A Review of Urban Flood Disaster Chain Research: Causes, Identification, and Assessment
Abstract
1. Introduction
2. Research Progress on the Formation Mechanisms of Urban Flood Disaster Chains
2.1. Disaster Chain Triggering
2.2. Disaster Chain Transmission
3. Research Progress on the Identification of Urban Flood Disaster Chains
3.1. Qualitative Identification Based on Experiential Reasoning
3.2. Semantic Identification Driven by Data
3.3. Structural Identification Based on Model Inference
3.4. Behavioral Identification Based on Simulation Modeling
4. Research Progress on Risk Assessment of Urban Flood Disaster Chains
4.1. Historical Disaster Analysis Method
4.2. Indicator-Based Assessment Models
4.3. Uncertainty Models
4.4. Numerical Simulation Models
4.5. Intelligent Algorithm Models
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ayadi, Y.; Abbes, M.; Gentilucci, M.; Hamed, Y. Spatiotemporal Monitoring of the Effects of Climate Change on the Water Surface Area of Sidi Salem Dam, Northern Tunisia. Water 2025, 17, 2738. [Google Scholar] [CrossRef]
- Yang, X.; Yan, Y.; Zhou, X.; Zhu, L.; Ma, M.; Zhang, J.; Chen, Y.; Gao, L. Risk of Compound Typhoon Disaster Chains: Insights from Southeastern China. Int. J. Disaster Risk Sci. 2025, 16, 870–887. [Google Scholar] [CrossRef]
- Zou, Y.; Huang, Y.; Wang, Y.; Zhou, F.; Xia, Y.; Shen, Z. The construction of urban rainstorm disaster event knowledge graph considering evolutionary processes. Water 2024, 16, 942. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Guo, Y.; Wu, Z.; Yan, D. Urban flood forecasting based on the coupling of numerical weather model and stormwater model: A case study of Zhengzhou city. J. Hydrol. Reg. Stud. 2022, 39, 100985. [Google Scholar] [CrossRef]
- Li, C.; Sun, N.; Lu, Y.; Guo, B.; Wang, Y.; Sun, X.; Yao, Y. Review on urban flood risk assessment. Sustainability 2022, 15, 765. [Google Scholar] [CrossRef]
- Lu, X.; Xu, Z.; Shi, Q.; Tang, Q. Evolution characteristics of urban flood disasters chain and approaches for disaster mitigation. Adv. Water Sci. 2025, 36, 97–108. [Google Scholar]
- Wang, H.; Du, W.; Liu, J.; Wang, J.; Mei, C. Derivation and transmission analysis of urban flood disaster chain based on knowledge graph. Adv. Water Sci. 2024, 35, 185–196. [Google Scholar]
- Guo, H.X.; He, X.Y.; Lv, X.B.; Wu, Y. Risk analysis of rainstorm-urban lifeline system disaster chain based on the PageRank-risk matrix and complex network. Nat. Hazards 2024, 120, 10583–10606. [Google Scholar] [CrossRef]
- Zhou, R.; Zheng, H.; Liu, Y.; Xie, G.; Wan, W. Flood impacts on urban road connectivity in southern China. Sci. Rep. 2022, 12, 16866. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Qi, S.; Wang, Z.; Fu, X.; Gao, H.; Ma, J.; Zhao, L. Research on the Heavy Rainstorm–Flash Flood–Debris Flow Disaster Chain: A Case Study of the “Haihe River ‘23· 7’ Regional Flood”. Remote Sens. 2024, 16, 4802. [Google Scholar] [CrossRef]
- Serre, D.; Heinzlef, C. Assessing and mapping urban resilience to floods with respect to cascading effects through critical infrastructure networks. Int. J. Disaster Risk Reduct. 2018, 30, 235–243. [Google Scholar] [CrossRef]
- Jia, H.; Chen, F.; Pan, D.; Du, E.; Wang, L.; Wang, N.; Yang, A. Flood risk management in the Yangtze River basin—Comparison of 1998 and 2020 events. Int. J. Disaster Risk Reduct. 2022, 68, 102724. [Google Scholar] [CrossRef]
- Liu, W.; He, S. Dynamic simulation of a mountain disaster chain: Landslides, barrier lakes, and outburst floods. Nat. Hazards 2018, 90, 757–775. [Google Scholar] [CrossRef]
