Toward a Localized Water Footprint of Lithium Brine Extraction: A Case Study from the Salar de Atacama
Abstract
1. Introduction
- (a)
- Defining functional water quality descriptors for different water types along the salinity gradient within the study region, offering insights into how ecosystem functions may be affected by changes in water volume, surface area, or depth;
- (b)
- Quantifying lithium brine extraction and evaporation losses from lithium ponds;
- (c)
- Modeling the spatially resolved effect of brine extraction on groundwater level decline in the surrounding environment;
- (d)
- Estimating changes in phreatic evaporation from shallow groundwater due to groundwater level drawdown;
- (e)
- Assessing the effect of brine extraction on the surrounding lagoon surface area;
- (f)
- Quantifying potential mixing effects between brine and lower salinity water due to lithium brine extraction;
- (g)
- Addressing changes in net evaporation that are determined by summing artificial evaporation from lithium ponds, reductions in phreatic evaporation due to drawdown of the groundwater level, and reductions in evaporation due to the shrinking lagoon area;
- (h)
- Estimating how changes in net evaporation affect precipitation feedback and basin recharge in the basin;
- (i)
- Linking induced hydrological effects to a functional unit representing the quantified performance of a product system (e.g., the impact of production in relation to a specified amount of intermediate lithium product);
- (j)
- Incorporating future scenario analyses to evaluate potential long-term impacts of brine extraction.
2. Materials and Methods
2.1. Case Study Region, Models, and Definition of Functional Water Quality Descriptors (a)

| Characteristics | Water Functionality Zone A | Water Functionality Zone B |
|---|---|---|
| Fluid system | Covers all fluid zones with a major part not in equilibrium with brine | Exclusively refers to the fluid zone in full equilibrium with brine |
| Local specification | Represents areas outside of the salt flat nucleus | Represents the area of the salt flat nucleus |
| Functional water quality descriptors for humans | Partially meets the requirements for direct human use according to Chilean norms (e.g., when TDS ≤ 5000 mg/L) [45,46] | Highly saline brine that is not intended for direct human use |
| Functional water quality descriptors for ecosystems | Outside the salt flat nucleus, possibly supporting local vegetation assemblages [50] Supporting lagoons that provide habitats for local animal species adapted to high salinity conditions, either directly or indirectly (by inducing upward groundwater flow) [19] | Does not support local flora in surface ecosystems [50] There are no critical lagoon systems in the overlying area [50] |
| Consideration of brine consumption in the context of water scarcity | Not applicable as there is no consumption of brine in this zone | Consumption of brine as such is not considered as it does not directly deprive humans and local flora and fauna of water for direct uses |
| Consideration of induced (indirect) effects of brine consumption in the context of water scarcity | Brine extraction shall not affect water levels, surface areas, and volumes within this zone, to protect local surface ecosystems and ensure access to groundwater for human purposes (freshwater system) | Reductions in groundwater heights and volumes are acceptable, provided these effects do not extend into zone A |
2.2. Quantifying Lithium Brine Extraction and Evaporation Losses from Lithium Ponds (b)
2.3. Modeling the Effect of Brine Extraction on Groundwater Level Decline (c)
2.4. Estimating Changes in Phreatic Evaporation from Shallow Groundwater Tables (d)
2.5. Estimating Effects on Surrounding Lagoon Surface Area (e)
