and L-Band MiniSAR Data. Water, 17(23), 3345. https://doi.org/10.3390/w17233345