- Su, C.; Ma, J.; Wang, C.; Deng, J.; Chen, W. Flood-induced coal mine disaster chain evolution and risk analysis. Nat. Hazards 2025, 121, 21031–21058. [Google Scholar] [CrossRef]
- Older, M. Disaster response as secondary hazard. In Disaster Research and the Second Environmental Crisis: Assessing the Challenges Ahead; Springer: Berlin/Heidelberg, Germany, 2019; pp. 277–293. [Google Scholar]
- Fekete, A. Critical infrastructure and flood resilience: Cascading effects beyond water. Wiley Interdiscip. Rev. Water 2019, 6, e1370. [Google Scholar] [CrossRef]
- Guimarães, L.; Battemarco, B.; Oliveira, A.; Miguez, M. A new approach to assess cascading effects of urban floods. Energy Rep. 2021, 7, 8357–8367. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, C.; Xu, M.; Wu, Z.; Zheng, S.; Ma, G. Quantitative assessment of congestion diffusion and cascading effect under rainfall-flood disasters: A case study of Nanjing, China. Int. J. Disaster Risk Reduct. 2024, 114, 104915. [Google Scholar] [CrossRef]
- Arrighi, C.; Pregnolato, M.; Castelli, F. Indirect flood impacts and cascade risk across interdependent linear infrastructures. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Mainguenaud, F.; Khan, U.T.; Peyras, L.; Carvajal, C.; Beullac, B.; Sharma, J. Probabilistic flood hazard assessment for multiple flood and levee breaching scenarios: A case study of Etobicoke Creek, Canada. J. Flood Risk Manag. 2025, 18, e70002. [Google Scholar] [CrossRef]
- Schauwecker, S.; Gascón, E.; Park, S.; Ruiz-Villanueva, V.; Schwarb, M.; Sempere-Torres, D.; Stoffel, M.; Vitolo, C.; Rohrer, M. Anticipating cascading effects of extreme precipitation with pathway schemes-Three case studies from Europe. Environ. Int. 2019, 127, 291–304. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Li, N. Extreme flood disasters: Comprehensive impact and assessment. Water 2022, 14, 1211. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X. Temporal and spatial distribution of compound flood potential in China’s coastal areas. J. Hydrol. 2022, 615, 128719. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I. Cascading hazards and compound disasters. npj Nat. Hazards 2025, 2, 54. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef]
- Rezvani, S.M.; Silva, M.J.F.; de Almeida, N.M. Urban resilience index for critical infrastructure: A scenario-based approach to disaster risk reduction in road networks. Sustainability 2024, 16, 4143. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, L.; Chen, J. Metro System Inundation in Zhengzhou, Henan Province, China. Sustainability 2022, 14, 9292. [Google Scholar] [CrossRef]
- Zhao, X.; Li, H.; Cai, Q.; Pan, Y.; Qi, Y. Managing extreme rainfall and flooding events: A case study of the 20 July 2021 Zhengzhou flood in China. Climate 2023, 11, 228. [Google Scholar] [CrossRef]
- Pescaroli, G.; Alexander, D. Understanding compound, interconnected, interacting, and cascading risks: A holistic framework. Risk Anal. 2018, 38, 2245–2257. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Z.; Jia, X.; Liu, H.; Zhou, G.; Wang, L. Flood disaster chain deduction based on cascading failures in urban critical infrastructure. Reliab. Eng. Syst. Saf. 2025, 261, 111160. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef]
- Xu, L.; Meng, X.; Xu, X. Natural hazard chain research in China: A review. Nat. Hazards 2014, 70, 1631–1659. [Google Scholar] [CrossRef]
- Huang, L.; Chen, T.; Deng, Q.; Zhou, Y. Reasoning disaster chains with bayesian network estimated under expert prior knowledge. Int. J. Disaster Risk Sci. 2023, 14, 1011–1028. [Google Scholar] [CrossRef]