2.6. Quantifying Potential Mixing Effects Between Brine and Lower Salinity Water (f)
2.7. Estimating Changes in Net Evaporation (g) and Effects on Precipitation Feedback and Basin Recharge (h)
2.8. Linking Induced Hydrological Effects to a Functional Unit (i)
2.9. Incorporation of Future Scenario Analyses (j)
3. Results and Discussion
3.1. Water Functionality Zoning (a)
3.2. Evaporation from Lithium Ponds (b)
3.3. Spatially Resolved Effect of Brine Extraction on Groundwater Level Decline (c)
3.4. Changes in Phreatic Evaporation (d)
3.5. Effects on Surrounding Lagoon Surface Area (e)
3.6. Potential Mixing Effects Between Brine and Lower Salinity Water (f)
3.7. Net Evaporation (g) and Effects on Precipitation Feedback and Basin Recharge (h)
3.8. Relating Results to a Functional Unit (i)
3.9. Future Scenario Analyses (j)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BIER | Basin internal evaporation recycling |
| EC | Electric conductivity |
| DLE | Direct lithium extraction |
| LCA | Life cycle assessment |
| SdA | Salar de Atacama |
| SQM | Sociedad Química y Minera |
| TDS | Total dissolved solids |
Appendix A. Main Lagoon Systems Linked to the Salt Flat Nucleus

Appendix B. Description of Hydrogeological Models [42,43,44]
Appendix C. Brine and Groundwater Extraction Rates by Mining Companies
| Year | Brine Extraction; SQM (Mm3/yr) | Indirect Brine Reinjection; SQM (Mm3/d) | Direct Brine Reinjection; SQM (Mm3/d) | Net Brine Extraction; SQM (Mm3/yr) | Net Brine Extraction; SQM (L/s) | Brine Extraction; Albemarle (Mm3/yr) | Brine Extraction; Albemarle (L/s) | Freshwater Extraction; Quelana System (Mm3/yr) | Freshwater Extraction; Alluvial System (Mm3/yr) | Freshwater Extraction; Quelana System (L/s) | Freshwater Extraction; Alluvial System (L/s) |
| 1986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 27.3 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1987 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 28.5 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1988 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 39.8 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1989 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 46.7 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1990 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 59.3 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1991 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 53.5 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1992 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | 49.3 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1993 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | 51.6 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1994 | 0.5 | 0.0 | 0.0 | 0.5 | 16.6 | 1.7 | 53.6 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1995 | 8.8 | 0.0 | 0.0 | 8.8 | 279.8 | 1.6 | 50.8 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1996 | 12.3 | −3.3 | −3.3 | 5.7 | 180.7 | 1.6 | 49.4 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1997 | 19.7 | −2.9 | −4.1 | 12.7 | 402.9 | 2.1 | 67.8 | 0.1 | 0.1 | 4.3 | 4.3 |
| 1998 | 24.3 | −1.5 | −3.0 | 19.8 | 626.4 | 2.7 | 86.1 | 2.0 | 2.0 | 62.4 | 62.4 |
| 1999 | 29.5 | −1.8 | −3.5 | 24.1 | 764.6 | 2.5 | 79.3 | 2.3 | 2.3 | 73.3 | 73.3 |
| 2000 | 29.8 | −1.8 | −3.9 | 24.0 | 762.2 | 2.6 | 82.2 | 2.2 | 2.2 | 68.5 | 68.5 |
| 2001 | 22.9 | −1.6 | −4.1 | 17.2 | 546.0 | 2.5 | 80.4 | 1.9 | 1.9 | 60.0 | 60.0 |
| 2002 | 24.2 | −2.2 | −4.5 | 17.4 | 552.3 | 2.8 | 88.9 | 2.1 | 2.1 | 66.4 | 66.4 |
| 2003 | 24.6 | −2.6 | −6.0 | 16.0 | 508.0 | 2.8 | 89.4 | 2.4 | 2.4 | 74.8 | 74.8 |
| 2004 | 24.6 | −2.9 | −5.7 | 16.0 | 506.5 | 2.8 | 87.3 | 2.5 | 2.5 | 78.3 | 78.3 |
| 2005 | 27.3 | −3.3 | −8.1 | 15.9 | 503.4 | 3.5 | 111.2 | 2.8 | 2.8 | 89.4 | 89.4 |
| 2006 | 26.9 | −2.9 | −7.1 | 16.9 | 535.4 | 3.7 | 116.9 | 2.4 | 2.4 | 77.6 | 77.6 |
| 2007 | 27.4 | −2.7 | −7.6 | 17.2 | 544.7 | 3.8 | 120.1 | 2.6 | 2.6 | 83.2 | 83.2 |
| 2008 | 29.8 | −2.0 | −7.0 | 20.9 | 661.7 | 6.1 | 194.7 | 3.9 | 4.5 | 122.4 | 142.6 |
| 2009 | 27.9 | −2.2 | −6.9 | 18.8 | 597.2 | 3.8 | 119.5 | 4.8 | 7.3 | 152.4 | 231.6 |
| 2010 | 41.1 | −0.6 | −4.4 | 36.1 | 1145.7 | 6.0 | 190.3 | 4.7 | 7.2 | 150.1 | 228.8 |
| 2011 | 48.0 | −1.1 | −4.8 | 42.1 | 1336.1 | 5.7 | 182.2 | 4.7 | 7.1 | 149.7 | 225.8 |
| 2012 | 47.6 | −0.1 | −4.2 | 43.3 | 1374.0 | 5.9 | 186.1 | 4.7 | 7.1 | 147.6 | 224.4 |
| 2013 | 54.2 | 0.0 | −4.2 | 50.0 | 1586.4 | 4.4 | 141.1 | 4.7 | 7.1 | 148.0 | 224.5 |
| 2014 | 56.0 | 0.0 | −3.8 | 52.1 | 1652.3 | 4.2 | 133.3 | 4.7 | 7.2 | 150.1 | 228.6 |
| 2015 | 59.3 | 0.0 | −4.1 | 55.2 | 1750.4 | 4.6 | 144.8 | 4.8 | 7.2 | 151.1 | 229.9 |
| 2016 | 64.1 | 0.0 | −4.5 | 59.6 | 1891.1 | 4.9 | 156.9 | 3.3 | 5.8 | 106.1 | 185.4 |
| 2017 | 55.5 | 0.0 | −4.0 | 51.5 | 1632.3 | 8.2 | 260.7 | 4.7 | 7.1 | 148.1 | 225.8 |
| 2018 | 41.4 | 0.0 | −4.2 | 37.2 | 1179.7 | 10.8 | 341.0 | 3.1 | 5.6 | 99.6 | 177.9 |
| 2019 | 46.9 | 0.0 | −4.1 | 42.8 | 1357.5 | 13.9 | 442.2 | 3.0 | 5.3 | 93.9 | 167.3 |
| 2020 | 55.1 | 0.0 | −4.4 | 50.8 | 1609.4 | 14.0 | 442.4 | 2.9 | 3.7 | 92.7 | 116.1 |
| 2021 | 40.4 | 0.0 | 0.0 | 40.4 | 1280.0 | 16.1 | 511.4 | 3.1 | 3.7 | 97.4 | 116.9 |
| 2022 | 40.4 | 0.0 | −7.6 | 32.8 | 1039.3 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2023 | 38.6 | 0.0 | −7.2 | 31.4 | 994.7 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2024 | 36.8 | 0.0 | −6.7 | 30.0 | 952.8 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2025 | 34.9 | 0.0 | −6.4 | 28.5 | 904.5 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2026 | 33.1 | 0.0 | −6.1 | 27.1 | 858.5 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2027 | 29.3 | 0.0 | −5.4 | 23.8 | 756.2 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2028 | 25.9 | 0.0 | −4.6 | 21.3 | 674.6 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2029 | 25.9 | 0.0 | −4.3 | 21.6 | 685.7 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2030 | 25.9 | 0.0 | −4.3 | 21.6 | 686.2 | 13.3 | 422.0 | 2.1 | 3.8 | 66.7 | 120.0 |
| 2031 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2032 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2033 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2035 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2036 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2038 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2039 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2040 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 422.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2042 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| … | … | … | … | … | … | … | … | … | … | … | … |
| 2050 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| … | … | … | … | … | … | … | … | … | … | … | … |
| 2075 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Appendix D. Phreatic Evaporation Rates
| Zone | Maximum Evaporation Rate [mm/d] | Start Adjustment Depth | Evaporation [mm/d] | Parameter a | Parameter b |
| Nucleus | 3.53 | 0.0135 | 1.6 | ||
| SS-S | 3.53 | 0.06 | 0.9 | ||
| SS-A | 5.82 | 0.11 | 1.1 | ||
| CS | 5.82 | 0.1 | 1.85 | ||
| A12 | 5.82 | / | 5.8 | −4.2 | |
| A12-T | 5.82 | 0.1 | 1 | ||
| SE-S | 3.53 | 0.04 | 1.3 | ||
| SE-A | 5.82 | 0.178 | 1.65 | ||
| Zi1-S | 3.53 | 0.04 | 1 | ||
| Zi2-S | 3.53 | 0.005 | 1.3 | ||
| CE | 5.82 | 0.115 | 1.75 | ||
| A2-S | 3.53 | 0.035 | 1.3 | ||
| STNN | 3.53 | 0.04 | 1.3 | ||
| A12-W-S | 3.53 | / | 3.53 | −4.5 |
Appendix E. Groundwater Level Changes for 2020

References
- Fromer, N.; Eggert, R.G.; Lifton, J. Critical Materials for Sustainable Energy Applications. 2011. Available online: https://resnick.caltech.edu/documents/13372/R_Critical.pdf (accessed on 10 August 2025).