- Wetzel, M.; Schudel, L.; Almoradie, A.; Komi, K.; Adounkpè, J.; Walz, Y.; Hagenlocher, M. Assessing flood risk dynamics in data-scarce environments—Experiences from combining impact chains with bayesian network analysis in the lower Mono River Basin, Benin. Front. Water 2022, 4, 837688. [Google Scholar] [CrossRef]
- Ning, L.; Hu, K.; Wang, Z.; Luo, H.; Qin, H.; Zhang, X.; Liu, S. Multi-hazard chain reaction initiated by the 2020 Meilong debris flow in the Dadu River, Southwest China. Front. Earth Sci. 2022, 10, 827438. [Google Scholar] [CrossRef]
- Rosqvist, T.; Molarius, R.; Virta, H.; Perrels, A. Event tree analysis for flood protection—An exploratory study in Finland. Reliab. Eng. Syst. Saf. 2013, 112, 1–7. [Google Scholar] [CrossRef]
- Hong, E.S.; Lee, I.M.; Shin, H.S.; Nam, S.W.; Kong, J.S. Quantitative risk evaluation based on event tree analysis technique: Application to the design of shield TBM. Tunn. Undergr. Space Technol. 2009, 24, 269–277. [Google Scholar] [CrossRef]
- Ten Veldhuis, J.; Clemens, F.; Van Gelder, P. Fault tree analysis for urban flooding. Water Sci. Technol. 2009, 59, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, J.; Wu, T.; Peng, Q.; Cai, C. Risk analysis of waterlogging in a big city based on a bow-tie Bayesian network model, using the megacity of Wuhan as an example. Front. Environ. Sci. 2023, 11, 1258544. [Google Scholar] [CrossRef]
- Tang, B.; Wang, X.; Yan, J.; Chen, Q. Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF. BMC Med. Inform. Decis. Mak. 2019, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Long, K.; Zhang, S.; Zhang, T.; Ma, L.; Cheng, S.; Guo, Y. Text-Image Scene Graph Fusion for Multimodal Named Entity Recognition. IEEE Trans. Artif. Intell. 2023, 5, 2828–2839. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Zheng, X.; Chen, N.; Wang, Y. Extracting the location of flooding events in urban systems and analyzing the semantic risk using social sensing data. J. Hydrol. 2021, 603, 127053. [Google Scholar] [CrossRef]
- Lai, K.; Porter, J.R.; Amodeo, M.; Miller, D.; Marston, M.; Armal, S. A natural language processing approach to understanding context in the extraction and geocoding of historical floods, storms, and adaptation measures. Inf. Process. Manag. 2022, 59, 102735. [Google Scholar] [CrossRef]
- Li, M.; Yuan, C.; Li, K.; Gao, M.; Zhang, Y.; Lv, H. Knowledge Management Model for Urban Flood Emergency Response Based on Multimodal Knowledge Graphs. Water 2024, 16, 1676. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, F.; Li, B.; Jin, G.; Xu, D.; Li, F. UrbanFloodKG: An urban flood knowledge graph system for risk assessment. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; pp. 2574–2584. [Google Scholar]
- Yang, H.; Liu, J. Knowledge graph representation learning as groupoid: Unifying TransE, RotatE, QuatE, ComplEx. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Online, 1–5 November 2021; pp. 2311–2320. [Google Scholar]
- Li, J.; Liu, Z.; Lei, X.; Wang, L. Distributed fusion of heterogeneous remote sensing and social media data: A review and new developments. Proc. IEEE 2021, 109, 1350–1363. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Y.; Liu, P. A global multimodal flood event dataset with heterogeneous text and multi-source remote sensing images. Big Earth Data 2025, 9, 362–388. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Chen, X. A framework for using event evolutionary graphs to rapidly assess the vulnerability of urban flood cascade compound disaster event networks. J. Hydrol. 2024, 642, 131783. [Google Scholar] [CrossRef]