- Cabeza, L.F.; Gutierrez, A.; Barreneche, C.; Ushak, S.; Fernández, Á.G.; Inés Fernádez, A.; Grágeda, M. Lithium in Thermal Energy Storage: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2015, 42, 1106–1112. [Google Scholar] [CrossRef]
- Sun, X.; Ouyang, M.; Hao, H. Surging Lithium Price Will Not Impede the Electric Vehicle Boom. Joule 2022, 6, 1738–1742. [Google Scholar] [CrossRef]
- Bae, H.; Kim, Y. Technologies of Lithium Recycling from Waste Lithium Ion Batteries: A Review. Mater. Adv. 2021, 2, 3234. [Google Scholar] [CrossRef]
- Swain, B. Recovery and Recycling of Lithium: A Review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Perez-Rodríguez, S.; Milton, J.A.; Garcia-Araez, N. Novel Method of Lithium Production from Brines Combining a Battery Material and Sodium Sulfite as a Cheap and Environmentally Friendly Reducing Agent. ACS Sustain. Chem. Eng. 2020, 8, 6243–6251. [Google Scholar] [CrossRef]
- Cabello, J. Lithium Brine Production, Reserves, Resources and Exploration in Chile: An Updated Review. Ore Geol. Rev. 2021, 128, 103883. [Google Scholar] [CrossRef]
- Munk, L.A.; Boutt, D.F.; Hynek, S.A.; Moran, B.J. Hydrogeochemical Fluxes and Processes Contributing to the Formation of Lithium-Enriched Brines in a Hyper-Arid Continental Basin. Chem. Geol. 2018, 493, 37–57. [Google Scholar] [CrossRef]
- Gómez-Silva, B.; Rainey, F.A.; Warren-Rhodes, K.A.; McKay, C.P.; Navarro-González, R. Atacama Desert Soil Microbiology. In Microbiology of Extreme Soils; Springer: Berlin/Heidelberg, Germany, 2008; pp. 117–132. [Google Scholar]
- Azua-Bustos, A.; Urrejola, C.; Vicuña, R. Life at the Dry Edge: Microorganisms of the Atacama Desert. FEBS Lett. 2012, 586, 2939–2945. [Google Scholar] [CrossRef]
- Bull, A.T.; Asenjo, J.A. Microbiology of Hyper-Arid Environments: Recent Insights from the Atacama Desert, Chile. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2013, 103, 1173–1179. [Google Scholar] [CrossRef]
- Babidge, S. Sustaining Ignorance: The Uncertainties of Groundwater and Its Extraction in the Salar de Atacama, Northern Chile. J. R. Anthropol. Inst. 2019, 25, 83–102. [Google Scholar] [CrossRef]
- Marazuela, M.A.; Vázquez-Suñé, E.; Ayora, C.; García-Gil, A.; Palma, T. Hydrodynamics of Salt Flat Basins: The Salar de Atacama Example. Sci. Total Environ. 2019, 651, 668–683. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.; Aravena, R.; Briones, E.; Suárez, F.; Tore, C.; Muñoz, J.F. Sources of Surface Water for the Soncor Ecosystem, Salar de Atacama Basin, Northern Chile. Hydrol. Sci. J. 2013, 59, 336–350. [Google Scholar] [CrossRef]
- Marazuela, M.A.; Vázquez-Suñé, E.; Ayora, C.; García-Gil, A.; Palma, T. The Effect of Brine Pumping on the Natural Hydrodynamics of the Salar de Atacama: The Damping Capacity of Salt Flats. Sci. Total Environ. 2019, 654, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Holzbecher, E. Groundwater Flow Pattern in the Vicinity of a Salt Lake. Hydrobiologia 2005, 532, 233–242. [Google Scholar] [CrossRef]