- Xu, H.; Li, B.; Wang, Y. Determining the key urban infrastructures in disaster scenarios based on complex network theory. Nat. Hazards 2025, 121, 10929–10961. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Li, C.; Chen, T. A complex network approach to quantifying flood resilience in high-density coastal urban areas: A case study of Macau. Int. J. Disaster Risk Reduct. 2025, 119, 105335. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, Y.; Wang, H.; Wu, M. Urban flood disaster risk evaluation based on ontology and Bayesian Network. J. Hydrol. 2020, 583, 124596. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Ran, L. Vulnerability modeling and assessment in urban transit systems considering disaster chains: A weighted complex network approach. Int. J. Disaster Risk Reduct. 2021, 54, 102033. [Google Scholar] [CrossRef]
- Taberna, A.; Filatova, T.; Roy, D.; Noll, B. Tracing resilience, social dynamics and behavioral change: A review of agent-based flood risk models. Socio-Environ. Syst. Model. 2020, 2, 17938. [Google Scholar] [CrossRef]
- Anshuka, A.; van Ogtrop, F.F.; Sanderson, D.; Leao, S.Z. A systematic review of agent-based model for flood risk management and assessment using the ODD protocol. Nat. Hazards 2022, 112, 2739–2771. [Google Scholar] [CrossRef]
- Zhao, B.; Tang, Y.; Wang, C.; Zhang, S.; Soga, K. Evaluating the flooding level impacts on urban metro networks and travel demand: Behavioral analyses, agent-based simulation, and large-scale case study. Resilient Cities Struct. 2022, 1, 12–23. [Google Scholar] [CrossRef]
- Simmonds, J.; Gómez, J.A.; Ledezma, A. The role of agent-based modeling and multi-agent systems in flood-based hydrological problems: A brief review. J. Water Clim. Change 2020, 11, 1580–1602. [Google Scholar] [CrossRef]
- Michaelis, T.; Brandimarte, L.; Mazzoleni, M. Capturing flood-risk dynamics with a coupled agent-based and hydraulic modelling framework. Hydrol. Sci. J. 2020, 65, 1458–1473. [Google Scholar] [CrossRef]
- Lan, H.; Yang, Y.; Fu, H.; Liao, H.; Liao, L.; Huang, S.; Li, X. Dynamic disaster risk assessment of urban waterlogging on pedestrian flow by intelligent simulation of hydrodynamics coupled with agent-based models in Chao-yang river basin of Nanning, China. Stoch. Environ. Res. Risk Assess. 2024, 38, 3851–3874. [Google Scholar] [CrossRef]
- Liu, E.; Zhang, K.; Chen, P.; Wang, Z. Simulation study of decision-making behavior in urban flood drainage and rescue operations based on ABM. In Proceedings of the Third International Conference on Environmental Remote Sensing and Geographic Information Technology (ERSGIT 2024), Xi’an, China, 22–24 November 2024; SPIE: Bellingham, WA, USA, 2025; Volume 13565, pp. 396–401. [Google Scholar]
- Zhu, J.; Dai, Q.; Deng, Y.; Zhang, A.; Zhang, Y.; Zhang, S. Indirect damage of urban flooding: Investigation of flood-induced traffic congestion using dynamic modeling. Water 2018, 10, 622. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, J.; Wang, D.; Liu, Y.; Lu, Y.; Zhang, W.; Xu, S. ABM-based emergency evacuation modelling during urban pluvial floods: A “7.20” pluvial flood event study in Zhengzhou, Henan Province. Sci. China Earth Sci. 2023, 66, 282–291. [Google Scholar] [CrossRef]
- Sengupta, S. IoT-Based Flood Detection and Management Systems in Urban Areas. Risk Assess. Manag. Decis. 2024, 1, 301–313. [Google Scholar]
- Bagheri, A.; Liu, G.J. Climate change and urban flooding: Assessing remote sensing data and flood modeling techniques: A comprehensive review. Environ. Rev. 2024, 33, 1–14. [Google Scholar] [CrossRef]
- Nazemi, A.R.; Dolatshahi, M.; Kerachian, R. A decentralized multi-agent framework for urban flood management. Sustain. Cities Soc. 2024, 106, 105328. [Google Scholar] [CrossRef]
- Koc, K.; Işık, Z. A multi-agent-based model for sustainable governance of urban flood risk mitigation measures. Nat. Hazards 2020, 104, 1079–1110. [Google Scholar] [CrossRef]
- Yang, S.; Ogawa, Y.; Ikeuchi, K.; Akiyama, Y.; Shibasaki, R. Firm-level behavior control after large-scale urban flooding using multi-agent deep reinforcement learning. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on GeoSpatial Simulation, Chicago, IL, USA, 5 November 2019; pp. 24–27. [Google Scholar]
- Carpignano, A.; Golia, E.; Di Mauro, C.; Bouchon, S.; Nordvik, J.P. A methodological approach for the definition of multi-risk maps at regional level: First application. J. Risk Res. 2009, 12, 513–534. [Google Scholar] [CrossRef]
- Lu, Z.; Yan, D.; Jiang, H.; Xue, H.; Xu, Z.D. Cascading Failures in Urban Infrastructure Systems: A Comprehensive Review of Disaster Chain Mechanisms. J. Infrastruct. Intell. Resil. 2025, 4, 100157. [Google Scholar] [CrossRef]
- Li, W.; Jiang, R.; Wu, H.; Xie, J.; Zhao, Y.; Li, F.; Gan, T.Y. An integrated urban flooding risk analysis framework leveraging machine learning models: A case study of Xi’an, China. Int. J. Disaster Risk Reduct. 2024, 112, 104770. [Google Scholar] [CrossRef]
- Du, W.; Wang, J.; Liu, J.; Wang, H.; Zhou, J.; Mei, C.; Nazli, S. Quantitative assessment of urban flood disaster damages using the S-curve- A case study of Zhengzhou City. J. Hydrol. 2025, 658, 133169. [Google Scholar] [CrossRef]
- Zhu, X.X.; Qiu, C.; Hu, J.; Shi, Y.; Wang, Y.; Schmitt, M.; Taubenböck, H. The urban morphology on our planet–Global perspectives from space. Remote Sens. Environ. 2022, 269, 112794. [Google Scholar] [CrossRef] [PubMed]
- Mühlhofer, E.; Bresch, D.N.; Koks, E.E. Infrastructure failure cascades quintuple risk of storm and flood-induced service disruptions across the globe. ONE Earth 2024, 7, 714–729. [Google Scholar] [CrossRef]
- Zwirglmaier, V.; Reimuth, A.; Garschagen, M. How suitable are current approaches to simulate flood risk under future urbanization trends? Environ. Res. Lett. 2024, 19, 073003. [Google Scholar] [CrossRef]
- Fang, J.; Wang, S.; Chen, J.; Ma, J.; Wu, R. Entrance/Exit Characteristics-Driven Flood Risk Assessment of Urban Underground Garages Under Extreme Rainfall Scenarios. Water 2025, 17, 2081. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Tran, T.A.; Nguyen, H.N. An Overview of Indicator-Based Approach of Flood Vulnerability Assessment. Towar. Sustain. Reg. Essays Honor. Kiyoko Hagihara 2023, 73, 187–204. [Google Scholar]
- Skoulidou, D.; Kazantzi, A.K. Indicator-based risk assessments for urban hazard resilience: An application for flash floods. Environ. Hazards 2025, 24, 339–364. [Google Scholar] [CrossRef]
- Abdrabo, K.I.; Kantoush, S.A.; Esmaiel, A.; Saber, M.; Sumi, T.; Almamari, M.; Elboshy, B.; Ghoniem, S. An integrated indicator-based approach for constructing an urban flood vulnerability index as an urban decision-making tool using the PCA and AHP techniques: A case study of Alexandria, Egypt. Urban Clim. 2023, 48, 101426. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, Z.; Zheng, X.; Liu, S.; Zhang, D.; Peng, D.; Pang, B. A flood risk assessment framework for urban subway systems: A case study in Beijing, China. Sustain. Cities Soc. 2025, 131, 106681. [Google Scholar] [CrossRef]