- Nield, D.A.; Simmons, C.T.; Kuznetsov, A.V.; Ward, J.D. On the Evolution of Salt Lakes: Episodic Convection beneath an Evaporating Salt Lake. Water Resour. Res. 2008, 44, W02439. [Google Scholar] [CrossRef]
- Hamann, E.; Post, V.; Kohfahl, C.; Prommer, H.; Simmons, C.T. Numerical Investigation of Coupled Density-Driven Flow and Hydrogeochemical Processes below Playas. Water Resour. Res. 2015, 51, 9338–9352. [Google Scholar] [CrossRef]
- Gajardo, G.; Redón, S. Andean Hypersaline Lakes in the Atacama Desert, Northern Chile: Between Lithium Exploitation and Unique Biodiversity Conservation. Conserv. Sci. Pract. 2019, 1, e94. [Google Scholar] [CrossRef]
- Gutiérrez, J.S.; Senner, N.R.; Moore, J.N.; Donnelly, J.P.; Dorador, C.; Navedo, J.G. Climate Change and Lithium Mining Influence Flamingo Abundance in the Lithium Triangle. Proc. R. Soc. B 2022, 289, 20212388. [Google Scholar] [CrossRef]
- Jerez, B.; Garcés, I.; Torres, R. Lithium Extractivism and Water Injustices in the Salar de Atacama, Chile: The Colonial Shadow of Green Electromobility. Polit. Geogr. 2021, 87, 962–6298. [Google Scholar] [CrossRef]
- Schomberg, A.C.; Bringezu, S. How Can the Water Use of Lithium Brine Mining Be Adequately Assessed? Resour. Conserv. Recycl. 2023, 190, 106806. [Google Scholar] [CrossRef]
- Guzmán, J.I.; Retamal, C.; Faúndez, P.; Joaquín Jara, J. Evolution of the Surface Area of Critical Lagoon Systems in the Salar de Atacama. Nat. Resour. Res. 2022, 31, 2571–2588. [Google Scholar] [CrossRef]
- Liu, W.; Agusdinata, D.B.; Myint, S.W. Spatiotemporal Patterns of Lithium Mining and Environmental Degradation in the Atacama Salt Flat, Chile. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 145–156. [Google Scholar] [CrossRef]
- Houston, J.; Butcher, A.; Ehren, P.; Evans, K.; Godfrey, L. The Evaluation of Brine Prospects and the Requirement for Modifications to Filing Standards. Econ. Geol. 2011, 106, 1225–1239. [Google Scholar] [CrossRef]
- Chordia, M.; Wickerts, S.; Nordelöf, A.; Arvidsson, R. Life Cycle Environmental Impacts of Current and Future Battery-Grade Lithium Supply from Brine and Spodumene. Resour. Conserv. Recycl. 2022, 187, 106634. [Google Scholar] [CrossRef]
- Drobe, M. Lithium–Sustainability Information; BGR: Hannover, Germany, 2020; Available online: https://www.deutsche-rohstoffagentur.de/EN/Gemeinsames/Produkte/Downloads/Informationen_Nachhaltigkeit/lithium_en.pdf?__blob=publicationFile&v=5 (accessed on 10 August 2025).
- Mousavinezhad, S.; Nili, S.; Fahimi, A.; Vahidi, E. Environmental Impact Assessment of Direct Lithium Extraction from Brine Resources: Global Warming Potential, Land Use, Water Consumption, and Charting Sustainable Scenarios. Resour. Conserv. Recycl. 2024, 205, 107583. [Google Scholar] [CrossRef]
- ISO 14046; Environmental Management—Water Footprint—Principles, Requirements and Guidelines (German and English Version EN ISO 14046:2016). ISO: Geneva, Switzerland, 2016.