- Park, H.J.; Song, S.M.; Kim, D.H.; Lee, S.O. Study on the Effectiveness of Multi-Dimensional Approaches to Urban Flood Risk Assessment. Appl. Sci. 2025, 15, 7777. [Google Scholar] [CrossRef]
- Binesh, N.; Sarang, A.; Niksokhan, M.H.; Rauch, W.; Aronica, G.T. Quantifying the UDS hydraulic and social resilience to flooding: An index-based approach vs. a parameter-based MCDM method. Water 2022, 14, 2007. [Google Scholar] [CrossRef]
- Rohmer, J.; Gehl, P. Sensitivity analysis of Bayesian networks to parameters of the conditional probability model using a Beta regression approach. Expert Syst. Appl. 2020, 145, 113130. [Google Scholar] [CrossRef]
- Sun, T.; Liu, D.; Liu, D.; Zhang, L.; Li, M.; Khan, M.I.; Li, T.; Cui, S. A new method for flood disaster resilience evaluation: A hidden markov model based on Bayesian belief network optimization. J. Clean. Prod. 2023, 412, 137372. [Google Scholar] [CrossRef]
- Wang, Z.; Quan, H.; Zhu, W.; Jin, R.; Jin, G.; Cui, Y. The Susceptibility Assessment of Rainstorm Disaster Chains in the Tumen River Basin Based on Convolutional Neural Network and Bayesian Network. KSCE J. Civ. Eng. 2025, 100411. [Google Scholar] [CrossRef]
- Wang, T.; Tan, X.; Tian, Y.; Huang, X.; Chen, X.; Xiao, P.; Wang, W. Risk assessment based on Bayesian network for the typhoon-storm surge-flood-dike burst disaster chain: A case study of Guangdong, China. J. Hydrol. Reg. Stud. 2025, 58, 102251. [Google Scholar] [CrossRef]
- Lu, Y.; Zhai, G.; Zhou, S. An integrated Bayesian networks and Geographic information system (BNs-GIS) approach for flood disaster risk assessment: A case study of Yinchuan, China. Ecol. Indic. 2024, 166, 112322. [Google Scholar] [CrossRef]
- Zwirglmaier, V.; Garschagen, M. Linking urban structure types and Bayesian network modelling for an integrated flood risk assessment in data-scarce mega-cities. Urban Clim. 2024, 56, 102034. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; van der Sluijs, J.P.; Højberg, A.L.; Vanrolleghem, P.A. Uncertainty in the environmental modelling process–a framework and guidance. Environ. Model. Softw. 2007, 22, 1543–1556. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making. Environ. Model. Softw. 2013, 48, 129–140. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, Y.; Long, X. A comprehensive review of Bayesian statistics in natural hazards engineering. Nat. Hazards 2021, 108, 63–91. [Google Scholar] [CrossRef]
- Pandey, J.; Sudhikumar, K.; Srinivas, V.V. Vulnerability Assessment of Storm Water Drains Using Bayesian Belief Network; Technical Report; Copernicus Meetings: Göttingen, Germany, 2025. [Google Scholar]
- Qi, W.; Ma, C.; Xu, H.; Chen, Z.; Zhao, K.; Han, H. A review on applications of urban flood models in flood mitigation strategies. Nat. Hazards 2021, 108, 31–62. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Fox, D.; Dang, D.K.; Pham, L.T.; Viet Du, Q.V.; Nguyen, T.H.T.; Dang, T.N.; Tran, V.T.; Vu, P.L.; Nguyen, Q.H.; et al. Predicting future urban flood risk using land change and hydraulic modeling in a river watershed in the central Province of Vietnam. Remote Sens. 2021, 13, 262. [Google Scholar] [CrossRef]
- Fan, X.; Yang, F.; Siva Subramanian, S.; Xu, Q.; Feng, Z.; Mavrouli, O.; Peng, M.; Ouyang, C.; Jansen, J.D.; Huang, R. Prediction of a multi-hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China. Landslides 2020, 17, 147–164. [Google Scholar] [CrossRef]
- Zhang, K.; Mei, C.; Liu, J.; Wang, J.; Song, T.; Shi, H.; Zhang, A.; Cao, X. Spatiotemporal evolution analysis of urban lifeline infrastructure disaster chain network based on numerical simulation and cascading effects. Sustain. Cities Soc. 2025, 133, 106880. [Google Scholar] [CrossRef]
- Cao, Z.; Yue, Z.; Pender, G. Landslide dam failure and flood hydraulics. Part II: Coupled mathematical modelling. Nat. Hazards 2011, 59, 1021–1045. [Google Scholar] [CrossRef]
- Song, T.; Liu, J.; Mei, C.; Zhang, M.; Wang, H.; Nazli, S. Coupling effect analysis of dam break flood spread and building collapse based on numerical simulation. Sci. China Technol. Sci. 2024, 67, 3571–3584. [Google Scholar] [CrossRef]
- Pujol, L.; Garambois, P.A.; Monnier, J. Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains. Geosci. Model Dev. 2022, 15, 6085–6113. [Google Scholar] [CrossRef]
- Liu, Y.; Gupta, H.V. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Schumann, G.; Bates, P.D.; Horritt, M.S.; Matgen, P.; Pappenberger, F. Progress in integration of remote sensing–derived flood extent and stage data and hydraulic models. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Z.; Liu, Y.; Liang, Q.; Xie, S. Integrated remote sensing imagery and two-dimensional hydraulic modeling approach for impact evaluation of flood on crop yields. J. Hydrol. 2017, 553, 262–275. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Tolson, B.A. Progress in integrating remote sensing data and hydrologic modeling. Prog. Phys. Geogr. 2014, 38, 464–498. [Google Scholar] [CrossRef]
- Liang, Q.; Smith, L.; Xia, X. New prospects for computational hydraulics by leveraging high-performance heterogeneous computing techniques. J. Hydrodyn. 2016, 28, 977–985. [Google Scholar] [CrossRef]
- Chen, T.; Sun, J.; Zhang, Z.; Xiao, Z.; Zheng, L.; Chai, H.; Lin, B. High-performance computing in urban flood modeling: A study on spatial partitioning techniques and parallel performance. J. Hydrol. 2025, 649, 132474. [Google Scholar] [CrossRef]
- Hosseiny, H.; Nazari, F.; Smith, V.; Nataraj, C. A framework for modeling flood depth using a hybrid of hydraulics and machine learning. Sci. Rep. 2020, 10, 8222. [Google Scholar] [CrossRef]
- Zhao, H.; Gu, T.; Tang, J.; Gong, Z.; Zhao, P. Urban flood risk differentiation under land use scenario simulation. iScience 2023, 26, 106479. [Google Scholar] [CrossRef]
- Liang, Z.; Fang, X.; Liang, Z.; Xiong, J.; Deng, F.; Nyamasvisva, T.E. Graph spiking neural network for advanced urban flood risk assessment. iScience 2024, 27, 111037. [Google Scholar] [CrossRef]
- Nachappa, T.G.; Ghorbanzadeh, O.; Gholamnia, K.; Blaschke, T. Multi-hazard exposure mapping using machine learning for the State of Salzburg, Austria. Remote Sens. 2020, 12, 2757. [Google Scholar] [CrossRef]
- Park, K.; Lee, E.H. Urban flood vulnerability analysis and prediction based on the land use using Deep Neural Network. Int. J. Disaster Risk Reduct. 2024, 101, 104231. [Google Scholar] [CrossRef]
- Wang, M.; Fan, H.; Yuan, H.; Zhang, D.; Su, J.; Zhou, S.; Zhang, Q.; Li, J. Urban flooding damage prediction in matrix scenarios of extreme rainfall using a convolutional neural network. J. Hydrol. 2024, 644, 132069. [Google Scholar] [CrossRef]
- Pan, X.; Hou, J.; Gao, X.; Chen, G.; Li, D.; Imran, M.; Li, X.; Yang, N.; Ma, M.; Zhou, X. LSTM model-based rapid prediction method of urban inundation with rainfall time series. Water Resour. Manag. 2025, 39, 661–688. [Google Scholar] [CrossRef]