- Schomberg, A.C.; Bringezu, S.; Flörke, M. Extended Life Cycle Assessment Reveals the Spatially-Explicit Water Scarcity Footprint of a Lithium-Ion Battery Storage. Commun. Earth Environ. 2021, 2, 11. [Google Scholar] [CrossRef]
- He, Z.; Korre, A.; Kelsall, G.; Nie, Z.; Colet Lagrille, M. Environmental and Life Cycle Assessment of Lithium Carbonate Production from Chilean Atacama Brines. RSC Sustain. 2025, 3, 275–290. [Google Scholar] [CrossRef]
- Mas-Fons, A.; Horta Arduin, R.; Loubet, P.; Pereira, T.; Parvez, A.M.; Sonnemann, G. Carbon and Water Footprint of Battery-Grade Lithium from Brine and Spodumene: A Simulation-Based LCA. J. Clean. Prod. 2024, 452, 142108. [Google Scholar] [CrossRef]
- Kelly, J.C.; Wang, M.; Dai, Q.; Winjobi, O. Energy, Greenhouse Gas, and Water Life Cycle Analysis of Lithium Carbonate and Lithium Hydroxide Monohydrate from Brine and Ore Resources and Their Use in Lithium Ion Battery Cathodes and Lithium Ion Batteries. Resour. Conserv. Recycl. 2021, 174, 105762. [Google Scholar] [CrossRef]
- Schenker, V.; Oberschelp, C.; Pfister, S. Regionalized Life Cycle Assessment of Present and Future Lithium Production for Li-Ion Batteries. Resour. Conserv. Recycl. 2022, 187, 106611. [Google Scholar] [CrossRef]
- Khakmardan, S.; Rolinck, M.; Cerdas, F.; Herrmann, C.; Giurco, D.; Crawford, R.; Li, W. Comparative Life Cycle Assessment of Lithium Mining, Extraction, and Refining Technologies: A Global Perspective. Procedia CIRP 2023, 116, 606–611. [Google Scholar] [CrossRef]
- Lagos, G.; Cifuentes, L.; Peters, D.; Castro, L.; Valdés, J.M. Carbon Footprint and Water Inventory of the Production of Lithium in the Atacama Salt Flat, Chile. Environ. Chall. 2024, 16, 100962. [Google Scholar] [CrossRef]
- Marinova, S.; Roche, L.; Link, A.; Finkbeiner, M. Water Footprint of Battery-Grade Lithium Production in the Salar de Atacama, Chile. J. Clean. Prod. 2025, 487, 144635. [Google Scholar] [CrossRef]
- Link, A.; Marinova, S.; Roche, L.; Coroamă, V.; Hinkers, L.; Borchardt, D.; Finkbeiner, M. Lithium Mining in the Salar de Atacama—Accounting Practices for Water Footprinting. Water 2025, 17, 1670. [Google Scholar] [CrossRef]
- SQM. Fluid Zones (Shared Internally) 2022; SQM: Santiago de Chile, Chile, 2022. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Pearson Education Limited: Harlow, UK, 2013; ISBN 9781292022901. [Google Scholar]
- Marazuela, M.A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.; Ayora, C. 3D Mapping, Hydrodynamics and Modelling of the Freshwater-Brine Mixing Zone in Salt Flats Similar to the Salar de Atacama (Chile). J. Hydrol. 2018, 561, 223–235. [Google Scholar] [CrossRef]
- SQM. Estudio de Impacto Ambiental: Proyecto Plan de Reducción de Extracciones en el Salar de Atacama-Modelo Hidrogeológico Numérico del Núcleo del Salar de Atacama; SQM: Santiago de Chile, Chile, 2021. [Google Scholar]
- SQM. Estudio de Impacto Ambiental: Proyecto Plan de Reducción de Extracciones en el Salar de Atacama-Modelo Hidrogeológico Numérico del Systema Aguas de Quelana; SQM: Santiago de Chile, Chile, 2021. [Google Scholar]
- SQM. Modelo Numérico del Borde Este del Salar de Atacama; SQM: Santiago de Chile, Chile, 2021. [Google Scholar]
- INN NCh1333; Requisitos de Calidad del Agua Para Diferentes Usos. National Institute of Standardization (INN): Santiago de Chile, Chile, 1978. Available online: https://ciperchile.cl/pdfs/11-2013/norovirus/NCh1333-1978_Mod-1987.pdf (accessed on 10 October 2025).