- Yan, L.; Rong, H.; Yang, W.; Lin, J.; Zheng, C. A novel integrated urban flood risk assessment approach based on one-two dimensional coupled hydrodynamic model and improved projection pursuit method. J. Environ. Manag. 2024, 366, 121910. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Wu, W.; Wei, R.; He, H.; Wang, L.; Li, Z.; Lin, X. Risk analysis of distribution network outages under a typhoon–rainstorm–flood disaster chain. Energy Convers. Econ. 2025, 6, 126–139. [Google Scholar] [CrossRef]


| Assessment Method | Assessment Process | Advantages | Limitations |
|---|---|---|---|
| Historical Disaster Analysis | Based on historical flood disaster data and regional characteristics; statistical methods are used to identify the flood disaster chain risk characteristics. | Simple analysis process; suitable for regional-scale flood risk studies; capable of identifying historical flood chain risks. | Inadequate for forecasting future flood risks; exhibits limited capability in characterizing flood-risk variations over different locations and periods. |
| Indicator-Based Evaluation Model | Select key indicators related to flood risk; construct an evaluation dataset; determine the relative weights; calculate a composite evaluation index. | Captures the driving mechanisms of flood risk in a systematic manner; efficient for quantitative evaluation of flood risk at multiple scales. | Requires extensive data collection and preprocessing; subjectivity in indicator selection and weighting may affect the objectivity of results. |
| Uncertainty Model | Conduct feature analysis of disaster chain nodes; construct network structure; compute node probabilities to calculate overall flood risk characteristics. | Considers the uncertainty and complexity of disaster chain evolution; suitable for expert-driven probabilistic inference and risk assessment. | Relies heavily on historical data or expert judgment; model building is complex and may introduce subjectivity; results may lack generalizability. |
| Numerical Simulation Model | Develop hydrological and hydrodynamic models; simulate flood evolution under different scenarios; analyze the flooding process. | Accurately simulates physical flood processes; allows for scenario-based assessments under varying rainfall or infrastructure conditions. | Constructing the model requires considerable time and resources; the simulation may become less efficient in complex and large environments. |
| Intelligent Algorithm Model | Collect and generate training samples; optimize model parameters; predict spatial variation in disaster chain risk based on key drivers. | Effectively mines patterns in historical data; suitable for dynamic and large-scale prediction of flood chain risks. | Requires large computational resources and sufficient training data; has “black-box” nature with relatively low interpretability of results. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Wang, P.; Yang, Z.; Liang, W.; Lou, W.; Zhou, J. A Review of Urban Flood Disaster Chain Research: Causes, Identification, and Assessment. Water 2025, 17, 3344. https://doi.org/10.3390/w17233344
Gao X, Wang P, Yang Z, Liang W, Lou W, Zhou J. A Review of Urban Flood Disaster Chain Research: Causes, Identification, and Assessment. Water. 2025; 17(23):3344. https://doi.org/10.3390/w17233344
Chicago/Turabian StyleGao, Xichao, Pengfei Wang, Zhiyong Yang, Weijia Liang, Wangqi Lou, and Jinjun Zhou. 2025. "A Review of Urban Flood Disaster Chain Research: Causes, Identification, and Assessment" Water 17, no. 23: 3344. https://doi.org/10.3390/w17233344
APA StyleGao, X., Wang, P., Yang, Z., Liang, W., Lou, W., & Zhou, J. (2025). A Review of Urban Flood Disaster Chain Research: Causes, Identification, and Assessment. Water, 17(23), 3344. https://doi.org/10.3390/w17233344