- INN NCh409; Agua Portable-Parte 1-Requisitos. National Institute of Standardization (INN): Santiago de Chile, Chile, 2005. Available online: https://ciperchile.cl/pdfs/11-2013/norovirus/NCh409.pdf (accessed on 10 October 2025).
- Geobiota. Informe de Seguimiento Ambiental: Proyecto Cambios y Mejoras en la Operación Minera del Salar de Atacama–Región de Antofagasta; Geobiota: Santiago de Chile, Chile, 2021. [Google Scholar]
- Munk, L.A.; Boutt, D.F.; Moran, B.J.; McKnight, S.V.; Jenckes, J. Hydrogeologic and Geochemical Distinctions in Freshwater-Brine Systems of an Andean Salar. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009345. [Google Scholar] [CrossRef]
- Saccò, M.; White, N.E.; Harrod, C.; Salazar, G.; Aguilar, P.; Cubillos, C.F.; Meredith, K.; Baxter, B.K.; Oren, A.; Anufriieva, E.; et al. Salt to Conserve: A Review on the Ecology and Preservation of Hypersaline Ecosystems. Biol. Rev. 2021, 96, 2828–2850. [Google Scholar] [CrossRef]
- Geobiota. Mapa de Vegetacion: Mapa de Vegetación en el Área de Influencia–Mapa General; Geobiota: Providencia, Chile, 2022. [Google Scholar]
- Cubillos, C.F.; Paredes, A.; Yáñez, C.; Palma, J.; Severino, E.; Vejar, D.; Grágeda, M.; Dorador, C. Insights into the Microbiology of the Chaotropic Brines of Salar de Atacama, Chile. Front. Microbiol. 2019, 10, 463175. [Google Scholar] [CrossRef]
- SQM. Hydrogeological Management. Available online: https://sqmlitio.com/en/sostenibilidad/manejo-hidrogeologico/ (accessed on 14 August 2023).
- Parada, S. SQM Salar de Atacama Facility Tour; SQM: Santiago de Chile, Chile, 2022. [Google Scholar]
- SQM. Brine Extraction and Water Withdrawal for Freshwater Purposes by SQM and Albemarle (Internal SQM Data Shared); SQM: Santiago de Chile, Chile, 2023. [Google Scholar]
- SRK. Estudio Hidrológico Salar de Atacama; SRK: Santiago de Chile, Chile, 2020. [Google Scholar]
- Philip, J.R. Theory of Infiltration. Soil Sci. 1957, 83, 345–357. [Google Scholar] [CrossRef]
- Morel-Seytoux, H.J.; Mermoud, A. Modélisation et Observation Du Flux Hydrique Vers La Surface Du Sol Depuis Une Nappe Peu Profonde. Hydrol. Cont. 1989, 4, 11–23. [Google Scholar]
- Boutt, D.F.; Hynek, S.A.; Munk, L.A.; Corenthal, L.G. Rapid Recharge of Fresh Water to the Halite-Hosted Brine Aquifer of Salar de Atacama, Chile. Hydrol. Process. 2016, 30, 4720–4740. [Google Scholar] [CrossRef]
- Herrera, C.; Urrutia, J.; Godfrey, L.; Jódar, J.; Pereira, M.; Villarroel, C.; Durán, C.; Soto, I.; Lam, E.J.; Gómez, L. An Evaluation of the Brine Flow in the Upper Part of the Halite Nucleus of the Salar de Atacama (Chile) through an Isotopic Study of Δ18O and Δ2H. Water 2024, 16, 2651. [Google Scholar] [CrossRef]
- Link, A.; Van Der Ent, R.; Berger, M.; Eisner, S.; Finkbeiner, M. The Fate of Land Evaporation—A Global Dataset. Earth Syst. Sci. Data 2020, 12, 1897–1912. [Google Scholar] [CrossRef]
- Berger, M.; Eisner, S.; Van der Ent, R.; Flörke, M.; Link, A.; Poligkeit, J.; Bach, V.; Finkbeiner, M. Enhancing the Water Accounting and Vulnerability Evaluation Model: WAVE+. Environ. Sci. Technol. 2018, 52, 10757–10766. [Google Scholar] [CrossRef] [PubMed]
- Moran, B.J.; Boutt, D.F.; McKnight, S.V.; Jenckes, J.; Munk, L.A.; Corkran, D.; Kirshen, A. Relic Groundwater and Prolonged Drought Confound Interpretations of Water Sustainability and Lithium Extraction in Arid Lands. Earth’s Future 2022, 10, e2021EF002555. [Google Scholar] [CrossRef]
- IDEA-CSIC. Quinta Actualización del Modelo Regional de Flujo del Salar de Atacama; IDEA-CSIC: Barcelona, Spain, 2019. [Google Scholar]
- Marazuela, M.A.; Vázquez-Suñé, E.; Ayora, C.; García-Gil, A. Towards More Sustainable Brine Extraction in Salt Flats: Learning from the Salar de Atacama. Sci. Total Environ. 2020, 703, 135605. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Agusdinata, D.B. Dynamics of Local Impacts in Low-Carbon Transition: Agent-Based Modeling of Lithium Mining-Community-Aquifer Interactions in Salar de Atacama, Chile. Extr. Ind. Soc. 2021, 8, 100927. [Google Scholar] [CrossRef]
- Kampf, S.K.; Tyler, S.W. Spatial Characterization of Land Surface Energy Fluxes and Uncertainty Estimation at the Salar de Atacama, Northern Chile. Adv. Water Resour. 2006, 29, 336–354. [Google Scholar] [CrossRef]
- Cornellà, O.; Salas, J.; Aravena, R.; Guzmán, E.; Guimerà, J.; Tore, C.; von Igel, W.; Henríquez, A.; Fock, A. Hidrogeologia de Los Sistemas Lagunares Del Margen e Del Salar de Atacama. In Proceedings of the Congreso Geológico Chileno, Santiago de Chile, Chile, 22–26 November 2009; pp. 1–4. [Google Scholar]
- Guzmán, J.I.; Jara Donoso, J.J.; Faúndez Martelli, P. Role of Lithium Mining on the Water Stress of the Salar de Atacama Basin. 2021. Available online: https://eartharxiv.org/repository/view/2110/ (accessed on 10 October 2025).
- Vera, M.L.; Torres, W.R.; Galli, C.I.; Chagnes, A.; Flexer, V. Environmental Impact of Direct Lithium Extraction from Brines. Nat. Rev. Earth Environ. 2023, 4, 149–165. [Google Scholar] [CrossRef]
- SQM. Main Lagoon Systems Linked to the Salt Flat Nucleus (Shapefile); SQM: Santiago de Chile, Chile, 2022. [Google Scholar]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Link, A.; Marinova, S.; Roche, L.; Coroamă, V.; Hinkers, L.; Borchardt, D.; Finkbeiner, M. Toward a Localized Water Footprint of Lithium Brine Extraction: A Case Study from the Salar de Atacama. Water 2025, 17, 3311. https://doi.org/10.3390/w17223311
Link A, Marinova S, Roche L, Coroamă V, Hinkers L, Borchardt D, Finkbeiner M. Toward a Localized Water Footprint of Lithium Brine Extraction: A Case Study from the Salar de Atacama. Water. 2025; 17(22):3311. https://doi.org/10.3390/w17223311
Chicago/Turabian StyleLink, Andreas, Sylvia Marinova, Lindsey Roche, Vlad Coroamă, Lily Hinkers, Denise Borchardt, and Matthias Finkbeiner. 2025. "Toward a Localized Water Footprint of Lithium Brine Extraction: A Case Study from the Salar de Atacama" Water 17, no. 22: 3311. https://doi.org/10.3390/w17223311
APA StyleLink, A., Marinova, S., Roche, L., Coroamă, V., Hinkers, L., Borchardt, D., & Finkbeiner, M. (2025). Toward a Localized Water Footprint of Lithium Brine Extraction: A Case Study from the Salar de Atacama. Water, 17(22), 3311. https://doi.org/10.3390/w17223311

